Optimization of tris(2-carboxyethyl) phosphine reduction conditions for fast analysis of total biothiols in mouse serum samples.
Heliyon 2019;
5:e01598. [PMID:
31193090 PMCID:
PMC6517333 DOI:
10.1016/j.heliyon.2019.e01598]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/25/2019] [Indexed: 12/05/2022] Open
Abstract
In this study, we investigated suitable conditions for the reduction of disulfides in mouse serum samples by tris(2-carboxyethyl) phosphine (TCEP) for fast analysis of total biothiols. Disulfides were reduced with TCEP, and then, thiols were derivatized with the fluorogenic reagent, ammonium 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (SBD-F). Interference peaks on chromatograms of mouse serum samples disappeared when the TCEP reaction was conducted on ice instead of at room temperature, which is used classically. Low-molecular-weight disulfides, such as cystine and glutathione disulfide, were nearly completely reduced by TCEP on ice. Six SBD-biothiols (homocysteine, cysteine, cysteinylglycine, glutathione, γ-glutamylcysteine, and N-acetylcysteine) were separated within 7.5 min on a sulfoalkylbetain-type column (ZIC-HILIC: 150 × 2.1 mm i.d., 3.5 μm), without interference peaks. The developed method showed good linearity and reproducibility, with inter- and intra-day precisions of less than 3%.
Collapse