1
|
Ishii C, Hamase K. Two-dimensional LC-MS/MS and three-dimensional LC analysis of chiral amino acids and related compounds in real-world matrices. J Pharm Biomed Anal 2023; 235:115627. [PMID: 37633168 DOI: 10.1016/j.jpba.2023.115627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/28/2023]
Abstract
Amino acids normally have a chiral carbon and d/l-enantiomers are present. Due to the homochirality features on the present Earth, l-enantiomers are predominant in the living beings and the d-enantiomers are rare. Along with the progress and development of cutting edge analytical methods, several d-amino acids were found even in the higher animals including humans, and their biological functions and diagnostic values have also been reported. However, the amounts of these d-amino acids are much lower than the l-forms, and development/utilization of highly sensitive and selective methods are practically essential to avoid the disturbance from uncountable intrinsic substances. In the present review, multi-dimensional HPLC methods for the determination of chiral amino acids, especially two-dimensional LC-MS/MS and three-dimensional LC methods, and their applications to a variety of real-world matrices are summarized.
Collapse
Affiliation(s)
- Chiharu Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
2
|
Hsieh CL, Akita T, Mita M, Ide T, Lee JA, Hamase K. Development of a selective three-dimensional HPLC system for enantiomer discriminated analysis of lactate and 3-hydroxybutyrate in human plasma and urine. J Pharm Biomed Anal 2020; 195:113871. [PMID: 33429251 DOI: 10.1016/j.jpba.2020.113871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
For the enantiomer discriminated determination of lactate (LA) and 3-hydroxybutyrate (3HB) in various complicated samples, a three-dimensional HPLC (3D-HPLC) system has been designed and developed by investigating the separation of the target analytes from unknown substances observed in the real target matrices. LA and 3HB were pre-column derivatized with 4-nitro-7-piperazino-2,1,3-benzoxadiazole for the sensitive fluorescence detection and introduced into the 3D-HPLC system composed of reversed-phase, mixed-mode and enantioselective separations. The present method was validated by calibration curves, precision and accuracy using standard solutions and human samples, and sufficient values were obtained. Using the method, the levels of d-LA, l-LA, d-3Hb and l-3HB were determined, and their concentrations were 9.9, 1004.2, 79.7 and 2.1 μM in the human plasma and 16.0, 86.6, 8.7 and 4.8 μM in the human urine, respectively. The present 3D-HPLC system could selectively determine trace amounts of the target hydroxy acid enantiomers without disturbance of the intrinsic interfering substances in complicated matrices and the applications to various disease samples are expected.
Collapse
Affiliation(s)
- Chin-Ling Hsieh
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeyuki Akita
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masashi Mita
- KAGAMI, Inc., 7-7-15 Saito-asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Tomomi Ide
- Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jen-Ai Lee
- School of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; School of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
3
|
Three approaches to improving performance of liquid chromatography using contour maps with pressure, time, and number of theoretical plates. J Chromatogr A 2020; 1637:461778. [PMID: 33359796 DOI: 10.1016/j.chroma.2020.461778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022]
Abstract
Attempts to improve HPLC performance often focus on increasing the speed or separation performance. In this article, both the flow rate and column length are optimized as separation conditions, while observing the number of theoretical plates and hold-up time with isocratic elutions. In addition, the upper pressure limit must be simultaneously considered as the boundary condition. Approaches based on the optimal velocity (Opt.) are often adopted; but the kinetic performance limit (KPL) in Desmet's method can also be utilized for three-dimensional graphing with axes of pressure, time, and number of theoretical plates. Here, two approaches involving pressure increase are introduced, beginning with the condition of optimal linear velocity: one aimed at greater speed and the other at higher resolution. Coefficients of pressure-application are derived to measure the effectiveness of the intermediate conditions between the Opt. and KPL methods. In the third approach, the hold-up time is extended while maintaining a fixed pressure. Coefficients of time-extension are also derived, to determine the effectiveness to improve the separation performance.
Collapse
|
4
|
FURUSHO A, OBROMSUK M, AKITA T, MITA M, NAGANO M, ROJSITTHISAK P, HAMASE K. High-Performance Liquid Chromatographic Determination of Chiral Amino Acids Using Pre-Column Derivatization with o-Phthalaldehyde and N- tert-Butyloxycarbonyl-D-cysteine and Application to Vinegar Samples. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2020.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Aogu FURUSHO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Takeyuki AKITA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | | | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
5
|
Furusho A, Akita T, Mita M, Naraoka H, Hamase K. Three-dimensional high-performance liquid chromatographic analysis of chiral amino acids in carbonaceous chondrites. J Chromatogr A 2020; 1625:461255. [PMID: 32709316 DOI: 10.1016/j.chroma.2020.461255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/26/2022]
Abstract
A three-dimensional (3D) HPLC system in combination with fluorescence derivatization has been developed for the highly sensitive and selective analysis of chiral amino acids in extraterrestrial samples. As the targets, alanine (Ala), 2-aminobutyric acid (2AB), valine (Val), norvaline (nVal) and isovaline (iVal), frequently found chiral amino acids in the carbonaceous chondrites, were selected. These amino acids were pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), and the target analytes were separated from other amino acids and organic compounds by a reversed-phase column in the first dimension. The targets were further separated from interferences by an anion-exchange column in the second dimension, and their enantiomers were separated and determined in the third dimension by a Pirkle-type enantioselective column. The present 3D-HPLC system was validated and applied to the Murchison meteorite and the Antarctic meteorites, and all of the target amino acid enantiomers were clearly observed (0.78-22.33 nmol/g in the Murchison meteorite and 1.79-78.84 nmol/g in the Antarctic meteorites) without severe interferences. The %L values of the non-proteinogenic amino acids were almost 50% in both meteorites, and even the proteinogenic amino acids were almost racemic in the Antarctic meteorites.
Collapse
Affiliation(s)
- Aogu Furusho
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan
| | - Takeyuki Akita
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan
| | - Masashi Mita
- KAGAMI Inc., 7-7-15 Saito-asagi, Ibaraki 567-0085, Japan
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
6
|
Mizuno H, Shindo T, Ito K, Sakane I, Miyazaki Y, Toyo'oka T, Todoroki K. Development of a selective and sensitive analytical method to detect isomerized aspartic acid residues in crystallin using a combination of derivatization and liquid chromatography mass spectrometry. J Chromatogr A 2020; 1623:461134. [PMID: 32345439 DOI: 10.1016/j.chroma.2020.461134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/24/2022]
Abstract
The isomerization of amino acids in peptides and proteins induces structural changes and aggregation. The isomerization rate of aspartic acid (Asp) is high and causes various serious diseases including Alzheimer's disease and cataract. Herein, a method for the comprehensive separation and sensitive detection of isomerized crystallin containing Asp (l-α-Asp, l-β-Asp, d-α-Asp, and d-β-Asp) was developed using chiral derivatization and reversed-phase UHPLC separation. Of three candidate derivatization reagents tested for the separation of peptides containing isomerized aspartic acid, 2,5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1,3,5-triazine-2-yl) pyrrolidine-2-carboxylate (DMT-(R)-Pro-OSu) was the most suitable reagent for separating isomerized peptides and improved the sensitivity of mass spectrometry by 50-fold. This method was applied to analyze heat-denatured crystallin. Asp58 and Asp151 residues in αA-crystallin (AAC) exhibited the highest isomerization rate in heated crystallin. Furthermore, the analysis of α-crystallin extracted from bovine eye lens identified isomerized Asp residues (Asp24/35, Asp58, and Asp151 in AAC and Asp140 in αB-crystallin (ABC)). These results indicate that the newly developed method using chiral derivatization provides selective and sensitive analysis of isomerized Asp sites in α-crystallin protein. This novel method will allow for the identification and quantification of isomerized amino acids in crystallin proteins.
Collapse
Affiliation(s)
- Hajime Mizuno
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takuya Shindo
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keisuke Ito
- Laboratory of Food Chemistry, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Iwao Sakane
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516, Japan
| | - Yasuto Miyazaki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
7
|
ISHII C, FURUSHO A, HSIEH CL, HAMASE K. Multi-Dimensional High-Performance Liquid Chromatographic Determination of Chiral Amino Acids and Related Compounds in Real World Samples. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2020.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chiharu ISHII
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Aogu FURUSHO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Chin-Ling HSIEH
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
8
|
Biaryl axially chiral derivatizing agent for simultaneous separation and sensitive detection of proteinogenic amino acid enantiomers using liquid chromatography–tandem mass spectrometry. J Chromatogr A 2019; 1593:91-101. [DOI: 10.1016/j.chroma.2019.01.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
|
9
|
HSIEH CL, LIN PY, AKITA T, MITA M, IDE T, LEE JA, HAMASE K. Development of a Three-Dimensional HPLC System for the Simultaneous Determination of Lactate and 3-Hydroxybutyrate Enantiomers in Mammalian Urine. CHROMATOGRAPHY 2019. [DOI: 10.15583/jpchrom.2018.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chin-Ling HSIEH
- Graduate School of Pharmaceutical Sciences, Kyushu University
- School of Pharmacy, Taipei Medical University
| | - Po-Yeh LIN
- School of Pharmacy, Taipei Medical University
| | - Takeyuki AKITA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Tomomi IDE
- Graduate School of Medical Sciences, Kyushu University
| | - Jen-Ai LEE
- School of Pharmacy, Taipei Medical University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
- School of Pharmacy, Taipei Medical University
| |
Collapse
|