1
|
Park SW, Pons-Salort M, Messacar K, Cook C, Meyers L, Farrar J, Grenfell BT. Epidemiological dynamics of enterovirus D68 in the United States and implications for acute flaccid myelitis. Sci Transl Med 2021; 13:13/584/eabd2400. [PMID: 33692131 DOI: 10.1126/scitranslmed.abd2400] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
Acute flaccid myelitis (AFM) recently emerged in the United States as a rare but serious neurological condition since 2012. Enterovirus D68 (EV-D68) is thought to be a main causative agent, but limited surveillance of EV-D68 in the United States has hampered the ability to assess their causal relationship. Using surveillance data from the BioFire Syndromic Trends epidemiology network in the United States from January 2014 to September 2019, we characterized the epidemiological dynamics of EV-D68 and found latitudinal gradient in the mean timing of EV-D68 cases, which are likely climate driven. We also demonstrated a strong spatiotemporal association of EV-D68 with AFM. Mathematical modeling suggested that the recent dominant biennial cycles of EV-D68 dynamics may not be stable. Nonetheless, we predicted that a major EV-D68 outbreak, and hence an AFM outbreak, would have still been possible in 2020 under normal epidemiological conditions. Nonpharmaceutical intervention efforts due to the ongoing COVID-19 pandemic are likely to have reduced the sizes of EV-D68 and AFM outbreaks in 2020, illustrating the broader epidemiological impact of the pandemic.
Collapse
Affiliation(s)
- Sang Woo Park
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA.
| | - Margarita Pons-Salort
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Kevin Messacar
- Department of Pediatrics, Sections of Hospital Medicine and Infectious Diseases, University of Colorado, Aurora, CO 80045, USA.,Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Camille Cook
- BioFire Diagnostics LLC, 515 Colorow Drive, Salt Lake City, UT 84108, USA
| | - Lindsay Meyers
- BioFire Diagnostics LLC, 515 Colorow Drive, Salt Lake City, UT 84108, USA
| | - Jeremy Farrar
- Wellcome Trust, Gibbs Building, 215 Euston Road, London NW1 2BE, UK
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA.,Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08540, USA.,Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Park SW, Farrar J, Messacar K, Meyers L, Pons-Salort M, Grenfell BT. Epidemiological dynamics of enterovirus D68 in the US: implications for acute flaccid myelitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2020.07.23.20069468. [PMID: 32766605 PMCID: PMC7402064 DOI: 10.1101/2020.07.23.20069468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The lack of active surveillance for enterovirus D68 (EV-D68) in the US has hampered the ability to assess the relationship with predominantly biennial epidemics of acute flaccid myelitis (AFM), a rare but serious neurological condition. Using novel surveillance data from the BioFire® Syndromic Trends (Trend) epidemiology network, we characterize the epidemiological dynamics of EV-D68 and demonstrate strong spatiotemporal association with AFM. Although the recent dominant biennial cycles of EV-D68 dynamics may not be stable, we show that a major EV-D68 epidemic, and hence an AFM outbreak, would still be possible in 2020 under normal epidemiological conditions. Significant social distancing due to the ongoing COVID-19 pandemic could reduce the size of an EV-D68 epidemic in 2020, illustrating the potential broader epidemiological impact of the pandemic.
Collapse
Affiliation(s)
- Sang Woo Park
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
| | - Jeremy Farrar
- Wellcome Trust, Gibbs Building, 215 Euston Road, London NW1 2BE, UK
| | - Kevin Messacar
- Department of Pediatrics, Sections of Hospital Medicine and Infectious Diseases, University of Colorado, Aurora, CO 80045, USA
- Children’s Hospital Colorado, Aurora, CO, USA
| | - Lindsay Meyers
- BioFire Diagnostics, LLC 515 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Margarita Pons-Salort
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Bryan T. Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
- Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08540, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Schubert RD, Hawes IA, Ramachandran PS, Ramesh A, Crawford ED, Pak JE, Wu W, Cheung CK, O'Donovan BD, Tato CM, Lyden A, Tan M, Sit R, Sowa GA, Sample HA, Zorn KC, Banerji D, Khan LM, Bove R, Hauser SL, Gelfand AA, Johnson-Kerner BL, Nash K, Krishnamoorthy KS, Chitnis T, Ding JZ, McMillan HJ, Chiu CY, Briggs B, Glaser CA, Yen C, Chu V, Wadford DA, Dominguez SR, Ng TFF, Marine RL, Lopez AS, Nix WA, Soldatos A, Gorman MP, Benson L, Messacar K, Konopka-Anstadt JL, Oberste MS, DeRisi JL, Wilson MR. Pan-viral serology implicates enteroviruses in acute flaccid myelitis. Nat Med 2019; 25:1748-1752. [PMID: 31636453 PMCID: PMC6858576 DOI: 10.1038/s41591-019-0613-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/13/2019] [Indexed: 11/26/2022]
Abstract
Since 2012, the United States has experienced a biennial spike in pediatric acute flaccid myelitis (AFM).1–6 Epidemiologic evidence suggests non-polio enteroviruses (EVs) are a potential etiology, yet EV RNA is rarely detected in cerebrospinal fluid (CSF).2 We interrogated CSF from children with AFM (n=42) and pediatric other neurologic disease controls (n=58) for intrathecal anti-viral antibodies using a phage display library expressing 481,966 overlapping peptides derived from all known vertebrate and arboviruses (VirScan). We also performed metagenomic next-generation sequencing (mNGS) of AFM CSF RNA (n=20 cases), both unbiased and with targeted enrichment for EVs. Using VirScan, the only viral family significantly enriched by the CSF of AFM cases relative to controls was Picornaviridae, with the most enriched Picornaviridae peptides belonging to the genus Enterovirus (n=29/42 cases versus 4/58 controls). EV VP1 ELISA confirmed this finding (n=22/26 cases versus 7/50 controls). mNGS did not detect additional EV RNA. Despite rare detection of EV RNA, pan-viral serology identified frequently high levels of CSF EV-specific antibodies in AFM compared to controls, providing further evidence for a causal role of non-polio EVs in AFM.
Collapse
Affiliation(s)
- Ryan D Schubert
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Isobel A Hawes
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Prashanth S Ramachandran
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Akshaya Ramesh
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Emily D Crawford
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - John E Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Wesley Wu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Brian D O'Donovan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Amy Lyden
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Rene Sit
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gavin A Sowa
- School of Medicine, University of California, San Francisc, San Francisco, CA, USA
| | - Hannah A Sample
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kelsey C Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Debarko Banerji
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Lillian M Khan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Riley Bove
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen L Hauser
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Amy A Gelfand
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bethany L Johnson-Kerner
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kendall Nash
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Tanuja Chitnis
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Joy Z Ding
- Division of Neurology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Hugh J McMillan
- Division of Neurology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Charles Y Chiu
- Department of Laboratory Medicine and Medicine, Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Briggs
- Department of Pediatrics, Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Carol A Glaser
- Department of Pediatric Infectious Diseases, Kaiser Permanente Oakland Medical Center, Oakland, CA, USA
| | - Cynthia Yen
- Division of Communicable Disease Control, California Department of Public Health, Richmond, CA, USA
| | - Victoria Chu
- Division of Communicable Disease Control, California Department of Public Health, Richmond, CA, USA
| | - Debra A Wadford
- Division of Communicable Disease Control, California Department of Public Health, Richmond, CA, USA
| | - Samuel R Dominguez
- Children's Hospital Colorado and Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Terry Fei Fan Ng
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rachel L Marine
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adriana S Lopez
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - W Allan Nix
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark P Gorman
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Leslie Benson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Kevin Messacar
- Children's Hospital Colorado and Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - M Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA. .,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Hixon AM, Frost J, Rudy MJ, Messacar K, Clarke P, Tyler KL. Understanding Enterovirus D68-Induced Neurologic Disease: A Basic Science Review. Viruses 2019; 11:E821. [PMID: 31487952 PMCID: PMC6783995 DOI: 10.3390/v11090821] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/28/2022] Open
Abstract
In 2014, the United States (US) experienced an unprecedented epidemic of enterovirus D68 (EV-D68)-induced respiratory disease that was temporally associated with the emergence of acute flaccid myelitis (AFM), a paralytic disease occurring predominantly in children, that has a striking resemblance to poliomyelitis. Although a definitive causal link between EV-D68 infection and AFM has not been unequivocally established, rapidly accumulating clinical, immunological, and epidemiological evidence points to EV-D68 as the major causative agent of recent seasonal childhood AFM outbreaks in the US. This review summarizes evidence, gained from in vivo and in vitro models of EV-D68-induced disease, which demonstrates that contemporary EV-D68 strains isolated during and since the 2014 outbreak differ from historical EV-D68 in several factors influencing neurovirulence, including their genomic sequence, their receptor utilization, their ability to infect neurons, and their neuropathogenicity in mice. These findings provide biological plausibility that EV-D68 is a causal agent of AFM and provide important experimental models for studies of pathogenesis and treatment that are likely to be difficult or impossible in humans.
Collapse
Affiliation(s)
- Alison M Hixon
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joshua Frost
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Rudy
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin Messacar
- Hospital Medicine and Pediatric Infectious Disease Sections, Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA.
- Children's Hospital Colorado, Aurora, CO 80045, USA.
| | - Penny Clarke
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Kenneth L Tyler
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Neurology Service, Rocky Mountain VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|