1
|
Iqbal H, Inam‐Ur‐Raheem M, Munir S, Rabail R, Kafeel S, Shahid A, Mousavi Khaneghah A, Aadil RM. Therapeutic potential of mangiferin in cancer: Unveiling regulatory pathways, mechanisms of action, and bioavailability enhancements - An updated review. Food Sci Nutr 2024; 12:1413-1429. [PMID: 38455223 PMCID: PMC10916574 DOI: 10.1002/fsn3.3869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 03/09/2024] Open
Abstract
Mangiferin (MGF) is a phenolic compound, which is a major source of MGF is the mango tree. MGF possesses some antioxidant, anti-inflammatory, and cytoprotective properties, enabling it to play its role against various diseases such as diabetes, obesity, lung injuries, and cancer. The word "Cancer" depicts an uncontrolled and abnormal growth of cells. This review paper reveals MGF's therapeutic, curative and protective potential impact against lung, liver, ovarian, prostate, breast, stomach, and oral cancers. MGF is used in various types of research in the form of powder, liquid extract, intramuscular, intravenous, nanoparticles coated with gold, in the form of a solution, or in combination with other drugs to evaluate synergistic effects. Many studies showed that MGF is safe to use but has less bioavailability in the body and 0.111 mg/mL solubility in water. However, certain studies indicated that its bioavailability and retention time increased when taken in the form of nanoparticles and in combination with other drugs. MGF also increases the sensitivity of other drugs (i.e., cisplatin) resistant to tumors. MGF has different mechanisms of action for different cancers. It mainly targets enzymes, interleukins, tumor growth factors, signaling pathways, apoptotic proteins, and genes to inhibit the growth of tumors, volume, angiogenesis, cellular functionality, further progression, and movement to other areas of the body. Moreover, MGF increases apoptosis and body weight with no or fewer side effects on normal cells. MGF unveiled a novel gate toward the treatment of cancer. Further research and human trials are needed in this regard.
Collapse
Affiliation(s)
- Humaira Iqbal
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Seemal Munir
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Roshina Rabail
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Sadia Kafeel
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Arashi Shahid
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product TechnologyProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research InstituteWarsawPoland
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
2
|
Coco D, Leanza S. Robotic Radical Nephrectomy with Vena Cava Thrombus Extraction (RRN-VCTE) for Renal Cell Carcinoma: A Meta-Analysis of Surgical Technique and Outcomes. J Kidney Cancer VHL 2024; 11:5-11. [PMID: 38213481 PMCID: PMC10777058 DOI: 10.15586/jkcvhl.v11i1.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
Renal cell carcinoma (RCC) with vena cava tumor thrombus is a challenging condition, which requires complex surgical management. Robotic radical nephrectomy with vena cava thrombus extraction (RRN-VCTE) has emerged as a promising and minimally invasive technique. This meta-analysis aims to review the surgical technique and outcomes of RRN-VCTE in patients with RCC and vena cava tumor thrombus. A comprehensive literature search was conducted using databases, including PubMed, Embase, and Cochrane Library. Studies published in English till October 2021 were included. Keywords used for the search included "robotic radical nephrectomy," "vena cava tumor thrombus," "surgical technique," and "outcomes." Studies that reported on patient outcomes and surgical techniques of RRN-VCTE were included. Statistical analysis was performed to assess the pooled outcomes. The meta-analysis included 16 studies comprising 298 patients who underwent RRN-VCTE. The majority of patients were males (62.4%) with a median age of 58.9 years. The median tumor size was 7.2 cm, and 93.9% of patients had level 3 or 4 vena cava thrombus. The mean operating time was 328 min, with a range of 248-423 min. Blood loss ranged from 100 to 1500 mL. The overall complication rate was 26.5%, with no reported deaths. The average hospital stay was 9.5 days. The 2-year and 5-year survival rates were 77.5 and 53.1%, respectively. RRN-VCTE is a promising and minimally invasive surgical technique for RCC with vena cava tumor thrombus, whch is associated with low complication rates and acceptable oncological outcomes. Further research is needed to confirm the long-term survival rates and compare RRN-VCTE outcomes with conventional surgical techniques. Nonetheless, RRN-VCTE appears to be a valuable option for patients with RCC and vena cava tumor thrombus.
Collapse
Affiliation(s)
- Danilo Coco
- Department of General Surgery, AST 1 Pesaro-Urbino, Pesaro, Italy
| | - Silvana Leanza
- Department of General Surgery, Carlo Urbani Hospital, AST 2, Jesi, Ancona, Italy
| |
Collapse
|
3
|
Crossen MJ, Wilbourne J, Fogarty A, Zhao F. Epithelial and mesenchymal fate decisions in Wolffian duct development. Trends Endocrinol Metab 2023; 34:462-473. [PMID: 37330364 PMCID: PMC10524679 DOI: 10.1016/j.tem.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Wolffian ducts (WDs) are the paired embryonic structures that give rise to internal male reproductive tract organs. WDs are initially formed in both sexes but have sex-specific fates during sexual differentiation. Understanding WD differentiation requires insights into the process of fate decisions of epithelial and mesenchymal cells, which are tightly coordinated by endocrine, paracrine, and autocrine signals. In this review, we discuss current advances in understanding the fate-decision process of WD epithelial and mesenchymal lineages from their initial formation at the embryonic stage to postnatal differentiation. Finally, we discuss aberrant cell differentiation in WD abnormalities and pathologies and identify opportunities for future investigations.
Collapse
Affiliation(s)
- McKenna J Crossen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jillian Wilbourne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allyssa Fogarty
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
4
|
Zhu W, Wu L, Xie W, Zhang G, Gu Y, Hou Y, He Y. Screening of renal clear cell carcinoma prognostic marker genes based on TCGA and GTEx chip data and construction of transcription factor-related regulatory networks. Heliyon 2023; 9:e18870. [PMID: 37636479 PMCID: PMC10458329 DOI: 10.1016/j.heliyon.2023.e18870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
This study aimed to identify prognostic marker genes for renal clear cell carcinoma (RCCC) and construct a regulatory network of transcription factors and prognostic marker genes. Three hundred eighty-six genes were significantly differentially expressed in RCCC, with functional enrichment analysis suggesting a relationship between these genes and kidney function and development. Cox and Lasso regression analyses revealed 10 prognostic marker genes (RNASET2, MSC, DPEP1, FGF1, ATP1A1, CLDN10, PLG, SLC44A1, PCSK1N, and LGI4) that accurately predicted RCCC patient prognosis. Upstream transcription factors of these genes were also identified, and in vitro experiments suggested that ATP1A1 may play a key role in RCCC patient prognosis. The findings of this study provide important insights into the molecular mechanisms of RCCC and may have implications for personalized treatment strategies.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Urology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| | - Lingfeng Wu
- Department of Urology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| | - Wenhua Xie
- Department of Urology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| | - Gaoyue Zhang
- Department of Urology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| | - Yanqin Gu
- Department of Urology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| | - Yansong Hou
- Department of Urology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| | - Yi He
- Department of Urology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| |
Collapse
|
5
|
Liu J, Mroczek M, Mach A, Stępień M, Aplas A, Pronobis-Szczylik B, Bukowski S, Mielczarek M, Gajewska E, Topolski P, Król ZJ, Szyda J, Dobosz P. Genetics, Genomics and Emerging Molecular Therapies of Pancreatic Cancer. Cancers (Basel) 2023; 15:779. [PMID: 36765737 PMCID: PMC9913594 DOI: 10.3390/cancers15030779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
The number of cases of pancreatic cancers in 2019 in Poland was 3852 (approx. 2% of all cancers). The course of the disease is very fast, and the average survival time from the diagnosis is 6 months. Only <2% of patients live for 5 years from the diagnosis, 8% live for 2 years, and almost half live for only about 3 months. A family predisposition to pancreatic cancer occurs in about 10% of cases. Several oncogenes in which somatic changes lead to the development of tumours, including genes BRCA1/2 and PALB2, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1, are involved in pancreatic cancer. Between 4% and 10% of individuals with pancreatic cancer will have a mutation in one of these genes. Six percent of patients with pancreatic cancer have NTRK pathogenic fusion. The pathogenesis of pancreatic cancer can in many cases be characterised by homologous recombination deficiency (HRD)-cell inability to effectively repair DNA. It is estimated that from 24% to as many as 44% of pancreatic cancers show HRD. The most common cause of HRD are inactivating mutations in the genes regulating this DNA repair system, mainly BRCA1 and BRCA2, but also PALB2, RAD51C and several dozen others.
Collapse
Affiliation(s)
- Jakub Liu
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
| | - Magdalena Mroczek
- Centre for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Wagistrasse 25, 8952 Schlieren, Switzerland
| | - Anna Mach
- Department of Psychiatry, Medical University of Warsaw, 00-665 Warsaw, Poland
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Maria Stępień
- Department of Infectious Diseases, Doctoral School, Medical University of Lublin, 20-059 Lublin, Poland
| | - Angelika Aplas
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Bartosz Pronobis-Szczylik
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Szymon Bukowski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Ewelina Gajewska
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Piotr Topolski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Zbigniew J. Król
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Paula Dobosz
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| |
Collapse
|
6
|
Hudler P, Urbancic M. The Role of VHL in the Development of von Hippel-Lindau Disease and Erythrocytosis. Genes (Basel) 2022; 13:genes13020362. [PMID: 35205407 PMCID: PMC8871608 DOI: 10.3390/genes13020362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Von Hippel-Lindau disease (VHL disease or VHL syndrome) is a familial multisystem neoplastic syndrome stemming from germline disease-associated variants of the VHL tumor suppressor gene on chromosome 3. VHL is involved, through the EPO-VHL-HIF signaling axis, in oxygen sensing and adaptive response to hypoxia, as well as in numerous HIF-independent pathways. The diverse roles of VHL confirm its implication in several crucial cellular processes. VHL variations have been associated with the development of VHL disease and erythrocytosis. The association between genotypes and phenotypes still remains ambiguous for the majority of mutations. It appears that there is a distinction between erythrocytosis-causing VHL variations and VHL variations causing VHL disease with tumor development. Understanding the pathogenic effects of VHL variants might better predict the prognosis and optimize management of the patient.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Mojca Urbancic
- Eye Hospital, University Medical Centre Ljubljana, Grabloviceva ulica 46, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
7
|
Watts D, Jaykar MT, Bechmann N, Wielockx B. Hypoxia signaling pathway: A central mediator in endocrine tumors. Front Endocrinol (Lausanne) 2022; 13:1103075. [PMID: 36699028 PMCID: PMC9868855 DOI: 10.3389/fendo.2022.1103075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Adequate oxygen levels are essential for the functioning and maintenance of biological processes in virtually every cell, albeit based on specific need. Thus, any change in oxygen pressure leads to modulated activation of the hypoxia pathway, which affects numerous physiological and pathological processes, including hematopoiesis, inflammation, and tumor development. The Hypoxia Inducible Factors (HIFs) are essential transcription factors and the driving force of the hypoxia pathway; whereas, their inhibitors, HIF prolyl hydroxylase domain (PHDs) proteins are the true oxygen sensors that critically regulate this response. Recently, we and others have described the central role of the PHD/HIF axis in various compartments of the adrenal gland and its potential influence in associated tumors, including pheochromocytomas and paragangliomas. Here, we provide an overview of the most recent findings on the hypoxia signaling pathway in vivo, including its role in the endocrine system, especially in adrenal tumors.
Collapse
|