1
|
Dong H, Wang HY, Xu YT, Zhang X, Chen HY, Xu JJ, Zhao WW. Iontronic Photoelectrochemical Biorecognition Probing. ACS Sens 2024; 9:988-994. [PMID: 38258286 DOI: 10.1021/acssensors.3c02544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Herein, the first iontronic photoelectrochemical (PEC) biorecognition probing is devised by rational engineering of a dual-functional bioconjugate, i.e., a light-sensitive intercalated structural DNA, as a smart gating module confined within a nanotip, which could respond to both the incident light and biotargets of interest. Light stimulation of the bioconjugate could intensify the negative charge at the nano-orifice to sustain enhanced ionic current. The presence of proteins (e.g., acetylcholinesterase, AChE) or nucleic acids (e.g., microRNA (miR)-10b) could lead to bioconjugate release with altered ionic signaling. The practical applicability of the methodology is confirmed by AChE detection in human serum and miR-10b detection in single cells.
Collapse
Affiliation(s)
- Hang Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xian Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Mechanisms of Nanoscale Radiation Enhancement by Metal Nanoparticles: Role of Low Energy Electrons. Int J Mol Sci 2023; 24:ijms24054697. [PMID: 36902132 PMCID: PMC10003700 DOI: 10.3390/ijms24054697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Metal nanoparticles are considered as highly promising radiosensitizers in cancer radiotherapy. Understanding their radiosensitization mechanisms is critical for future clinical applications. This review is focused on the initial energy deposition by short-range Auger electrons; when high energy radiation is absorbed by gold nanoparticles (GNPs) located near vital biomolecules; such as DNA. Auger electrons and the subsequent production of secondary low energy electrons (LEEs) are responsible for most the ensuing chemical damage near such molecules. We highlight recent progress on DNA damage induced by the LEEs produced abundantly within about 100 nanometers from irradiated GNPs; and by those emitted by high energy electrons and X-rays incident on metal surfaces under differing atmospheric environments. LEEs strongly react within cells; mainly via bound breaking processes due to transient anion formation and dissociative electron attachment. The enhancement of damages induced in plasmid DNA by LEEs; with or without the binding of chemotherapeutic drugs; are explained by the fundamental mechanisms of LEE interactions with simple molecules and specific sites on nucleotides. We address the major challenge of metal nanoparticle and GNP radiosensitization; i.e., to deliver the maximum local dose of radiation to the most sensitive target of cancer cells (i.e., DNA). To achieve this goal the emitted electrons from the absorbed high energy radiation must be short range, and produce a large local density of LEEs, and the initial radiation must have the highest possible absorption coefficient compared to that of soft tissue (e.g., 20-80 keV X-rays).
Collapse
|
3
|
Gao Y, Zheng Y, Sanche L. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int J Mol Sci 2021; 22:7879. [PMID: 34360644 PMCID: PMC8345953 DOI: 10.3390/ijms22157879] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
The complex physical and chemical reactions between the large number of low-energy (0-30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
4
|
Black PJ, Miller AS, Hayes JJ. Radioresistance of GGG sequences to prompt strand break formation from direct-type radiation damage. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:411-422. [PMID: 27349757 PMCID: PMC5093048 DOI: 10.1007/s00411-016-0660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
As humans, we are constantly exposed to ionizing radiation from natural, man-made and cosmic sources which can damage DNA, leading to deleterious effects including cancer incidence. In this work, we introduce a method to monitor strand breaks resulting from damage due to the direct effect of ionizing radiation and provide evidence for sequence-dependent effects leading to strand breaks. To analyze only DNA strand breaks caused by radiation damage due to the direct effect of ionizing radiation, we combined an established technique to generate dehydrated DNA samples with a technique to analyze single-strand breaks on short oligonucleotide sequences via denaturing gel electrophoresis. We find that direct damage primarily results in a reduced number of strand breaks in guanine triplet regions (GGG) when compared to isolated guanine (G) bases with identical flanking base context. In addition, we observe strand break behavior possibly indicative of protection of guanine bases when flanked by pyrimidines and sensitization of guanine to strand break when flanked by adenine (A) bases in both isolated G and GGG cases. These observations provide insight into the strand break behavior in GGG regions damaged via the direct effect of ionizing radiation. In addition, this could be indicative of DNA sequences that are naturally more susceptible to strand break due to the direct effect of ionizing radiation.
Collapse
Affiliation(s)
- Paul J Black
- Department of Radiation Oncology, Columbia University, New York, NY, 10027, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, 14642, USA
| |
Collapse
|
5
|
Rosenberg RA, Symonds JM, Vijayalakshmi K, Mishra D, Orlando TM, Naaman R. The relationship between interfacial bonding and radiation damage in adsorbed DNA. Phys Chem Chem Phys 2014; 16:15319-25. [DOI: 10.1039/c4cp01649a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Illustration showing that secondary electrons have a higher damage probability for thiolated DNA as opposed to unthiolated DNA, due to the former's higher density of LUMO states, which leads to more efficient capture of the low energy electrons.
Collapse
Affiliation(s)
- R. A. Rosenberg
- Advanced Photon Source
- Argonne National Laboratory
- Argonne, USA
| | - J. M. Symonds
- School of Chemistry and Biochemistry and School of Physics
- Georgia Institute of Technology
- Atlanta, USA
| | | | - Debabrata Mishra
- Department of Chemical Physics
- Weizmann Institute
- Rehovot 76100, Israel
| | - T. M. Orlando
- School of Chemistry and Biochemistry and School of Physics
- Georgia Institute of Technology
- Atlanta, USA
| | - R. Naaman
- Department of Chemical Physics
- Weizmann Institute
- Rehovot 76100, Israel
| |
Collapse
|
6
|
Markus TZ, Daube SS, Naaman R. Cooperative effect in the electronic properties of human telomere sequence. J Phys Chem B 2011; 114:13897-903. [PMID: 20942452 DOI: 10.1021/jp1064038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The contribution of sequence elements of human telomere DNA to the interaction of DNA with electrons has been analyzed. By applying wavelength dependent low-energy photoelectron transmission and two-photon photoemission spectroscopy, we investigated the density of states of DNA oligomers with partial sequence elements of the human telomere assembled as monolayers on gold. The findings demonstrate the role of the resonance states in the DNA in accepting electrons and the effect of the sequence on these states. When guanine (G) bases are clustered together, the resonance negative ion state is stabilized, as compared to oligomers containing the same number of G bases but distributed within the sequence. The electron-capturing probability of the human telomere-like oligomer, a sequence with an additional single adenine (A) base adjacent to the G cluster, is dramatically enhanced compared to the other oligomers studied, most likely due to the enhancement of the density of states near the highest occupied molecular orbital.
Collapse
Affiliation(s)
- Tal Z Markus
- Department of Chemical Physics, Weizmann Institute, Rehovot 76100, Israel
| | | | | |
Collapse
|
7
|
Xie Z, Markus TZ, Gotesman G, Deutsch Z, Oron D, Naaman R. How isolated are the electronic states of the core in core/shell nanoparticles? ACS NANO 2011; 5:863-869. [PMID: 21207972 DOI: 10.1021/nn102002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We investigated how isolated are the electronic states of the core in a core-shell (c/s) nanoparticles (NPs) from the surface, when the particles are self-assembled on Au substrates via a dithiol (DT) organic linker. Applying photoemission spectroscopy the electronic states of CdSe core only and CdSe/ZnS c/s NPs were compared. The results indicate that in the c/s NPs the HOMO interacts strongly with electronic states in the Au substrate and is pinned at the same energies, relative to the Fermi level, as the core only NPs. When the capping molecules of the NPs were replaced with thiolated molecules, an interaction between the thiol groups and the electronic states of the NPs was observed that depends on the properties of the NPs studied. Thiols binding to the NPs induce the formation of surface trap states. However, while for the core only CdSe NPs the LUMO states are strongly coupled to the surface traps, independent of their size, this coupling is size dependent in the case of the CdSe/ZnS c/s NPs. For a large core, the LUMO is decoupled from the surface trap states. When the core is small enough, the LUMO is delocalized and interacts with these states.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
8
|
Solomun T, Seitz H, Sturm H. DNA damage by low-energy electron impact: dependence on guanine content. J Phys Chem B 2010; 113:11557-9. [PMID: 19645513 DOI: 10.1021/jp905263x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-stranded DNA oligonucleotides (33-mers) containing different numbers of guanines (n=1-4) were tethered to a gold surface and exposed to 1 eV electrons. The electrons induced DNA damage, which was analyzed with fluorescence and infrared spectroscopy methods. The damage was identified as strand breaks and found to correlate linearly with the number of guanines in the sequence. This sequence dependence indicates that the electron capture by the DNA bases plays an important role in the damage reaction mechanism.
Collapse
Affiliation(s)
- T Solomun
- Institute of Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
9
|
Markus TZ, Daube SS, Naaman R, Fleming AM, Muller JG, Burrows CJ. Electronic structure of DNA--unique properties of 8-oxoguanosine. J Am Chem Soc 2009; 131:89-95. [PMID: 19128174 DOI: 10.1021/ja804177j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
8-Oxo-7,8-dihydroguanosine (8-oxoG) is among the most common forms of oxidative DNA damage found in human cells. The question of damage recognition by the repair machinery is a long standing one, and it is intriguing to suggest that the mechanism of efficiently locating damage within the entire genome might be related to modulations in the electronic properties of lesions compared to regular bases. Using laser-based methods combined with organizing various oligomers self-assembled monolayers on gold substrates, we show that indeed 8-oxoG has special electronic properties. By using oligomers containing 8-oxoG and guanine bases which were inserted in an all thymine sequences, we were able to determine the energy of the HOMO and LUMO states and the relative density of electronic states below the vacuum level. Specifically, it was found that when 8-oxoG is placed in the oligomer, the HOMO state is at higher energy than in the other oligomers studied. In contrast, the weakly mutagenic 8-oxo-7,8-dihydroadenosine (8-oxoA) has little or no effect on the electronic properties of DNA.
Collapse
Affiliation(s)
- Tal Z Markus
- Department of Chemical Physics, Chemical Research Support, Weizmann Institute, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|