1
|
Wega J, Zhang KF, Lacour J, Vauthey E. Controlling Symmetry-Breaking Charge Separation in Pyrene Bichromophores. J Phys Chem Lett 2024:2834-2840. [PMID: 38442038 DOI: 10.1021/acs.jpclett.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
So far, symmetry-breaking charge separation (SB-CS) has been observed with a limited number of chromophores and is usually inhibited by the formation of an excimer. , We show here that thanks to of fine-tuning of the interchromophore coupling via structural control, SB-CS can be operative with pyrene, despite its high propensity to form an excimer. This is realized with a bichromophoric system consisting of two pyrenes attached to a crown ether macrocycle, which can bind cations of different sizes. By combining stationary and time-resolved spectroscopy together with molecular dynamics simulations, we demonstrate that the excited-state dynamics can be totally changed depending on the binding cation. Whereas strong coupling leads to rapid excimer formation, too weak coupling results in noninteracting chromophores. However, intermediate coupling, achieved upon binding of Mg2+, allows for SB-CS to be operative.
Collapse
|
2
|
Wega J, Vauthey E. Bimolecular photoinduced symmetry-breaking charge separation of perylene in solution. Photochem Photobiol Sci 2024; 23:93-105. [PMID: 38133700 PMCID: PMC10834668 DOI: 10.1007/s43630-023-00504-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 12/23/2023]
Abstract
Photoinduced symmetry-breaking charge separation (SB-CS) results in the generation of charge carriers through electron transfer between two identical molecules, after photoexcitation of one of them. It is usually studied in systems where the two reacting moieties are covalently linked. Examples of photoinduced bimolecular SB-CS with organic molecules yielding free ions remain scarce due to solubility or aggregation issues at the high concentrations needed to study this diffusion-assisted process. Here we investigate the excited-state dynamics of perylene (Pe) at high concentrations in solvents of varying polarity. Transient absorption spectroscopy on the subnanosecond to microsecond timescales reveal that self-quenching of Pe in the lowest singlet excited state leads to excimer formation in all solvents used. Additionally, bimolecular SB-CS, resulting in the generation of free ions, occurs concurrently to excimer formation in polar media, with a relative efficiency that increases with the polarity of the solvent. Moreover, we show that SB-CS is most efficient in room-temperature ionic liquids due to a charge-shielding effect leading to a larger escape of ions and due to the high viscosity that disfavours excimer formation.
Collapse
Affiliation(s)
- Johannes Wega
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1205, Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1205, Geneva, Switzerland.
| |
Collapse
|
3
|
Sandoval JS, Gong Q, Jiao L, McCamant DW. Stimulated Resonance Raman and Excited-State Dynamics in an Excitonically Coupled Bodipy Dimer: A Test for TD-DFT and the Polarizable Continuum Model. J Phys Chem A 2023; 127:7156-7167. [PMID: 37594191 PMCID: PMC10476205 DOI: 10.1021/acs.jpca.3c02978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Bodipy is one of the most versatile and studied functional dyes due to its myriad applications and tunable spectral properties. One of the strategies to adjust their properties is the formation of Bodipy dimers and oligomers whose properties differ significantly from the corresponding monomer. Recently, we have developed a novel strategy for synthesizing α,α-ethylene-bridged Bodipy dimers; however, their excited-state dynamics was heretofore unknown. This work presents the ultrafast excited-state dynamics of a novel α,α-ethylene-bridge Bodipy dimer and its monomeric parent. The dimer's steady-state absorption and fluorescence suggest a Coulombic interaction between the monomeric units' transition dipole moments (TDMs), forming what is often termed a "J-dimer". The excited-state properties of the dimer were studied using molecular excitonic theory and time-dependent density functional theory (TD-DFT). We chose the M06 exchange-correlation functional (XCF) based on its ability to reproduce the experimental oscillator strength and resonance Raman spectra. Ultrafast laser spectroscopy reveals symmetry-breaking charge separation (SB-CS) in the dimer in polar solvents and the subsequent population of the charge-separated ion-pair state. The charge separation rate falls into the normal regime, while the charge recombination is in the inverted regime. Conversely, in nonpolar solvents, the charge separation is thermodynamically not feasible. In contrast, the monomer's excited-state dynamics shows no dependence on the solvent polarity. Furthermore, we found no evidence of significant structural rearrangement upon photoexcitation, regardless of the deactivation pathway. After an extensive analysis of the electronic transitions, we concluded that the solvent fluctuations in the local environment around the dimer create an asymmetry that drives and stabilizes the charge separation. This work sheds light on the charge-transfer process in this new set of molecular systems and how excited-state dynamics can be modeled by combining the experiment and theory.
Collapse
Affiliation(s)
- Juan S. Sandoval
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Qingbao Gong
- School
of Chemistry and Materials Science, Anhui
Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- School
of Chemistry and Materials Science, Anhui
Normal University, Wuhu 241002, China
| | - David W. McCamant
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
4
|
Ivanov AI. Modeling the Effect of H-Bonding of Excited Quadrupolar Molecules with a Solvent on Charge Transfer Symmetry Breaking. J Phys Chem B 2022; 126:9038-9046. [DOI: 10.1021/acs.jpcb.2c05984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anatoly I. Ivanov
- Volgograd State University, University Avenue 100, Volgograd400062, Russia
| |
Collapse
|
5
|
Antipov IF, Ivanov AI. Effect of Symmetry Breaking in Excited Quadrupole Molecules on Transition Dipole Moment. J Phys Chem B 2021; 125:13778-13788. [PMID: 34894694 DOI: 10.1021/acs.jpcb.1c08666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Manifestations of charge transfer symmetry breaking in excited quadrupolar molecules in optical spectra are theoretically studied. The molecules are supposed to have π-conjugated structures of A-π-D-π-A or D-π-A-π-D character, where electron acceptors (A) or electron donors (D) are identical. A theory describing the effect of symmetry breaking and solvent fluctuations on the dipole moments of optical transitions associated with absorption by a quadrupolar dye in the ground and excited states, as well as fluorescence, is developed. Simple equations describing the influence of the symmetry breaking extent on the transition dipole moments are found. The orientational solvent fluctuations are predicted to decrease the transition dipole moment of the ground state absorption. The decrease does not exceed 10%. A considerably larger effect of symmetry breaking and the solvent fluctuations on the emission dipole moment is found. Equations describing dependencies of the transition dipole moment associated with excited state absorption on the solvent polarity and the parameters of the dye are derived. The scale of the changes in the transition dipole moments due to symmetry breaking in the excited state are determined. The influence of the polar solvent fluctuations is also taken into account. The theoretical findings are shown to be consistent with the available experimental data.
Collapse
Affiliation(s)
- Ivan F Antipov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| | - Anatoly I Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
6
|
Bondarev SL, Raichenok TF, Tikhomirov SA, Kozlov NG, Mikhailova TV, Ivanov AI. Symmetry Breaking in an Excited Quadrupolar Acridine-Dione Derivative Driven by Hydrogen Bonding. J Phys Chem B 2021; 125:8117-8124. [PMID: 34266232 DOI: 10.1021/acs.jpcb.1c03745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An acridine-dione derivative (3,3,11,11-tetramethyl-8,16-diphenyl-3,4,8,10,11,12,13,16-octahydroacridino[4,3-c]acridine-1.9(2H,5H)dion) with quadrupolar motif has been synthesized and its stationary and transient spectra have been measured. Stationary absorption and fluorescence spectra as well as nonstationary spectra show no signs of symmetry breaking (SB) in aprotic solvents, even of high polarity. The specific features of SB are revealed in alcohol solvents through a considerable red shift of stationary fluorescence spectra and the appearance of a new excited state absorption band in transient absorption spectra. SB is due to the formation of asymmetric strong hydrogen bonds, mainly on one side of the molecule. An unexpected regularity of symmetry breaking is found in mixtures of aprotic dimethylformamide and protic methanol, where methanol acts as a fluorescence quencher. It is revealed that there is no quenching as long as the methanol concentration is less than the critical value of 9 M. This leads to the conclusion that SB in such mixtures is possible only if the concentration of the protic solvent exceeds a certain threshold value.
Collapse
Affiliation(s)
- Stanislav L Bondarev
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Prospect Nezavisimosti 68, Minsk BY-220072, Republic of Belarus
| | - Tamara F Raichenok
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Prospect Nezavisimosti 68, Minsk BY-220072, Republic of Belarus
| | - Sergei A Tikhomirov
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Prospect Nezavisimosti 68, Minsk BY-220072, Republic of Belarus
| | - Nikolai G Kozlov
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganov str. 13, Minsk BY-220072, Republic of Belarus
| | | | - Anatoly I Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
7
|
Nazarov AE, Ivanov AI. Nonstationary Theory of Excited State Charge Transfer Symmetry Breaking Driven by Polar Solvent. J Phys Chem B 2020; 124:10787-10801. [DOI: 10.1021/acs.jpcb.0c07612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alexey E. Nazarov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| | - Anatoly I. Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
8
|
Szakács Z, Tasior M, Gryko DT, Vauthey E. Change of Quadrupole Moment upon Excitation and Symmetry Breaking in Multibranched Donor-Acceptor Dyes. Chemphyschem 2020; 21:1718-1730. [PMID: 32415748 DOI: 10.1002/cphc.202000253] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Indexed: 02/04/2023]
Abstract
Upon photoexcitation, a majority of quadrupolar dyes, developed for large two-photon absorption, undergo excited-state symmetry breaking (ES-SB) and behave as dipolar molecules. We investigate how the change of quadrupole moment upon S1 ←S0 excitation, ΔQ, influences the propensity of a dye to undergo ES-SB using a series of molecules with a A-π-D-π-A motif where D is the exceptionally electron-rich pyrrolo[3,2-b]pyrrole and A are accepting groups. Tuning of ΔQ is achieved by appending a secondary acceptor group, A', on both sides of the D core and ES-SB is monitored using a combination of time-resolved IR and broadband fluorescence spectroscopy. The results reveal a clear correlation between ΔQ and the tendency to undergo ES-SB. When A is a stronger acceptor than A', ES-SB occurs already in non-dipolar but quadrupolar solvents. When A and A' are identical, ES-SB is only partial even in highly dipolar solvents. When A is a weaker acceptor than A', the orientation of ΔQ changes, ES-SB is observed in dipolar solvents only and involves major redistribution of the excitation over the D-π-A and D-A' branches of the dye.
Collapse
Affiliation(s)
- Zoltán Szakács
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Genève 4, Switzerland
| | - Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Genève 4, Switzerland
| |
Collapse
|
9
|
Aster A, Licari G, Zinna F, Brun E, Kumpulainen T, Tajkhorshid E, Lacour J, Vauthey E. Tuning symmetry breaking charge separation in perylene bichromophores by conformational control. Chem Sci 2019; 10:10629-10639. [PMID: 34040711 PMCID: PMC8133027 DOI: 10.1039/c9sc03913a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding structure-property relationships in multichromophoric molecular architectures is a crucial step in establishing new design principles in organic electronics as well as to fully understand how nature exploits solar energy. Here, we study the excited state dynamics of three bichromophores consisting of two perylene chromophores linked to three different crown-ether backbones, using stationary and ultrafast electronic spectroscopy combined with molecular dynamics simulations. The conformational space available to the bichromophores depends on the structure and geometry of the crown-ether and can be significantly changed upon cation binding, strongly affecting the excited-state dynamics. We show that, depending on the conformational restrictions and the local environment, the nature of the excited state varies greatly, going from an excimer to a symmetry-broken charge separated state. These results can be rationalised in terms of a structure-property relationship that includes the effect of the local environment.
Collapse
Affiliation(s)
- Alexander Aster
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Giuseppe Licari
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois USA.,Department of Biochemistry, Center for Biophysics and Quantitative Biology Urbana Illinois USA
| | - Francesco Zinna
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Elodie Brun
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Tatu Kumpulainen
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois USA.,Department of Biochemistry, Center for Biophysics and Quantitative Biology Urbana Illinois USA
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| |
Collapse
|
10
|
Guo Y, Ma Z, Niu X, Zhang W, Tao M, Guo Q, Wang Z, Xia A. Bridge-Mediated Charge Separation in Isomeric N-Annulated Perylene Diimide Dimers. J Am Chem Soc 2019; 141:12789-12796. [PMID: 31334641 DOI: 10.1021/jacs.9b05723] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The possibility and rate of charge separation (CS) in donor-bridge-acceptor molecules mainly depend on two factors: electronic coupling and solvent effects. The question of how CS occurred in two identical chromophores is fundamental, as it is particularly interesting for potential molecular electronics applications and the photosynthetic reaction centers (RCs). Conjugated bridge definitely plays a crucial role in electronic coupling. To determine the bridge-mediated charge separation dynamics between the two identical chromophores, the isomeric N-annulated perylene diimide dimers (para-BDNP and meta-BDNP) with different conjugated bridge structures have been comparatively investigated in different solvents using femtosecond transient absorption spectra (fs-TA). It is found that the charge separation is disfavored in weak polar solvent, whereas direct spectroscopic signatures of radicals are observed in polar solvents, and the rate of charge separation increases as the solvent polarity increasing. To our surprise, the rate of charge separation in m-BDNP is more than an order of magnitude slower than that in p-BDNP, although there is a larger negative ΔGCS in m-BDNP. The slow CS rate that occurred in m-BDNP mainly results from the intrinsic destructive interference of the wave function through the meta-substituted bridge. The roles of solvent effects in free energy and electronic coupling for charge separation are further identified with quantum calculations.
Collapse
Affiliation(s)
- Yuanyuan Guo
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zetong Ma
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xinmiao Niu
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei Zhang
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Min Tao
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qianjin Guo
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Andong Xia
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
11
|
Kim T, Kim J, Mori H, Park S, Lim M, Osuka A, Kim D. Symmetry-breaking charge transfer in the excited state of directly linked push-pull porphyrin arrays. Phys Chem Chem Phys 2018; 19:13970-13977. [PMID: 28513708 DOI: 10.1039/c7cp01943b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we revealed a symmetry-breaking charge transfer (SBCT) process in the excited state of a directly linked push-pull porphyrin dyad (AD) and triad (ADA) via spectroscopic measurements including steady-state absorption and fluorescence, time-resolved fluorescence (TRF), femtosecond transient absorption (fs-TA), and time-resolved infrared (TRIR) measurements. Unprecedented broad fluorescence spectra were observed for porphyrin arrays in polar solvents; these were attributed to the existence of a charge transfer state as evidenced by the TRF measurements. TA measurements also revealed emerging features of a CT state for AD and ADA in polar solvents. These dynamics were also confirmed via TRIR measurements, which provided further information on the solvation and structural relaxation processes of the SBCT process. This is the first observation of an SBCT process in porphyrin arrays, providing fundamental understanding of the strongly coupled porphyrin arrays. Thus, the results of this study reveal the potential of the porphyrin arrays in relevant applications requiring SBCT.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea.
| | | | | | | | | | | | | |
Collapse
|
12
|
Cook RE, Phelan BT, Kamire RJ, Majewski MB, Young RM, Wasielewski MR. Excimer Formation and Symmetry-Breaking Charge Transfer in Cofacial Perylene Dimers. J Phys Chem A 2017; 121:1607-1615. [DOI: 10.1021/acs.jpca.6b12644] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rita E. Cook
- Department of Chemistry and
Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brian T. Phelan
- Department of Chemistry and
Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Rebecca J. Kamire
- Department of Chemistry and
Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Marek B. Majewski
- Department of Chemistry and
Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department of Chemistry and
Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and
Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
13
|
Kumpulainen T, Lang B, Rosspeintner A, Vauthey E. Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution. Chem Rev 2016; 117:10826-10939. [DOI: 10.1021/acs.chemrev.6b00491] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatu Kumpulainen
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Bernhard Lang
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
14
|
Bolag A, Sakai N, Matile S. Dipolar Photosystems: Engineering Oriented Push-Pull Components into Double- and Triple-Channel Surface Architectures. Chemistry 2016; 22:9006-14. [DOI: 10.1002/chem.201600213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Altan Bolag
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland
- Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials; Inner Mongolia Normal University; Hohhot P. R. China
| | - Naomi Sakai
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland
| |
Collapse
|
15
|
Lindquist RJ, Lefler KM, Brown KE, Dyar SM, Margulies EA, Young RM, Wasielewski MR. Energy flow dynamics within cofacial and slip-stacked perylene-3,4-dicarboximide dimer models of π-aggregates. J Am Chem Soc 2014; 136:14912-23. [PMID: 25245598 DOI: 10.1021/ja507653p] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Robust perylene-3,4-dicarboximide (PMI) π-aggregates provide important light-harvesting and electron-hole pair generation advantages in organic photovoltaics and related applications, but relatively few studies have focused on the electronic interactions between PMI chromophores. In contrast, structure-function relationships based on π-π stacking in the related perylene-3,4:9,10-bis(dicarboximides) (PDIs) have been widely investigated. The performance of both PMI and PDI derivatives in organic devices may be limited by the formation of low-energy excimer trap states in morphologies where interchromophore coupling is strong. Here, five covalently bound PMI dimers with varying degrees of electronic interaction were studied to probe the relative chromophore orientations that lead to excimer energy trap states. Femtosecond near-infrared transient absorption spectroscopy was used to observe the growth of a low-energy transition at ~1450-1520 nm characteristic of the excimer state in these covalent dimers. The excimer-state absorption appears in ~1 ps, followed by conformational relaxation over 8-17 ps. The excimer state then decays in 6.9-12.8 ns, as measured by time-resolved fluorescence spectroscopy. The excimer lifetimes reach a maximum for a slip-stacked geometry in which the two PMI molecules are displaced along their long axes by one phenyl group (~4.3 Å). Additional displacement of the PMIs by a biphenyl spacer along the long axis prevents excimer formation. Symmetry-breaking charge transfer is not observed in any of the PMI dimers, and only a small triplet yield (<5%) is observed for the cofacial PMI dimers. These data provide structural insights for minimizing excimer trap states in organic devices based on PMI derivatives.
Collapse
Affiliation(s)
- Rebecca J Lindquist
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University , Evanston, Illinois 60208-3113, United States
| | | | | | | | | | | | | |
Collapse
|
16
|
Lefler KM, Co DT, Wasielewski MR. Self-Assembly-Induced Ultrafast Photodriven Charge Separation in Perylene-3,4-dicarboximide-Based Hydrogen-Bonded Foldamers. J Phys Chem Lett 2012; 3:3798-3805. [PMID: 26291113 DOI: 10.1021/jz3018946] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the synthesis, self-assembly characteristics, and ultrafast electron transfer dynamics of a perylene-3,4-dicarboximide (PMI) covalently linked to an N,N'-bis(3,4,5-tridodecyloxyphenyl)melamine electron donor (D) via a biphenyl spacer (PMI-Ph2-D). Synchrotron-based small- and wide-angle X-ray scattering (SAXS/WAXS) measurements in methylcyclohexane solution show that PMI-Ph2-D self-assembles into π-π stacked, hydrogen-bonded foldamers consisting of two or three hexameric rings or helices. Ultrafast transient absorption spectroscopy reveals that photoinduced charge separation within these nanostructures occurs by a unique pathway that is emergent in the assembly, whereas electron transfer does not occur in the PMI-Ph2-D monomers in tetrahydrofuran.
Collapse
Affiliation(s)
- Kelly M Lefler
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Dick T Co
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
17
|
Vauthey E. Photoinduced Symmetry-Breaking Charge Separation. Chemphyschem 2012; 13:2001-11. [DOI: 10.1002/cphc.201200106] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 11/08/2022]
|
18
|
Khandelwal H, Mallia AR, Cheriya RT, Hariharan M. Effect of temperature on symmetry breaking excited state charge separation: restoration of symmetry at elevated temperature. Phys Chem Chem Phys 2012; 14:15282-5. [DOI: 10.1039/c2cp42452e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Alamiry MAH, Benniston AC, Copley G, Harriman A, Howgego D. Intramolecular Excimer Formation for Covalently Linked Boron Dipyrromethene Dyes. J Phys Chem A 2011; 115:12111-9. [DOI: 10.1021/jp2070419] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammed A. H. Alamiry
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Andrew C. Benniston
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Graeme Copley
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - David Howgego
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
20
|
Setiawan D, Kazaryan A, Martoprawiro MA, Filatov M. A first principles study of fluorescence quenching in rhodamine B dimers: how can quenching occur in dimeric species? Phys Chem Chem Phys 2010; 12:11238-44. [DOI: 10.1039/c004573j] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Banerji N, Duvanel G, Perez-Velasco A, Maity S, Sakai N, Matile S, Vauthey E. Excited-State Dynamics of Hybrid Multichromophoric Systems: Toward an Excitation Wavelength Control of the Charge Separation Pathways. J Phys Chem A 2009; 113:8202-12. [DOI: 10.1021/jp903572r] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Natalie Banerji
- Department of Physical Chemistry and Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Guillaume Duvanel
- Department of Physical Chemistry and Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Alejandro Perez-Velasco
- Department of Physical Chemistry and Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Santanu Maity
- Department of Physical Chemistry and Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Naomi Sakai
- Department of Physical Chemistry and Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Stefan Matile
- Department of Physical Chemistry and Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry and Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
22
|
Veldman D, Chopin SMA, Meskers SCJ, Janssen RAJ. Enhanced Intersystem Crossing via a High Energy Charge Transfer State in a Perylenediimide−Perylenemonoimide Dyad. J Phys Chem A 2008; 112:8617-32. [DOI: 10.1021/jp805949r] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dirk Veldman
- Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, NL-5600 MB, The Netherlands
| | - Stéphanie M. A. Chopin
- Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, NL-5600 MB, The Netherlands
| | - Stefan C. J. Meskers
- Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, NL-5600 MB, The Netherlands
| | - René A. J. Janssen
- Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, NL-5600 MB, The Netherlands
| |
Collapse
|
23
|
Banerji N, Fürstenberg A, Bhosale S, Sisson AL, Sakai N, Matile S, Vauthey E. Ultrafast Photoinduced Charge Separation in Naphthalene Diimide Based Multichromophoric Systems in Liquid Solutions and in a Lipid Membrane. J Phys Chem B 2008; 112:8912-22. [DOI: 10.1021/jp801276p] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Natalie Banerji
- Department of Physical Chemistry, and Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Alexandre Fürstenberg
- Department of Physical Chemistry, and Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Sheshanath Bhosale
- Department of Physical Chemistry, and Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Adam L. Sisson
- Department of Physical Chemistry, and Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Naomi Sakai
- Department of Physical Chemistry, and Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Stefan Matile
- Department of Physical Chemistry, and Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, and Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
24
|
|