Ghiloufi M, Schnabel T, Mehling S, Kouass S. Investigation of the Effect of Oxide Additives on the Band Gap and Photocatalytic Efficiency of TiO
2 as a Fixed Film.
MATERIALS (BASEL, SWITZERLAND) 2024;
17:4671. [PMID:
39336413 PMCID:
PMC11434197 DOI:
10.3390/ma17184671]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The effects of various additives (Y2O3, Ga2O3, and WO3) on photocatalytic degradation efficiency under UV light-emitting diodes (LEDs) and the optical properties of TiO2 Degussa P25 were investigated using ketoprofen and diclofenac, two non-steroidal anti-inflammatory drugs commonly detected in German rivers. Experimental results demonstrated that thin films containing these additives exhibited similar photocatalytic degradation efficiencies as pure TiO2, achieving a 30% degradation of ketoprofen over 150 min. In contrast, the Y2O3/TiO2 thin film showed significantly improved performance, achieving a 46% degradation of ketoprofen in 180 min. Notably, the Y2O3/TiO2 system was three times more effective in degrading diclofenac compared to pure TiO2. Additionally, the Y2O3/TiO2 photocatalyst retained its activity over three successive cycles with only a slight decrease in efficiency. The photocatalytic degradation of both organic pollutants followed first-order kinetics with all photocatalysts. The investigation included SEM imaging to assess the surface homogeneity of the thin films and UV-vis solid-state spectroscopy to evaluate the impact of the additives on the energy band gap of TiO2.
Collapse