1
|
Chai X, Zheng L, Liu J, Zhan J, Song L. Comparison of photosynthetic responses between haptophyte Phaeocystis globosa and diatom Skeletonema costatum under phosphorus limitation. Front Microbiol 2023; 14:1085176. [PMID: 36756351 PMCID: PMC9899818 DOI: 10.3389/fmicb.2023.1085176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
The diatom Skeletonema costatum and the haptophyte Phaeocystis globosa often form blooms in the coastal waters of the South China Sea. Skeletonema costatum commonly dominates in nutrient enrichment coastal waters, whereas P. globosa starts flourishing after the diatom blooms when phosphorus (P) is limited. Therefore, P limitation was proposed to be a critical factor affecting diatom-haptophyte transition. To elucidate the tolerance to P limitation in P. globosa compared with S. costatum, the effect of P limitation on their photosystem II (PSII) performance was investigated and their photosynthesis acclimation strategies in response to P limitation were evaluated. P limitation did not affect the growth of P. globosa over 7 days but decreased it for S. costatum. Correspondingly, the PSII activity of S. costatum was significantly inhibited by P limitation. The decline in PSII activity in S. costatum under P limitation was associated with the impairment of the oxygen-evolving complex (the donor side of PSII), the hindrance of electron transport from QA - to QB (the acceptor side of PSII), and the inhibition of electron transport to photosystem I (PSI). The 100% decrease in D1 protein level of S. costatum after P limitation for 6 days and PsbO protein level after 2 days of P limitation were attributed to its enhanced photoinhibition. In contrast, P. globosa maintained its photosynthetic activity with minor impairment of the function of PSII. With accelerated PSII repair and highly increased non-photochemical quenching (NPQ), P. globosa can avoid serious PSII damage under P limitation. On the contrary, S. costatum decreased its D1 restoration under P limitation, and the maximum NPQ value in S. costatum was only one-sixth of that in P. globosa. The present work provides extensive evidence that a close interaction exists between the tolerance to P limitation and photosynthetic responses of S. costatum and P. globosa.
Collapse
Affiliation(s)
- Xiaojie Chai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiao Zhan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,*Correspondence: Jiao Zhan, ✉
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Barreto MM, Ziegler M, Venn A, Tambutté E, Zoccola D, Tambutté S, Allemand D, Antony CP, Voolstra CR, Aranda M. Effects of Ocean Acidification on Resident and Active Microbial Communities of Stylophora pistillata. Front Microbiol 2021; 12:707674. [PMID: 34899619 PMCID: PMC8656159 DOI: 10.3389/fmicb.2021.707674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.
Collapse
Affiliation(s)
- Marcelle Muniz Barreto
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | - Chakkiath Paul Antony
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Manuel Aranda
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Integral Light-Harvesting Complex Expression In Symbiodinium Within The Coral Acropora aspera Under Thermal Stress. Sci Rep 2016; 6:25081. [PMID: 27117333 PMCID: PMC4846871 DOI: 10.1038/srep25081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/11/2016] [Indexed: 12/02/2022] Open
Abstract
Coral reef success is largely dependent on the symbiosis between coral hosts and dinoflagellate symbionts belonging to the genus Symbiodinium. Elevated temperatures can result in the expulsion of Symbiodinium or loss of their photosynthetic pigments and is known as coral bleaching. It has been postulated that the expression of light-harvesting protein complexes (LHCs), which bind chlorophylls (chl) and carotenoids, are important in photobleaching. This study explored the effect a sixteen-day thermal stress (increasing daily from 25–34 °C) on integral LHC (chlorophyll a-chlorophyll c2-peridinin protein complex (acpPC)) gene expression in Symbiodinium within the coral Acropora aspera. Thermal stress leads to a decrease in Symbiodinium photosynthetic efficiency by day eight, while symbiont density was significantly lower on day sixteen. Over this time period, the gene expression of five SymbiodiniumacpPC genes was quantified. Three acpPC genes exhibited up-regulated expression when corals were exposed to temperatures above 31.5 °C (acpPCSym_1:1, day sixteen; acpPCSym_15, day twelve; and acpPCSym_18, day ten and day sixteen). In contrast, the expression of acpPCSym_5:1 and acpPCSym_10:1 was unchanged throughout the experiment. Interestingly, the three acpPC genes with increased expression cluster together in a phylogenetic analysis of light-harvesting complexes.
Collapse
|
4
|
Lichtenberg M, Larkum AWD, Kühl M. Photosynthetic Acclimation of Symbiodinium in hospite Depends on Vertical Position in the Tissue of the Scleractinian Coral Montastrea curta. Front Microbiol 2016; 7:230. [PMID: 26955372 PMCID: PMC4768073 DOI: 10.3389/fmicb.2016.00230] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/12/2016] [Indexed: 01/26/2023] Open
Abstract
Coral photophysiology has been studied intensively from the colony scale down to the scale of single fluorescent pigment granules as light is one of the key determinants for coral health. We studied the photophysiology of the oral and aboral symbiont band of scleractinian coral Montastrea curta to investigate if different acclimation to light exist in hospite on a polyp scale. By combined use of electrochemical and fiber-optic microsensors for O2, scalar irradiance and variable chlorophyll fluorescence, we could characterize the physical and chemical microenvironment experienced by the symbionts and, for the first time, estimate effective quantum yields of PSII photochemistry and rates of electron transport at the position of the zooxanthellae corrected for the in-tissue gradient of scalar irradiance. The oral- and aboral Symbiodinium layers received ∼71% and ∼33% of surface scalar irradiance, respectively, and the two symbiont layers experience considerable differences in light exposure. Rates of gross photosynthesis did not differ markedly between the oral- and aboral layer and curves of PSII electron transport rates corrected for scalar irradiance in hospite, showed that the light use efficiency under sub-saturating light conditions were similar between the two layers. However, the aboral Symbiodinium band did not experience photosynthetic saturation, even at the highest investigated irradiance where the oral layer was clearly saturated. We thus found a different light acclimation response for the oral and aboral symbiont bands in hospite, and discuss whether such response could be shaped by spectral shifts caused by tissue gradients of scalar irradiance. Based on our experimental finding, combined with previous knowledge, we present a conceptual model on the photophysiology of Symbiodinium residing inside living coral tissue under natural gradients of light and chemical parameters.
Collapse
Affiliation(s)
- Mads Lichtenberg
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark
| | - Anthony W D Larkum
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney Sydney, NSW, Australia
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Plant Functional Biology and Climate Change Cluster (C3), University of Technology SydneySydney, NSW, Australia
| |
Collapse
|
5
|
Hill R, Szabó M, Rehman AU, Vass I, Ralph PJ, Larkum AWD. Inhibition of photosynthetic CO2 fixation in the coral Pocillopora damicornis and its relationship to thermal bleaching. J Exp Biol 2014; 217:2150-62. [DOI: 10.1242/jeb.100578] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Two inhibitors of the Calvin-Benson cycle (glycolaldehyde, GA, and potassium cyanide, KCN) were used in cultured Symbiodinium cells and in nubbins of the coral Pocillopora damicornis to test the hypothesis that inhibition of the Calvin-Benson cycle triggers coral bleaching. Inhibitor concentration range-finding trials aimed to determine the appropriate concentration to generate inhibition of the Calvin-Benson cycle, but avoid other metabolic impacts to the symbiont and the animal host. Both 3 mM GA and 20 μM KCN caused minimal inhibition of host respiration, but did induce photosynthetic impairment, measured by a loss of photosystem II function and oxygen production. GA did not affect the severity of bleaching, nor induce bleaching in the absence of thermal stress, suggesting inhibition of the Calvin-Benson cycle by GA does not initiate bleaching in P. damicornis. In contrast, KCN did activate a bleaching response through symbiont expulsion, which occurred in the presence and absence of thermal stress. While KCN is an inhibitor of the Calvin-Benson cycle, it also promotes reactive oxygen species formation, and it is likely that this was the principal agent in the coral bleaching process. These findings do not support the hypothesis that temperature-induced inhibition of the Calvin-Benson cycle alone induces coral bleaching.
Collapse
Affiliation(s)
- Ross Hill
- The University of New South Wales, Australia
| | | | - Ateeq ur Rehman
- Biological Research Center of the Hungarian Academy of Sciences, Hungary
| | - Imre Vass
- Biological Research Center of the Hungarian Academy of Sciences, Hungary
| | | | | |
Collapse
|
6
|
Jeans J, Campbell DA, Hoogenboom MO. Increased reliance upon photosystem II repair following acclimation to high-light by coral-dinoflagellate symbioses. PHOTOSYNTHESIS RESEARCH 2013; 118:219-29. [PMID: 24062202 DOI: 10.1007/s11120-013-9918-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/26/2013] [Indexed: 05/22/2023]
Abstract
Changing light environments force photoautotroph cells, including coral symbionts, to acclimate to maintain photosynthesis. Photosystem II (PSII) is subjected to photoinactivation at a rate proportional to the incident light, and cells must adjust their rates of protein repair to counter this photoinactivation. We examined PSII function in the coral symbiont Symbiodinium to determine the effect of photoacclimation on their capacity for PSII repair. Colonies of the coral Stylophora pistillata were collected from moderate light environments on the Lizard Island reef (Queensland, Australia) and transported to a local field station, where they were assigned to lower or higher light regimes and allowed to acclimate for 2 weeks. Following this photoacclimation period, the low-light acclimated corals showed greater symbiont density, higher chlorophyll per symbiont cell, and higher photosystem II protein than high-light acclimated corals did. Subsequently, we treated the corals with lincomycin, an inhibitor of chloroplastic protein synthesis, and exposed them to a high-light treatment to separate the effect of de novo protein synthesis in PSII repair from intrinsic susceptibility to photoinactivation. Low-light acclimated corals showed a sharp initial drop in PSII function but inhibition of PSII repair provoked only a modest additional drop in PSII function, compared to uninhibited corals. In high-light acclimated corals inhibition of PSII repair provoked a larger drop in PSII function, compared to uninhibited high-light corals. The greater lincomycin effects in the corals pre-acclimated to high-light show that high-light leads to an increased reliance on the PSII repair cycle.
Collapse
Affiliation(s)
- Jennifer Jeans
- Biology and Biochemistry, Mount Allison University, Sackville, NB, E4L 3G7, Canada
| | | | | |
Collapse
|
7
|
Petrou K, Kranz SA, Doblin MA, Ralph PJ. PHOTOPHYSIOLOGICAL RESPONSES OF FRAGILARIOPSIS CYLINDRUS (BACILLARIOPHYCEAE) TO NITROGEN DEPLETION AT TWO TEMPERATURES(1). JOURNAL OF PHYCOLOGY 2012; 48:127-136. [PMID: 27009657 DOI: 10.1111/j.1529-8817.2011.01107.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The photosynthetic efficiency and photoprotective capacity of the sea-ice diatom, Fragilariopsis cylindrus (Grunow) W. Krieg., grown in a matrix of nitrogen repletion and depletion at two different temperatures (-1°C and +6°C) was investigated. Temperature showed no significant effect on photosynthetic efficiency or photoprotection in F. cylindrus. Cultures under nitrogen depletion showed enhanced photoprotective capacity with an increase in nonphotochemical quenching (NPQ) when compared with nitrogen-replete cultures. This phenomenon was achieved at no apparent cost to the photosynthetic efficiency of PSII (FV /FM ). Nitrogen depletion yielded a partially reduced electron transport chain in which maximum fluorescence (FM ) could only be obtained by adding 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). reoxidation curves showed the presence of QB nonreducing PSII centers under nitrogen depletion. Fast induction curves (FICs) and electron transport rates (ETRs) revealed slowing of the electrons transferred from the primary (QA ) to the secondary (QB ) quinone electron acceptors of PSII. The data presented show that nitrogen depletion in F. cylindrus leads to the formation of QB nonreducing PSII centers within the photosystem. On a physiological level, the formation of QB nonreducing PSII centers in F. cylindrus provides the cell with protection against photoinhibition by facilitating the rapid induction of NPQ. This strategy provides an important ecological advantage, especially during the Antarctic spring, maintaining photosynthetic efficiency under high light and nutrient-limiting conditions.
Collapse
Affiliation(s)
- Katherina Petrou
- Plant Functional Biology and Climate Change Cluster and Department of Environmental Sciences, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, AustraliaAlfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, GermanyPlant Functional Biology and Climate Change Cluster and Department of Environmental Sciences, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, Australia
| | - Sven A Kranz
- Plant Functional Biology and Climate Change Cluster and Department of Environmental Sciences, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, AustraliaAlfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, GermanyPlant Functional Biology and Climate Change Cluster and Department of Environmental Sciences, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, Australia
| | - Martina A Doblin
- Plant Functional Biology and Climate Change Cluster and Department of Environmental Sciences, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, AustraliaAlfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, GermanyPlant Functional Biology and Climate Change Cluster and Department of Environmental Sciences, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, Australia
| | - Peter J Ralph
- Plant Functional Biology and Climate Change Cluster and Department of Environmental Sciences, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, AustraliaAlfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, GermanyPlant Functional Biology and Climate Change Cluster and Department of Environmental Sciences, University of Technology, Sydney, PO Box 123, Broadway NSW 2007, Australia
| |
Collapse
|
8
|
RODRIGUEZ-LANETTY MAURICIO, HARII SAKI, HOEGH-GULDBERG OVE. Early molecular responses of coral larvae to hyperthermal stress. Mol Ecol 2009; 18:5101-14. [DOI: 10.1111/j.1365-294x.2009.04419.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Pan X, Zhang D, Chen X, Mu G, Li L, Bao A. Effects of levofloxacin hydrochloride on photosystem II activity and heterogeneity of Synechocystis sp. CHEMOSPHERE 2009; 77:413-418. [PMID: 19666188 DOI: 10.1016/j.chemosphere.2009.06.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 06/15/2009] [Accepted: 06/22/2009] [Indexed: 05/28/2023]
Abstract
Effects of LH on photosynthesis of Synechocystis sp. were investigated by a variety of in vivo chlorophyll fluorescence. O2 evolution and the photosystem II (PSII) activity were clearly inhibited by LH. Exposure to LH increased the proportion of PSIIbeta and this weakened the connectivity between PSII units and hindered excitation energy-transfer between PSII units. LH decreased the density of the active photosynthetic reaction centers, inhibited electron transport, and increased the dissipated energy flux per reaction center. The inhibitory effect of LH on Q(A)(-) reoxidation process could be divided into several stages. LH first inhibited the electron transfer from Q(A)(-) to Q(B) by weakening the connectivity between Q(A)(-) and Q(B), and PQ binding began taking part in Q(A)(-) reoxidation. At the second stage, the connectivity between Q(A)(-) and PQ pool was broken and inhibition on PQ binding occurred. At this stage, some Q(A)(-) began to be oxidized by S2(Q(A)Q(B))(-). Finally, when the connectivity between Q(A)(-) and Q(B) and PQ was completely broken, all Q(A)(-) was oxidized through charge recombination.
Collapse
Affiliation(s)
- Xiangliang Pan
- Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Hill R, Ralph PJ. IMPACT OF BLEACHING STRESS ON THE FUNCTION OF THE OXYGEN EVOLVING COMPLEX OF ZOOXANTHELLAE FROM SCLERACTINIAN CORALS(1). JOURNAL OF PHYCOLOGY 2008; 44:299-310. [PMID: 27041186 DOI: 10.1111/j.1529-8817.2008.00468.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Global climate change is leading to the rise of ocean temperatures and is triggering mass coral bleaching events on reefs around the world. The expulsion of the symbiotic dinoflagellate algae is believed to occur as a result of damage to the photosynthetic apparatus of these symbionts, although the specific site of initial impact is yet to be conclusively resolved. Here, the sensitivity of the oxygen evolving complex (OEC) to bleaching stress was studied as well as its natural variation between seasons. The artificial electron donor, diphenyl carbazide (DPC), was added to cultured, freshly isolated and expelled (bleaching treatments only) zooxanthellae suspensions. Chl a fluorescence and oxygen production measurements showed that upon addition of DPC, no restoration of diminished photochemical efficiency occurred under control or bleaching conditions. This result was consistent between 12 h and 5 d bleaching treatments on Pocilloporadamicornis, indicating that the OEC is not the primary site of damage, and that zooxanthellae expulsion from the host is a nonselective process with respect to the functioning of the OEC. Further experiments measuring fast induction curves (FICs) revealed that in both summer and winter, the temperature when OEC function was lost occurred between 7°C and 14°C above the sea surface temperature. FIC and oxygen production measurements of P. damicornis during exposure to bleaching stress demonstrated that the thermotolerance of the OEC increased above the temperature of the bleaching treatment over a 4 h period. This finding indicates that the OEC has the capacity to acclimate between seasons and remains functional at temperatures well above bleaching thresholds.
Collapse
Affiliation(s)
- Ross Hill
- Institute for Water and Environmental Resource Management and Department of Environmental Sciences, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Peter J Ralph
- Institute for Water and Environmental Resource Management and Department of Environmental Sciences, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|