1
|
Conformational alterations in unidirectional ion transport of a light-driven chloride pump revealed using X-ray free electron lasers. Proc Natl Acad Sci U S A 2022; 119:2117433119. [PMID: 35197289 PMCID: PMC8892520 DOI: 10.1073/pnas.2117433119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 01/06/2023] Open
Abstract
Light-driven chloride pumps have been identified in various species, including archaea and marine flavobacteria. The function of ion transportation controllable by light is utilized for optogenetics tools in neuroscience. Chloride pumps differ among species, in terms of amino acid homology and structural similarity. Our time-resolved crystallographic studies using X-ray free electron lasers reveal the molecular mechanism of halide ion transfer in a light-driven chloride pump from a marine flavobacterium. Our data indicate a common mechanism in chloride pumping rhodopsins, as compared to previous low-temperature trapping studies of chloride pumps. These findings are significant not only for further improvements of optogenetic tools but also for a general understanding of the ion pumping mechanisms of microbial rhodopsins. Light-driven chloride-pumping rhodopsins actively transport anions, including various halide ions, across cell membranes. Recent studies using time-resolved serial femtosecond crystallography (TR-SFX) have uncovered the structural changes and ion transfer mechanisms in light-driven cation-pumping rhodopsins. However, the mechanism by which the conformational changes pump an anion to achieve unidirectional ion transport, from the extracellular side to the cytoplasmic side, in anion-pumping rhodopsins remains enigmatic. We have collected TR-SFX data of Nonlabens marinus rhodopsin-3 (NM-R3), derived from a marine flavobacterium, at 10-µs and 1-ms time points after photoexcitation. Our structural analysis reveals the conformational alterations during ion transfer and after ion release. Movements of the retinal chromophore initially displace a conserved tryptophan to the cytoplasmic side of NM-R3, accompanied by a slight shift of the halide ion bound to the retinal. After ion release, the inward movements of helix C and helix G and the lateral displacements of the retinal block access to the extracellular side of NM-R3. Anomalous signal data have also been obtained from NM-R3 crystals containing iodide ions. The anomalous density maps provide insight into the halide binding site for ion transfer in NM-R3.
Collapse
|
2
|
Mous S, Gotthard G, Ehrenberg D, Sen S, Weinert T, Johnson PJM, James D, Nass K, Furrer A, Kekilli D, Ma P, Brünle S, Casadei CM, Martiel I, Dworkowski F, Gashi D, Skopintsev P, Wranik M, Knopp G, Panepucci E, Panneels V, Cirelli C, Ozerov D, Schertler GFX, Wang M, Milne C, Standfuss J, Schapiro I, Heberle J, Nogly P. Dynamics and mechanism of a light-driven chloride pump. Science 2022; 375:845-851. [PMID: 35113649 DOI: 10.1126/science.abj6663] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chloride transport by microbial rhodopsins is an essential process for which molecular details such as the mechanisms that convert light energy to drive ion pumping and ensure the unidirectionality of the transport have remained elusive. We combined time-resolved serial crystallography with time-resolved spectroscopy and multiscale simulations to elucidate the molecular mechanism of a chloride-pumping rhodopsin and the structural dynamics throughout the transport cycle. We traced transient anion-binding sites, obtained evidence for how light energy is used in the pumping mechanism, and identified steric and electrostatic molecular gates ensuring unidirectional transport. An interaction with the π-electron system of the retinal supports transient chloride ion binding across a major bottleneck in the transport pathway. These results allow us to propose key mechanistic features enabling finely controlled chloride transport across the cell membrane in this light-powered chloride ion pump.
Collapse
Affiliation(s)
- Sandra Mous
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Guillaume Gotthard
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.,Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - David Ehrenberg
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Philip J M Johnson
- Laboratory of Nonlinear Optics, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Daniel James
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Karol Nass
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Antonia Furrer
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Demet Kekilli
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Pikyee Ma
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Steffen Brünle
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Cecilia Maria Casadei
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.,Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Isabelle Martiel
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Florian Dworkowski
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Dardan Gashi
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland.,Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Petr Skopintsev
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Maximilian Wranik
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Gregor Knopp
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Ezequiel Panepucci
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Valerie Panneels
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Claudio Cirelli
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Dmitry Ozerov
- Science IT, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Gebhard F X Schertler
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.,Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Meitian Wang
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Chris Milne
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Przemyslaw Nogly
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Gordeliy V, Kovalev K, Bamberg E, Rodriguez-Valera F, Zinovev E, Zabelskii D, Alekseev A, Rosselli R, Gushchin I, Okhrimenko I. Microbial Rhodopsins. Methods Mol Biol 2022; 2501:1-52. [PMID: 35857221 DOI: 10.1007/978-1-0716-2329-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The first microbial rhodopsin, a light-driven proton pump bacteriorhodopsin from Halobacterium salinarum (HsBR), was discovered in 1971. Since then, this seven-α-helical protein, comprising a retinal molecule as a cofactor, became a major driver of groundbreaking developments in membrane protein research. However, until 1999 only a few archaeal rhodopsins, acting as light-driven proton and chloride pumps and also photosensors, were known. A new microbial rhodopsin era started in 2000 when the first bacterial rhodopsin, a proton pump, was discovered. Later it became clear that there are unexpectedly many rhodopsins, and they are present in all the domains of life and even in viruses. It turned out that they execute such a diversity of functions while being "nearly the same." The incredible evolution of the research area of rhodopsins and the scientific and technological potential of the proteins is described in the review with a focus on their function-structure relationships.
Collapse
Affiliation(s)
- Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Egor Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Dmitrii Zabelskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Riccardo Rosselli
- Departamento de Fisiología, Genetica y Microbiología. Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|
4
|
Chwastyk M, Panek EA, Malinowski J, Jaskólski M, Cieplak M. Properties of Cavities in Biological Structures-A Survey of the Protein Data Bank. Front Mol Biosci 2020; 7:591381. [PMID: 33240933 PMCID: PMC7677499 DOI: 10.3389/fmolb.2020.591381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
We performed a PDB-wide survey of proteins to assess their cavity content, using the SPACEBALL algorithm to calculate the cavity volumes. In addition, we determined the hydropathy character of the cavities. We demonstrate that the cavities of most proteins are hydrophilic, but smaller proteins tend to have cavities with hydrophobic walls. We propose criteria for distinguishing between cavities and pockets, and single out proteins with the largest cavities.
Collapse
Affiliation(s)
- Mateusz Chwastyk
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa A Panek
- Department of Biometry, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jan Malinowski
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Mariusz Jaskólski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Harris A, Lazaratos M, Siemers M, Watt E, Hoang A, Tomida S, Schubert L, Saita M, Heberle J, Furutani Y, Kandori H, Bondar AN, Brown LS. Mechanism of Inward Proton Transport in an Antarctic Microbial Rhodopsin. J Phys Chem B 2020; 124:4851-4872. [DOI: 10.1021/acs.jpcb.0c02767] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew Harris
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Michalis Lazaratos
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Malte Siemers
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ethan Watt
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Anh Hoang
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Luiz Schubert
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Mattia Saita
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Leonid S. Brown
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
6
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
7
|
Yun JH, Ohki M, Park JH, Ishimoto N, Sato-Tomita A, Lee W, Jin Z, Tame JRH, Shibayama N, Park SY, Lee W. Pumping mechanism of NM-R3, a light-driven bacterial chloride importer in the rhodopsin family. SCIENCE ADVANCES 2020; 6:eaay2042. [PMID: 32083178 PMCID: PMC7007266 DOI: 10.1126/sciadv.aay2042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
A newly identified microbial rhodopsin, NM-R3, from the marine flavobacterium Nonlabens marinus, was recently shown to drive chloride ion uptake, extending our understanding of the diversity of mechanisms for biological energy conversion. To clarify the mechanism underlying its function, we characterized the crystal structures of NM-R3 in both the dark state and early intermediate photoexcited states produced by laser pulses of different intensities and temperatures. The displacement of chloride ions at five different locations in the model reflected the detailed anion-conduction pathway, and the activity-related key residues-Cys105, Ser60, Gln224, and Phe90-were identified by mutation assays and spectroscopy. Comparisons with other proteins, including a closely related outward sodium ion pump, revealed key motifs and provided structural insights into light-driven ion transport across membranes by the NQ subfamily of rhodopsins. Unexpectedly, the response of the retinal in NM-R3 to photostimulation appears to be substantially different from that seen in bacteriorhodopsin.
Collapse
Affiliation(s)
- Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Mio Ohki
- Research Complex at Harwell, Rutherford Appleton Laboratory, OX11 0FA Didcot, UK
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Jae-Hyun Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Naito Ishimoto
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Ayana Sato-Tomita
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Wonbin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Zeyu Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Jeremy R. H. Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Naoya Shibayama
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
8
|
Miyahara T, Nakatsuji H. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study. J Phys Chem A 2019; 123:1766-1784. [DOI: 10.1021/acs.jpca.8b10203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomoo Miyahara
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyou-ku, Kyoto 606-8305, Japan
| | - Hiroshi Nakatsuji
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyou-ku, Kyoto 606-8305, Japan
| |
Collapse
|
9
|
Sakajiri Y, Sugano E, Watanabe Y, Sakajiri T, Tabata K, Kikuchi T, Tomita H. Natronomonas pharaonis halorhodopsin Ser81 plays a role in maintaining chloride ions near the Schiff base. Biochem Biophys Res Commun 2018; 503:2326-2332. [PMID: 29964009 DOI: 10.1016/j.bbrc.2018.06.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 02/02/2023]
Abstract
Optogenetic technologies have often been used as tools for neuronal activation or silencing by light. Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven chloride ion pump. Upon light absorption, a chloride ion passes through the cell membrane, which is accompanied by the temporary binding of a chloride ion with Thr126 at binding site-1 (BS1) near the protonated Schiff base in NpHR. However, the mechanism of stabilization of the binding state between a chloride ion and BS1 has not been investigated. Therefore, to identify a key component of the chloride ion transport pathway as well as to acquire dynamic information about the chloride ion-BS1 binding state, we performed a rough analysis of the chloride ion pathway shape followed by molecular dynamics (MD) simulations for both wild-type and mutant NpHR structures. The MD simulations showed that the hydrogen bond between Thr126 and the chloride ion was retained in the wild-type protein, while the chloride ion could not be retained at and tended to leave BS1 in the S81A mutant. We found that the direction of the Thr126 side chain was fixed by a hydroxyl group of Ser81 through a hydrogen bond and that Thr126 bound to a chloride ion in the wild-type protein, while this interaction was lost in the S81A mutant, resulting in rotation of the Thr126 side chain and reduction in the interaction between Thr126 and a chloride ion. To confirm the role of S81, patch clamp recordings were performed using cells expressing NpHR S81A mutant protein. Considered together with the results that the NpHR S81A-expressing cells did not undergo hyperpolarization under light stimulation, our results indicate that Ser81 plays a key role in chloride migration. Our findings might be relevant to ongoing clinical trials using optogenetic gene therapy in blind patients.
Collapse
Affiliation(s)
- Yuko Sakajiri
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| | - Eriko Sugano
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan; Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Yoshito Watanabe
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Tetsuya Sakajiri
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Kitako Tabata
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu Shiga, 525-8577, Japan.
| | - Hiroshi Tomita
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan; Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan; Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan.
| |
Collapse
|
10
|
Engelhard C, Chizhov I, Siebert F, Engelhard M. Microbial Halorhodopsins: Light-Driven Chloride Pumps. Chem Rev 2018; 118:10629-10645. [DOI: 10.1021/acs.chemrev.7b00715] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, OE8830 Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Friedrich Siebert
- Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Albert-Ludwigs-Universität Freiburg, Hermann-Herderstr. 9, 79104 Freiburg, Germany
| | - Martin Engelhard
- Max Planck Institute for Molecular Physiology, Otto Hahn Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Kandori H, Inoue K, Tsunoda SP. Light-Driven Sodium-Pumping Rhodopsin: A New Concept of Active Transport. Chem Rev 2018. [DOI: 10.1021/acs.chemrev.7b00548] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi P. Tsunoda
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
12
|
Harris A, Saita M, Resler T, Hughes-Visentin A, Maia R, Pranga-Sellnau F, Bondar AN, Heberle J, Brown LS. Molecular details of the unique mechanism of chloride transport by a cyanobacterial rhodopsin. Phys Chem Chem Phys 2018; 20:3184-3199. [PMID: 29057415 DOI: 10.1039/c7cp06068h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial rhodopsins are well known as versatile and ubiquitous light-driven ion transporters and photosensors. While the proton transport mechanism has been studied in great detail, much less is known about various modes of anion transport. Until recently, only two main groups of light-driven anion pumps were known, archaeal halorhodopsins (HRs) and bacterial chloride pumps (known as ClRs or NTQs). Last year, another group of cyanobacterial anion pumps with a very distinct primary structure was reported. Here, we studied the chloride-transporting photocycle of a representative of this new group, Mastigocladopsis repens rhodopsin (MastR), using time-resolved spectroscopy in the infrared and visible ranges and site-directed mutagenesis. We found that, in accordance with its unique amino acid sequence containing many polar residues in the transmembrane region of the protein, its photocycle features a number of unusual molecular events not known for other anion-pumping rhodopsins. It appears that light-driven chloride ion transfers by MastR are coupled with translocation of protons and water molecules as well as perturbation of several polar sidechains. Of particular interest is transient deprotonation of Asp-85, homologous to the cytoplasmic proton donor of light-driven proton pumps (such as Asp-96 of bacteriorhodopsin), which may serve as a regulatory mechanism.
Collapse
Affiliation(s)
- Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
14
|
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1512-1521. [PMID: 28844743 DOI: 10.1016/j.bbapap.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Retinal-binding proteins, mainly known as rhodopsins, function as photosensors and ion transporters in a wide range of organisms. From halobacterial light-driven proton pump, bacteriorhodopsin, to bovine photoreceptor, visual rhodopsin, they have served as prototypical α-helical membrane proteins in a large number of biophysical studies and aided in the development of many cutting-edge techniques of structural biology and biospectroscopy. In the last decade, microbial and animal rhodopsin families have expanded significantly, bringing into play a number of new interesting structures and functions. In this review, we will discuss recent advances in biophysical approaches to retinal-binding proteins, primarily microbial rhodopsins, including those in optical spectroscopy, X-ray crystallography, nuclear magnetic resonance, and electron paramagnetic resonance, as applied to such fundamental biological aspects as protein oligomerization, folding, and structure.
Collapse
|
15
|
Schreiner M, Schlesinger R, Heberle J, Niemann HH. Crystal structure of Halobacterium salinarum halorhodopsin with a partially depopulated primary chloride-binding site. Acta Crystallogr F Struct Biol Commun 2016; 72:692-9. [PMID: 27599860 PMCID: PMC5012209 DOI: 10.1107/s2053230x16012796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/08/2016] [Indexed: 05/17/2023] Open
Abstract
The transmembrane pump halorhodopsin in halophilic archaea translocates chloride ions from the extracellular to the cytoplasmic side upon illumination. In the ground state a tightly bound chloride ion occupies the primary chloride-binding site (CBS I) close to the protonated Schiff base that links the retinal chromophore to the protein. The light-triggered trans-cis isomerization of retinal causes structural changes in the protein associated with movement of the chloride ion. In reverse, chemical depletion of CBS I in Natronomonas pharaonis halorhodopsin (NpHR) through deprotonation of the Schiff base results in conformational changes of the protein: a state thought to mimic late stages of the photocycle. Here, crystals of Halobacterium salinarum halorhodopsin (HsHR) were soaked at high pH to provoke deprotonation of the Schiff base and loss of chloride. The crystals changed colour from purple to yellow and the occupancy of CBS I was reduced from 1 to about 0.5. In contrast to NpHR, this chloride depletion did not cause substantial conformational changes in the protein. Nevertheless, two observations indicate that chloride depletion could eventually result in structural changes similar to those found in NpHR. Firstly, the partially chloride-depleted form of HsHR has increased normalized B factors in the region of helix C that is close to CBS I and changes its conformation in NpHR. Secondly, prolonged soaking of HsHR crystals at high pH resulted in loss of diffraction. In conclusion, the conformation of the chloride-free protein may not be compatible with this crystal form of HsHR despite a packing arrangement that hardly restrains helices E and F that presumably move during ion transport.
Collapse
Affiliation(s)
- Madeleine Schreiner
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Ramona Schlesinger
- Genetic Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
16
|
Chan SK, Kawaguchi H, Kubo H, Murakami M, Ihara K, Maki K, Kouyama T. Crystal Structure of the 11-cis Isomer of Pharaonis Halorhodopsin: Structural Constraints on Interconversions among Different Isomeric States. Biochemistry 2016; 55:4092-104. [DOI: 10.1021/acs.biochem.6b00277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siu Kit Chan
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Haruki Kawaguchi
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroki Kubo
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Midori Murakami
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kunio Ihara
- Center
for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Kosuke Maki
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tsutomu Kouyama
- Department
of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- RIKEN Harima Branch, 1-1-1, Kouto, Sayo, Hyogo, Japan
| |
Collapse
|
17
|
Kouyama T, Kawaguchi H, Nakanishi T, Kubo H, Murakami M. Crystal structures of the L1, L2, N, and O states of pharaonis halorhodopsin. Biophys J 2016; 108:2680-90. [PMID: 26039169 PMCID: PMC4457492 DOI: 10.1016/j.bpj.2015.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/15/2023] Open
Abstract
Halorhodopsin from Natronomonas pharaonis (pHR) functions as a light-driven halide ion pump. In the presence of halide ions, the photochemical reaction of pHR is described by the scheme: K→ L1 → L2 → N → O → pHR′ → pHR. Here, we report light-induced structural changes of the pHR-bromide complex observed in the C2 crystal. In the L1-to-L2 transition, the bromide ion that initially exists in the extracellular vicinity of retinal moves across the retinal Schiff base. Upon the formation of the N state with a bromide ion bound to the cytoplasmic vicinity of the retinal Schiff base, the cytoplasmic half of helix F moves outward to create a water channel in the cytoplasmic interhelical space, whereas the extracellular half of helix C moves inward. During the transition from N to an N-like reaction state with retinal assuming the 13-cis/15-syn configuration, the translocated bromide ion is released into the cytoplasmic medium. Subsequently, helix F relaxes into its original conformation, generating the O state. Anion uptake from the extracellular side occurs when helix C relaxes into its original conformation. These structural data provide insight into the structural basis of unidirectional anion transport.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan; RIKEN Harima Branch, 1-1-1, Kouto, Sayo, Hyogo, Japan.
| | - Haruki Kawaguchi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Taichi Nakanishi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hiroki Kubo
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Midori Murakami
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
18
|
Shalaeva DN, Galperin MY, Mulkidjanian AY. Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins. Biol Direct 2015; 10:63. [PMID: 26472483 PMCID: PMC4608122 DOI: 10.1186/s13062-015-0091-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Abstract Microbial rhodopsins and G-protein coupled receptors (GPCRs, which include animal rhodopsins) are two distinct (super) families of heptahelical (7TM) membrane proteins that share obvious structural similarities but no significant sequence similarity. Comparison of the recently solved high-resolution structures of the sodium-translocating bacterial rhodopsin and various Na+-binding GPCRs revealed striking similarity of their sodium-binding sites. This similarity allowed us to construct a structure-guided sequence alignment for the two (super)families, which highlighted their evolutionary relatedness. Our analysis supports a common underlying molecular mechanism for both families that involves a highly conserved aromatic residue playing a pivotal role in rotation of the 6th transmembrane helix. Reviewers This article was reviewed by Oded Beja, G. P. S. Raghava and L. Aravind. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0091-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
19
|
Jardón-Valadez E, Bondar AN, Tobias DJ. Electrostatic interactions and hydrogen bond dynamics in chloride pumping by halorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1837:1964-1972. [PMID: 25256652 DOI: 10.1016/j.bbabio.2014.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
Translocation of negatively charged ions across cell membranes by ion pumps raises the question as to how protein interactions control the location and dynamics of the ion. Here we address this question by performing extensive molecular dynamics simulations of wild type and mutant halorhodopsin, a seven-helical transmembrane protein that translocates chloride ions upon light absorption. We find that inter-helical hydrogen bonds mediated by a key arginine group largely govern the dynamics of the protein and water groups coordinating the chloride ion.
Collapse
Affiliation(s)
- Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada, Estado de México 52005, México
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Department of Physics, Freie University Arnimallee 14, Berlin 14195, Germany.
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| |
Collapse
|
20
|
Schreiner M, Schlesinger R, Heberle J, Niemann HH. Structure of Halorhodopsin from Halobacterium salinarum in a new crystal form that imposes little restraint on the E-F loop. J Struct Biol 2015; 190:373-8. [PMID: 25916754 DOI: 10.1016/j.jsb.2015.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Halorhodopsin from the halophilic archaeon Halobacterium salinarum is a membrane located light-driven chloride pump. Upon illumination Halorhodopsin undergoes a reversible photocycle initiated by the all-trans to 13-cis isomerization of the covalently bound retinal chromophore. The photocycle consists of several spectroscopically distinct intermediates. The structural basis of the chloride transport mechanism remains elusive, presumably because packing contacts have so far precluded protein conformational changes in the available crystals. With the intention to structurally characterize late photocycle intermediates by X-ray crystallography we crystallized Halorhodopsin in a new crystal form using the vesicle fusion method. In the new crystal form lateral contacts are mediated by helices A and G. Helices E and F that were suggested to perform large movements during the photocycle are almost unrestrained by packing contacts. This feature might permit the displacement of these helices without disrupting the crystal lattice. Therefore, this new crystal form might be an excellent system for the structural characterization of late Halorhodopsin photocycle intermediates by trapping or by time resolved experiments, especially at XFELs.
Collapse
Affiliation(s)
- Madeleine Schreiner
- Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Ramona Schlesinger
- Genetic Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Hartmut H Niemann
- Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
21
|
Halorhodopsin pumps Cl- and bacteriorhodopsin pumps protons by a common mechanism that uses conserved electrostatic interactions. Proc Natl Acad Sci U S A 2014; 111:16377-82. [PMID: 25362051 DOI: 10.1073/pnas.1411119111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Key mutations differentiate the functions of homologous proteins. One example compares the inward ion pump halorhodopsin (HR) and the outward proton pump bacteriorhodopsin (BR). Of the nine essential buried ionizable residues in BR, six are conserved in HR. However, HR changes three BR acids, D85 in a central cluster of ionizable residues, D96, nearer the intracellular, and E204, nearer the extracellular side of the membrane to the small, neutral amino acids T111, V122, and T230, respectively. In BR, acidic amino acids are stationary anions whose proton affinity is modulated by conformational changes, establishing a sequence of directed binding and release of protons. Multiconformation continuum electrostatics calculations of chloride affinity and residue protonation show that, in reaction intermediates where an acid is ionized in BR, a Cl(-) is bound to HR in a position near the deleted acid. In the HR ground state, Cl(-) binds tightly to the central cluster T111 site and weakly to the extracellular T230 site, recovering the charges on ionized BR-D85 and neutral E204 in BR. Imposing key conformational changes from the BR M intermediate into the HR structure results in the loss of Cl(-) from the central T111 site and the tight binding of Cl(-) to the extracellular T230 site, mirroring the changes that protonate BR-D85 and ionize E204 in BR. The use of a mobile chloride in place of D85 and E204 makes HR more susceptible to the environmental pH and salt concentrations than BR. These studies shed light on how ion transfer mechanisms are controlled through the interplay of protein and ion electrostatics.
Collapse
|
22
|
Shibasaki K, Shigemura H, Kikukawa T, Kamiya M, Aizawa T, Kawano K, Kamo N, Demura M. Role of Thr218 in the light-driven anion pump halorhodopsin from Natronomonas pharaonis. Biochemistry 2013; 52:9257-68. [PMID: 24298916 DOI: 10.1021/bi401295e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Halorhodopsin (HR) is an inward-directed light-driven halogen ion pump, and NpHR is a HR from Natronomonas pharaonis. Unphotolyzed NpHR binds halogen ion in the vicinity of the Schiff base, which links retinal to Lys256. This halogen ion is transported during the photocycle. We made various mutants of Thr218, which is located one half-turn up from the Schiff base to the cytoplasm (CP) channel, and analyzed the photocycle using a sequential irreversible model. Four photochemically defined intermediates (P(i), i = 1-4) were adequate to describe the photocycle. The third component, P₃, was a quasi-equilibrium complex between the N and O intermediates, where a N ↔ O + Cl⁻ equilibrium was attained. The K(d,N↔O) values of this equilibrium for various mutants were determined, and the value of Thr (wild type) was the highest. The partial molar volume differences between N and O, ΔV(N→O), were estimated from the pressure dependence of K(d,N↔O). A comparison between K(d,N↔O) and ΔV(N→O) led to the conclusion that water entry by the F-helix opening at O may occur, which may increase K(d,N↔O). For some mutants, however, large ΔV(N→O) values were found, whereas the K(d,N↔O) values were small. This suggests that the special coordination of a water molecule with the OH group of Thr is necessary for the increase in K(d,N↔O). Mutants with a small K(d,N↔O) showed low pumping activities in the presence of inside negative membrane potential, while the mutant activities were not different in the absence of membrane potential. The effect of the mutation on the pumping activities is discussed.
Collapse
Affiliation(s)
- Kousuke Shibasaki
- Faculty of Advanced Life Science, Hokkaido University , Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yamashita Y, Kikukawa T, Tsukamoto T, Kamiya M, Aizawa T, Kawano K, Miyauchi S, Kamo N, Demura M. Expression of salinarum halorhodopsin in Escherichia coli cells: solubilization in the presence of retinal yields the natural state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2905-12. [PMID: 21925140 DOI: 10.1016/j.bbamem.2011.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022]
Abstract
Salinarum halorhodopsin (HsHR), a light-driven chloride ion pump of haloarchaeon Halobacterium salinarum, was heterologously expressed in Escherichia coli. The expressed HsHR had no color in the E. coli membrane, but turned purple after solubilization in the presence of all-trans retinal. This colored HsHR was purified by Ni-chelate chromatography in a yield of 3-4 mg per liter culture. The purified HsHR showed a distinct chloride pumping activity by incorporation into the liposomes, and showed even in the detergent-solubilized state, its typical behaviors in both the unphotolyzed and photolyzed states. Upon solubilization, HsHR expressed in the E. coli membrane attains the proper folding and a trimeric assembly comparable to those in the native membranes.
Collapse
Affiliation(s)
- Yasutaka Yamashita
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kanada S, Takeguchi Y, Murakami M, Ihara K, Kouyama T. Crystal structures of an O-like blue form and an anion-free yellow form of pharaonis halorhodopsin. J Mol Biol 2011; 413:162-76. [PMID: 21871461 DOI: 10.1016/j.jmb.2011.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/06/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Halorhodopsin from Natronomonas pharaonis (pHR) was previously crystallized into a monoclinic space group C2, and the structure of the chloride-bound purple form was determined. Here, we report the crystal structures of two chloride-free forms of pHR, that is, an O-like blue form and an M-like yellow form. When the C2 crystal was soaked in a chloride-free alkaline solution, the protein packing was largely altered and the yellow form containing all-trans retinal was generated. Upon neutralization, this yellow form was converted into the blue form. From structural comparison of the different forms of pHR, it was shown that the removal of a chloride ion from the primary binding site (site I), which is located between the retinal Schiff base and Thr126, is accompanied by such a deformation of helix C that the side chain of Thr126 moves toward helix G, leading to a significant shrinkage of site I. A large structural change is also induced in the chloride uptake pathway, where a flip motion of the side chain of Glu234 is accompanied by large movements of the surrounding aromatic residues. Irrespective of different charge distributions at the active site, there was no large difference in the structures of the yellow form and the blue form. It is shown that the yellow-to-purple transition is initiated by the entrance of one water and one HCl to the active site, where the proton and the chloride ion in HCl are transferred to the Schiff base and site I, respectively.
Collapse
Affiliation(s)
- Soun Kanada
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
25
|
Sage JT, Zhang Y, McGeehan J, Ravelli RBG, Weik M, van Thor JJ. Infrared protein crystallography. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:760-77. [PMID: 21376143 DOI: 10.1016/j.bbapap.2011.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/19/2022]
Abstract
We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO(2). Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- J Timothy Sage
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Kouyama T, Kanada S, Takeguchi Y, Narusawa A, Murakami M, Ihara K. Crystal Structure of the Light-Driven Chloride Pump Halorhodopsin from Natronomonas pharaonis. J Mol Biol 2010; 396:564-79. [DOI: 10.1016/j.jmb.2009.11.061] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
|
27
|
Sasaki T, Aizawa T, Kamiya M, Kikukawa T, Kawano K, Kamo N, Demura M. Effect of Chloride Binding on the Thermal Trimer−Monomer Conversion of Halorhodopsin in the Solubilized System. Biochemistry 2009; 48:12089-95. [DOI: 10.1021/bi901380c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takanori Sasaki
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Tomoyasu Aizawa
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masakatsu Kamiya
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiichi Kawano
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Makoto Demura
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
28
|
Radu I, Bamann C, Nack M, Nagel G, Bamberg E, Heberle J. Conformational changes of channelrhodopsin-2. J Am Chem Soc 2009; 131:7313-9. [PMID: 19422231 DOI: 10.1021/ja8084274] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Channelrhodopsin-2 (ChR2) is a member of the new class of light-gated ion channels which serve as phototaxis receptors in the green alga Chlamydomonas reinhardtii. The protein is employed in optogenetics where neural circuits are optically stimulated under high spatiotemporal control. Despite its rapidly growing use in physiological experiments, the reaction mechanism of ChR2 is poorly understood. Here, we applied vibrational spectroscopy to trace structural changes of ChR2 after light-excitation of the retinal chromophore. FT-IR difference spectra of the various photocycle intermediates revealed that stages of the photoreaction preceding (P(1) state) and succeeding (P(4)) the conductive state of the channel (P(3)) are associated with large conformational changes of the protein backbone as indicate by strong differences in the amide I bands. Critical hydrogen-bonding changes of protonated carboxylic amino acid side chains (D156, E90) were detected and discussed with regard to the functional mechanism. We used the C128T mutant where the lifetime of P(3) is prolonged and applied FT-IR and resonance Raman spectroscopy to study the conductive P(3) state of ChR2. Finally, a mechanistic model is proposed that links the observed structural changes of ChR2 to the changes in the channel's conductance.
Collapse
Affiliation(s)
- Ionela Radu
- Bielefeld University, Biophysical Chemistry, 33615 Bielefeld
| | | | | | | | | | | |
Collapse
|
29
|
Inoue K, Kubo M, Demura M, Kamo N, Terazima M. Reaction dynamics of halorhodopsin studied by time-resolved diffusion. Biophys J 2009; 96:3724-34. [PMID: 19413978 DOI: 10.1016/j.bpj.2008.12.3932] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/24/2008] [Accepted: 12/31/2008] [Indexed: 11/26/2022] Open
Abstract
Reaction dynamics of a chloride ion pump protein, halorhodopsin (HR), from Natronomonas pharaonis (N. pharaonis) (NpHR) was studied by the pulsed-laser-induced transient grating (TG) method. A detailed investigation of the TG signal revealed that there is a spectrally silent diffusion process besides the absorption-observable reaction dynamics. We interpreted these dynamics in terms of release, diffusion, and uptake of the Cl(-) ion. From a quantitative global analysis of the signals at various grating wavenumbers, it was concluded that the release of the Cl(-) ion is associated with the L2 --> (L2 (or N) <==> O) process, and uptake of Cl(-) occurs with the (L2 (or N) <==> O) -->NpHR' process. The diffusion coefficient of NpHR solubilized in a detergent did not change during the cyclic reaction. This result contrasts the behavior of many photosensor proteins and implies that the change in the H-bond network from intra- to intermolecular is not significant for the activity of this protein pump.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
30
|
Nakashima K, Nakamura T, Takeuchi S, Shibata M, Demura M, Tahara T, Kandori H. Properties of the Anion-Binding Site of pharaonis Halorhodopsin Studied by Ultrafast Pump−Probe Spectroscopy and Low-Temperature FTIR Spectroscopy. J Phys Chem B 2009; 113:8429-34. [DOI: 10.1021/jp902596k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keisuke Nakashima
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Takumi Nakamura
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Satoshi Takeuchi
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Mikihiro Shibata
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Makoto Demura
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Tahei Tahara
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
31
|
Kubo M, Kikukawa T, Miyauchi S, Seki A, Kamiya M, Aizawa T, Kawano K, Kamo N, Demura M. Role of Arg123 in Light-driven Anion Pump Mechanisms ofpharaonisHalorhodopsin. Photochem Photobiol 2009; 85:547-55. [DOI: 10.1111/j.1751-1097.2009.00538.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Andersson M, Vincent J, van der Spoel D, Davidsson J, Neutze R. A proposed time-resolved X-ray scattering approach to track local and global conformational changes in membrane transport proteins. Structure 2008; 16:21-8. [PMID: 18184580 DOI: 10.1016/j.str.2007.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 10/25/2007] [Accepted: 10/27/2007] [Indexed: 11/19/2022]
Abstract
Time-resolved X-ray scattering has emerged as a powerful technique for studying the rapid structural dynamics of small molecules in solution. Membrane-protein-catalyzed transport processes frequently couple large-scale conformational changes of the transporter with local structural changes perturbing the uptake and release of the transported substrate. Using light-driven halide ion transport catalyzed by halorhodopsin as a model system, we combine molecular dynamics simulations with X-ray scattering calculations to demonstrate how small-molecule time-resolved X-ray scattering can be extended to the study of membrane transport processes. In particular, by introducing strongly scattering atoms to label specific positions within the protein and substrate, the technique of time-resolved wide-angle X-ray scattering can reveal both local and global conformational changes. This approach simultaneously enables the direct visualization of global rearrangements and substrate movement, crucial concepts that underpin the alternating access paradigm for membrane transport proteins.
Collapse
Affiliation(s)
- Magnus Andersson
- Department of Chemical and Biological Engineering, Molecular Biotechnology, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
33
|
Klare JP, Chizhov I, Engelhard M. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. Results Probl Cell Differ 2007; 45:73-122. [PMID: 17898961 DOI: 10.1007/400_2007_041] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Microbial rhodopsins have been intensively researched for the last three decades. Since the discovery of bacteriorhodopsin, the scope of microbial rhodopsins has been considerably extended, not only in view of the large number of family members, but also their functional properties as pumps, sensors, and channels. In this review, we give a short overview of old and newly discovered microbial rhodopsins, the mechanism of signal transfer and ion transfer, and we discuss structural and mechanistic aspects of phototaxis.
Collapse
Affiliation(s)
- Johann P Klare
- Fachbereich Physik, University Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| | | | | |
Collapse
|