1
|
Zhou H, Chen X, Deng X, Zhang X, Zeng X, Xu K, Chen H. Transcriptome Analysis of miRNA and mRNA in Porcine Skeletal Muscle following Glaesserella parasuis Challenge. Genes (Basel) 2024; 15:359. [PMID: 38540418 PMCID: PMC10970282 DOI: 10.3390/genes15030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Glaesserella parasuis (G. parasuis) causes systemic infection in pigs, but its effects on skeletal muscle and underlying mechanisms are poorly understood. We investigated G. parasuis infection in colostrum-deprived piglets, observing decreased daily weight gain and upregulation of inflammatory factors in skeletal muscle. Muscle fiber area and diameter were significantly reduced in the treated group (n = 3) compared to the control group (n = 3), accompanied by increased expression of FOXO1, FBXO32, TRIM63, CTSL, and BNIP3. Based on mRNA and microRNA (miRNA) sequencing, we identified 1642 differentially expressed (DE) mRNAs and 19 known DE miRNAs in skeletal muscle tissues between the two groups. We predicted target genes with opposite expression patterns to the 19 miRNAs and found significant enrichment and activation of the FoxO signaling pathway. We found that the upregulated core effectors FOXO1 and FOXO4 were targeted by downregulated ssc-miR-486, ssc-miR-370, ssc-miR-615, and ssc-miR-224. Further investigation showed that their downstream upregulated genes involved in protein degradation were also targeted by the downregulated ssc-miR-370, ssc-miR-615, ssc-miR-194a-5p, and ssc-miR-194b-5p. These findings suggest that G. parasuis infection causes skeletal muscle atrophy in piglets through accelerated protein degradation mediated by the "miRNAs-FOXO1/4" axis, while further research is necessary to validate the regulatory relationships. Our results provide new insights into the understanding of systemic inflammation growth mechanisms caused by G. parasuis and the role of miRNAs in bacterial infection pathogenesis.
Collapse
Affiliation(s)
- Huanhuan Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuexue Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangwei Deng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinqi Zeng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ke Xu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Piva MM, Schwertz CI, Bianchi RM, Henker LC, Morés MAZ, Rebelatto R, Kemper RT, Goslar MS, Nagae RY, Pavarini SP. Pasteurella multocida polyserositis in growing-finishing pigs. J Comp Pathol 2023; 202:16-22. [PMID: 37023584 DOI: 10.1016/j.jcpa.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Pasteurella multocida is the main secondary bacterium isolated from cases of swine pneumonia. Although highly pathogenic strains of P. multocida have been associated with primary septic lesions and polyserositis in pigs, studies on this pathological presentation in naturally occurring cases are limited. The aim of this work was to characterize the clinical, pathological and molecular findings in cases of P. multocida polyserositis in growing-finishing pigs in a commercial farm in Brazil. The mean age of 17 investigated pigs was 120 days. Clinically, the disease was acute (11/17), with clinical signs of dyspnoea and apathy. Sudden death occurred in some animals (6/17). The main gross findings included fibrinous serositis affecting the abdominal and thoracic cavities (17/17), fibrinous pericarditis (15/17), marked cranioventral pulmonary consolidation (17/17) and splenic infarcts (3/17). P. multocida was isolated in all cases from systemic sites, including the pericardial sac and abdominal exudate. Molecular typing of genus and species was performed on four isolates, and all were characterized as P. multocida type A. Another five isolates were positive for the pathogenicity marker gene pfhA by polymerase chain reaction. This study reinforces the role of P. multocida as a cause of polyserositis in growing-finishing pigs.
Collapse
Affiliation(s)
- Manoela M Piva
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Claiton I Schwertz
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ronaldo M Bianchi
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luan C Henker
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | - Regina T Kemper
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana S Goslar
- Empresa Seara Alimentos, Laboratório de Sanidade Animal, Seara, Santa Catarina, Brazil
| | - Ricardo Y Nagae
- Empresa Seara Alimentos, Laboratório de Sanidade Animal, Seara, Santa Catarina, Brazil
| | - Saulo P Pavarini
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Localization of Pasteurella multocida antigens in the brains of pigs naturally infected with Pasteurellosis revealing a newer aspect of pathogenesis. Microb Pathog 2020; 140:103968. [PMID: 31927003 DOI: 10.1016/j.micpath.2020.103968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 11/20/2022]
Abstract
Pasteurella multocida is an economically important respiratory pathogen of pigs confronting swine industry worldwide. Despite extensive research over the decades, its pathogenesis is still poorly understood. Recent reports have demonstrated the nervous system affection as a newer aspect of pathogenesis by Pasteurella multocida type B:2 in Haemorrhagic Septicemia, but there are no reports of the involvement of nervous system by P. multocida in pigs. Therefore, the study was aimed to explore the neurovirulence of Pasteurella multocida in naturally infected pigs. A total of 15 brains were collected from the natural cases of pig mortality suggestive of Pasteurellosis. Grossly, the leptomeninges were markedly congested and brains were oedematously swollen. Histologically, there was moderate to severe fibrinohaemorrhagic and mononuclear cells exudates present in the leptomeningeal tissue and cerebrospinal spaces. Similar vascular inflammatory lesions (perivascular and perineuronal) along with gliosis, neuronal degeneration and necrosis were noted in various subanatomical sites of the brain (cerebrum, cerebellum, brainstem and spinal cord). The culture and biochemical tests showed the presence of P. multocida within the brain tissue. P. multocida type specific antibody staining in the brain tissues revealed intense distribution of antigens in the inflammatory exudates of meningeal vessels, neurons, glial cells and endothelial cells of the blood vessels contributing its association with neuropathological lesions. Pasteurella multocida specific PCR amplification of capsular polysaccharide gene yielded 460 bp and multiplex PCR showed the involvement of capsular serogroups A &D. All the isolates showed the presence of 10 genes for virulence factors. The disease confirmation of both serotypes was proven by Koch's postulates using Swiss albino mice. Further, histopathological brain lesions along with the immunohistochemical detection of bacterial antigens were corroborated with natural cases of P. multocida as described above. To the best of our knowledge, we first time report the neuroinvasion of P. multocida in naturally infected pigs.
Collapse
|
4
|
The use of porcine corrosion casts for teaching human anatomy. Ann Anat 2017; 213:69-77. [PMID: 28578926 DOI: 10.1016/j.aanat.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/14/2017] [Accepted: 05/04/2017] [Indexed: 02/08/2023]
Abstract
In teaching and learning human anatomy, anatomical autopsy and prosected specimens have always been indispensable. However, alternative methods must often be used to demonstrate particularly delicate structures. Corrosion casting of porcine organs with Biodur E20® Plus is valuable for teaching and learning both gross anatomy and, uniquely, the micromorphology of cardiovascular, respiratory, digestive, and urogenital systems. Assessments of casts with a stereomicroscope and/or scanning electron microscope as well as highlighting cast structures using color coding help students to better understand how the structures that they have observed as two-dimensional images actually exist in three dimensions, and students found using the casts to be highly effective in their learning. Reconstructions of cast hollow structures from (micro-)computed tomography scans and videos facilitate detailed analyses of branching patterns and spatial arrangements in cast structures, aid in the understanding of clinically relevant structures and provide innovative visual aids. The casting protocol and teaching manual we offer can be adjusted to different technical capabilities and might also be found useful for veterinary or other biological science classes.
Collapse
|
5
|
Immune response to oligopeptide permease A (OppA) protein in pigs naturally and experimentally infected with Haemophilus parasuis. Res Vet Sci 2016; 107:62-67. [PMID: 27473976 DOI: 10.1016/j.rvsc.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 11/21/2022]
Abstract
Haemophilus parasuis is an important swine pathogen that causes Glasser's disease, characterized by pneumonia, polyserositis and meningitis. Protection against H. parasuis infection is associated with the presence of homologous antibodies in serum. However, a H. parasuis antigen that can elicit a protective immune response against all H. parasuis strains has yet to be found. A novel immunogenic and species-specific H. parasuis protein was identified by screening H. parasuis whole cell proteins using swine convalescent sera. One protein of 52kDa was clearly immunodominant and conserved among different H. parasuis strains. This protein was further identified as an oligopeptide permease A (OppA). Because OppA elicited a specific antibody response in pigs that recovered from H. parasuis infection, we investigated its potential role in diagnostics and protective immunity. An ELISA test using recombinant OppA (rOppA) as its coating antigen was further developed and tested. H. parasuis specific antibodies to rOppA were detected in serum from convalescent pigs but not in serum from specific pathogen free (SPF) or conventional pigs. Pigs immunized with rOppA protein had robust serological responses. However, the antibodies were not protective against challenge infection. We conclude that OppA is a universal species-specific H. parasuis immunogen, and a good marker for previous systemic infection with H. parasuis.
Collapse
|