1
|
Teifke JP, Peuckert C, Rudnick JC, Büttner K, Bostedt H. Computed Tomographic and Histopathologic Studies of Lung Function Immediately Post Natum in Canine Neonates. Animals (Basel) 2023; 13:1741. [PMID: 37889678 PMCID: PMC10251831 DOI: 10.3390/ani13111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The lung tissue in newborn canine neonates is still in a morphologically and functionally immature, canalicular-saccular stage. True alveoli are only formed postnatally. The aim of this study was to analyze the spatial and temporal development of the ventilation of the lung tissue in vital canine neonates during the first 24 h post natum (p.n.). METHODS Forty pups (birth weight Ø 424 g ± 80.1 g) from three litters of large dog breeds (>20 kg live weight) were included in the studies. Thirty-three pups (29 vital, 2 vitally depressed, 2 stillborn neonates) originated from controlled, uncomplicated births (n = 3); moreover, six stillborn pups as well as one prematurely deceased pup were birthed by other dams with delivery complications. Computed tomography (CT) was used in 39 neonates, and histopathologic tissue classification techniques (HALO) were used in 11 neonates (eight stillborn and three neonates died early post natum, respectively) to quantify the degree of aerated neonatal lung tissue. RESULTS It was shown that, in vital born pups, within the first 10 min p.n., the degree of ventilation reached mean values of -530 (±114) Hounsfield units (HU) in the dorsal and -453.3 (±133) HU in the ventral lung area. This is about 75-80% of the final values obtained after 24 h p.n. for dorsal -648.0 (±89.9) HU and ventral quadrants -624.7 (±76.8) HU. The dorsal lung areas were always significantly better ventilated than the ventral regions (p = 0.0013). CT as well as histopathology are suitable to clearly distinguish the nonventilated lungs of stillborns from neonates that were initially alive after surviving neonatal respiratory distress syndrome but who died prematurely (p = 0.0398). CONCLUSION The results of this study are clinically relevant since the lung tissue of canine neonates presents an aeration profile as early as 10 min after birth and continues progressively, with a special regard to the dorsal lung areas. This is the basis for resuscitation measures that should be performed, preferably with the pup in the abdomen-chest position.
Collapse
Affiliation(s)
- Jens Peter Teifke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Cornelia Peuckert
- Veterinary Clinic Rostock GmbH, 18059 Rostock, Germany
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus-Liebig-University, 35392 Giessen, Germany
| | | | - Kathrin Büttner
- AG Biomathematics and Data Processing, Department of Veterinary Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Hartwig Bostedt
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
2
|
Brabant OA, Byrne DP, Sacks M, Moreno Martinez F, Raisis AL, Araos JB, Waldmann AD, Schramel JP, Ambrosio A, Hosgood G, Braun C, Auer U, Bleul U, Herteman N, Secombe CJ, Schoster A, Soares J, Beazley S, Meira C, Adler A, Mosing M. Thoracic Electrical Impedance Tomography-The 2022 Veterinary Consensus Statement. Front Vet Sci 2022; 9:946911. [PMID: 35937293 PMCID: PMC9354895 DOI: 10.3389/fvets.2022.946911] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical impedance tomography (EIT) is a non-invasive real-time non-ionising imaging modality that has many applications. Since the first recorded use in 1978, the technology has become more widely used especially in human adult and neonatal critical care monitoring. Recently, there has been an increase in research on thoracic EIT in veterinary medicine. Real-time imaging of the thorax allows evaluation of ventilation distribution in anesthetised and conscious animals. As the technology becomes recognised in the veterinary community there is a need to standardize approaches to data collection, analysis, interpretation and nomenclature, ensuring comparison and repeatability between researchers and studies. A group of nineteen veterinarians and two biomedical engineers experienced in veterinary EIT were consulted and contributed to the preparation of this statement. The aim of this consensus is to provide an introduction to this imaging modality, to highlight clinical relevance and to include recommendations on how to effectively use thoracic EIT in veterinary species. Based on this, the consensus statement aims to address the need for a streamlined approach to veterinary thoracic EIT and includes: an introduction to the use of EIT in veterinary species, the technical background to creation of the functional images, a consensus from all contributing authors on the practical application and use of the technology, descriptions and interpretation of current available variables including appropriate statistical analysis, nomenclature recommended for consistency and future developments in thoracic EIT. The information provided in this consensus statement may benefit researchers and clinicians working within the field of veterinary thoracic EIT. We endeavor to inform future users of the benefits of this imaging modality and provide opportunities to further explore applications of this technology with regards to perfusion imaging and pathology diagnosis.
Collapse
Affiliation(s)
- Olivia A. Brabant
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - David P. Byrne
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Muriel Sacks
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | | | - Anthea L. Raisis
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Joaquin B. Araos
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Andreas D. Waldmann
- Department of Anaesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Johannes P. Schramel
- Department of Anaesthesiology and Perioperative Intensive Care Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Aline Ambrosio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Giselle Hosgood
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Christina Braun
- Department of Anaesthesiology and Perioperative Intensive Care Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ulrike Auer
- Department of Anaesthesiology and Perioperative Intensive Care Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ulrike Bleul
- Clinic of Reproductive Medicine, Department of Farm Animals, Vetsuisse-Faculty University Zurich, Zurich, Switzerland
| | - Nicolas Herteman
- Clinic for Equine Internal Medicine, Equine Hospital, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Cristy J. Secombe
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Angelika Schoster
- Clinic for Equine Internal Medicine, Equine Hospital, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Joao Soares
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Shannon Beazley
- Department of Small Animal Clinical Sciences, Western College Veterinary Medicine, Saskatoon, SK, Canada
| | - Carolina Meira
- Department of Clinical Diagnostics and Services, Anaesthesiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Andy Adler
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Martina Mosing
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| |
Collapse
|
3
|
Three-Dimensional Holographic Electromagnetic Imaging for Accessing Brain Stroke. SENSORS (BASEL, SWITZERLAND) 2018; 18:s18113852. [PMID: 30423978 PMCID: PMC6263754 DOI: 10.3390/s18113852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023]
Abstract
The authors recently developed a two-dimensional (2D) holographic electromagnetic induction imaging (HEI) for biomedical imaging applications. However, this method was unable to detect small inclusions accurately. For example, only one of two inclusions can be detected in the reconstructed image if the two inclusions were located at the same XY plane but in different Z-directions. This paper provides a theoretical framework of three-dimensional (3D) HEI to accurately and effectively detect inclusions embedded in a biological object. A numerical system, including a realistic head phantom, a 16-element excitation sensor array, a 16-element receiving sensor array, and image processing model has been developed to evaluate the effectiveness of the proposed method for detecting small stroke. The achieved 3D HEI images have been compared with 2D HEI images. Simulation results show that the 3D HEI method can accurately and effectively identify small inclusions even when two inclusions are located at the same XY plane but in different Z-directions. This preliminary study shows that the proposed method has the potential to develop a useful imaging tool for the diagnosis of neurological diseases and injuries in the future.
Collapse
|
4
|
Ambrisko TD, Schramel JP, Auer U, Moens YPS. Impact of four different recumbencies on the distribution of ventilation in conscious or anaesthetized spontaneously breathing beagle dogs: An electrical impedance tomography study. PLoS One 2017; 12:e0183340. [PMID: 28922361 PMCID: PMC5603158 DOI: 10.1371/journal.pone.0183340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
The aim was to examine the effects of recumbency and anaesthesia on distribution of ventilation in beagle dogs using Electrical Impedance Tomography (EIT). Nine healthy beagle dogs, aging 3.7±1.7 (mean±SD) years and weighing 16.3±1.6 kg, received a series of treatments in a fixed order on a single occasion. Conscious dogs were positioned in right lateral recumbency (RLR) and equipped with 32 EIT electrodes around the thorax. Following five minutes of equilibration, two minutes of EIT recordings were made in each recumbency in the following order: RLR, dorsal (DR), left (LLR) and sternal (SR). The dogs were then positioned in RLR, premedicated (medetomidine 0.01, midazolam 0.1, butorphanol 0.1 mg kg-1 iv) and pre-oxygenated. Fifteen minutes later anaesthesia was induced with 1 mg kg-1 propofol iv and maintained with propofol infusion (0.1–0.2 mg kg-1 minute-1 iv). After induction, the animals were intubated and allowed to breathe spontaneously (FIO2 = 1). Recordings of EIT were performed again in four recumbencies similarly to conscious state. Centre of ventilation (COV) and global inhomogeneity (GI) index were calculated from the functional EIT images. Repeated-measures ANOVA and Bonferroni tests were used for statistical analysis (p < 0.05). None of the variables changed in the conscious state. During anaesthesia left-to-right COV increased from 46.8±2.8% in DR to 49.8±2.9% in SR indicating a right shift, and ventral-to-dorsal COV increased from 49.8±1.7% in DR to 51.8±1.1% in LLR indicating a dorsal shift in distribution of ventilation. Recumbency affected distribution of ventilation in anaesthetized but not in conscious dogs. This can be related to loss of respiratory muscle tone (e.g. diaphragm) and changes in thoracic shape. Changing position of thoraco-abdominal organs under the EIT belt should be considered as alternative explanation of these findings.
Collapse
Affiliation(s)
- Tamas D Ambrisko
- Anaesthesiology and Perioperative Intensive-Care Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Johannes P Schramel
- Anaesthesiology and Perioperative Intensive-Care Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Ulrike Auer
- Anaesthesiology and Perioperative Intensive-Care Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Yves P S Moens
- Anaesthesiology and Perioperative Intensive-Care Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|