1
|
Zheng H, Wang H, Xu Y, Xu X, Zhu Z, Fang J, Song Z, Liu J. MST2 Acts via AKT Activity to Promote Neurite Outgrowth and Functional Recovery after Spinal Cord Injury in Mice. Mol Neurobiol 2024; 61:9016-9031. [PMID: 38581538 DOI: 10.1007/s12035-024-04158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Spinal cord injury (SCI) constitutes a significant clinical challenge, and there is extensive research focused on identifying molecular activities that can facilitate the repair of spinal cord injuries. Mammalian sterile 20-like kinase 2 (MST2), a core component of the Hippo signaling pathway, plays a key role in apoptosis and cell growth. However, its role in neurite outgrowth after spinal cord injury remains unknown. Through comprehensive in vitro and in vivo experiments, we demonstrated that MST2, predominantly expressed in neurons, actively participated in the natural development of the CNS. Post-SCI, MST2 expression significantly increased, indicating its activation and potential role in the early stages of neural recovery. Detailed analyses showed that MST2 knockdown impaired neurite outgrowth and motor function recovery, whereas MST2 overexpression led to the opposite effects, underscoring MST2's neuroprotective role in enhancing neural repair. Further, we elucidated the mechanism underlying MST2's action, revealing its interaction with AKT and positive regulation of AKT activity, a well-established promoter of neurite outgrowth. Notably, MST2's promotion of neurite outgrowth and motor functional recovery was diminished by AKT inhibitors, highlighting the dependency of MST2's neuroprotective effects on AKT signaling. In conclusion, our findings affirmed MST2's pivotal role in fostering neuronal neurite outgrowth and facilitating functional recovery after SCI, mediated through its positive modulation of AKT activity. In conclusion, our findings confirmed MST2's crucial role in neural protection, promoting neurite outgrowth and functional recovery after SCI through positive AKT activity modulation. These results position MST2 as a potential therapeutic target for SCI, offering new insights into strategies for enhancing neuroregeneration and functional restoration.
Collapse
Affiliation(s)
- Hongming Zheng
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Orthopedics, The People's Hospital of Danyang, Danyang, 212300, China
| | - Honghai Wang
- Department of Orthopedics, The NO. 2 People's Hospital of Fuyang, Fuyang, China
| | - Yi Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhenghuan Zhu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiawei Fang
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhiwen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Jinbo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
2
|
Cansby E, Caputo M, Andersson E, Saghaleyni R, Henricsson M, Xia Y, Asiedu B, Blüher M, Svensson LT, Hoy AJ, Mahlapuu M. GCKIII kinases control hepatocellular lipid homeostasis via shared mode of action. J Lipid Res 2024; 65:100669. [PMID: 39395791 PMCID: PMC11602991 DOI: 10.1016/j.jlr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease has emerged as a leading global cause of chronic liver disease. Our recent translational investigations have shown that the STE20-type kinases comprising the GCKIII subfamily-MST3, STK25, and MST4-associate with hepatic lipid droplets and regulate ectopic fat storage in the liver; however, the mode of action of these proteins remains to be resolved. By comparing different combinations of the silencing of MST3, STK25, and/or MST4 in immortalized human hepatocytes, we found that their single knockdown results in a similar reduction in hepatocellular lipid content and metabolic stress, without any additive or synergistic effects observed when all three kinases are simultaneously depleted. A genome-wide yeast two-hybrid screen of the human hepatocyte library identified several interaction partners contributing to the GCKIII-mediated regulation of liver lipid homeostasis, that is, PDCD10 that protects MST3, STK25, and MST4 from degradation, MAP4K4 that regulates their activity via phosphorylation, and HSD17B11 that controls their action via a conformational change. Finally, using in vitro kinase assays on microfluidic microarrays, we pinpointed various downstream targets that are phosphorylated by the GCKIII kinases, with known functions in lipogenesis, lipolysis, and lipid secretion, as well as glucose uptake, glycolysis, hexosamine synthesis, and ubiquitination. Together, this study demonstrates that the members of the GCKIII kinase subfamily regulate hepatocyte lipid metabolism via common pathways. The results shed new light on the role of MST3, STK25, and MST4, as well as their interactions with PDCD10, MAP4K4, and HSD17B11, in the control of liver lipid homeostasis and metabolic dysfunction-associated steatotic liver disease susceptibility.
Collapse
Affiliation(s)
- Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rasool Saghaleyni
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Marcus Henricsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bernice Asiedu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - L Thomas Svensson
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
3
|
Eden M, Leye M, Hahn J, Heilein E, Luzarowski M, Völschow B, Tannert C, Sossalla S, Lucena-Porcel C, Frank D, Frey N. Mst4, a novel cardiac STRIPAK complex-associated kinase, regulates cardiomyocyte growth and survival and is upregulated in human cardiomyopathy. J Biol Chem 2024; 300:107255. [PMID: 38579991 PMCID: PMC11087964 DOI: 10.1016/j.jbc.2024.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Myocardial failure is associated with adverse remodeling, including loss of cardiomyocytes, hypertrophy, and alterations in cell-cell contacts. Striatin-interacting phosphatase and kinase (STRIPAK) complexes and their mammalian STE20-like kinase 4 (Mst4) have been linked to development of different diseases. The role and targets of Mst4 in cardiomyocytes have not been investigated yet. Multitissue immunoblot experiments show highly enriched Mst4 expression in rodent hearts. Analyses of human biopsy samples from patients suffering from dilated cardiomyopathy revealed that Mst4 is upregulated (5- to 8-fold p < 0.001) compared with nonfailing controls. Increased abundance of Mst4 could also be detected in mouse models of cardiomyopathy. We confirmed that Mst4 interacts with STRIPAK components in neonatal rat ventricular cardiomyocytes, indicating that STRIPAK is present in the heart. Immunofluorescence stainings and molecular interaction studies revealed that Mst4 is localized to the intercalated disc and interacts with several intercalated disc proteins. Overexpression of Mst4 in cardiomyocytes results in hypertrophy compared with controls. In adult rat cardiomyocytes, Mst4 overexpression increases cellular and sarcomeric fractional shortening (p < 0.05), indicating enhanced contractility. Overexpression of Mst4 also inhibits apoptosis shown by reduction of cleaved caspase3 (-69%, p < 0.0001), caspase7 (-80%, p < 0.0001), and cleaved Parp1 (-27%, p < 0.001). To elucidate potential Mst4 targets, we performed phosphoproteomics analyses in neonatal rat cardiomyocytes after Mst4 overexpression and inhibition. The results revealed target candidates of Mst4 at the intercalated disc. We identified Mst4 as a novel cardiac kinase that is upregulated in cardiomyopathy-regulating cardiomyocyte growth and survival.
Collapse
Affiliation(s)
- Matthias Eden
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Marius Leye
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Justus Hahn
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Emanuel Heilein
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology at Heidelberg University (ZMBH), Heidelberg, Germany
| | - Bill Völschow
- German Centre for Cardiovascular Research, Kiel, Lübeck, Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Christin Tannert
- German Centre for Cardiovascular Research, Kiel, Lübeck, Hamburg, Germany; Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Samuel Sossalla
- Department of Cardiology, University of Giessen, Giessen and Kerckhoff Heart and Lung Centre, Giessen, Germany
| | - Carlota Lucena-Porcel
- Tissue Bank of the National Center of Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Derk Frank
- German Centre for Cardiovascular Research, Kiel, Lübeck, Hamburg, Germany; Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany.
| |
Collapse
|
4
|
Rak M, Menge A, Tesch R, Berger LM, Balourdas DI, Shevchenko E, Krämer A, Elson L, Berger BT, Abdi I, Wahl LM, Poso A, Kaiser A, Hanke T, Kronenberger T, Joerger AC, Müller S, Knapp S. Development of Selective Pyrido[2,3- d]pyrimidin-7(8 H)-one-Based Mammalian STE20-Like (MST3/4) Kinase Inhibitors. J Med Chem 2024; 67:3813-3842. [PMID: 38422480 DOI: 10.1021/acs.jmedchem.3c02217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Mammalian STE20-like (MST) kinases 1-4 play key roles in regulating the Hippo and autophagy pathways, and their dysregulation has been implicated in cancer development. In contrast to the well-studied MST1/2, the roles of MST3/4 are less clear, in part due to the lack of potent and selective inhibitors. Here, we re-evaluated literature compounds, and used structure-guided design to optimize the p21-activated kinase (PAK) inhibitor G-5555 (8) to selectively target MST3/4. These efforts resulted in the development of MR24 (24) and MR30 (27) with good kinome-wide selectivity and high cellular potency. The distinct cellular functions of closely related MST kinases can now be elucidated with subfamily-selective chemical tool compounds using a combination of the MST1/2 inhibitor PF-06447475 (2) and the two MST3/4 inhibitors developed. We found that MST3/4-selective inhibition caused a cell-cycle arrest in the G1 phase, whereas MST1/2 inhibition resulted in accumulation of cells in the G2/M phase.
Collapse
Affiliation(s)
- Marcel Rak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amelie Menge
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Roberta Tesch
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lena M Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Ekaterina Shevchenko
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Translational Cancer Network (DKTK) and Frankfurt Cancer Institute (FCI), 60438 Frankfurt am Main, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Ismahan Abdi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Laurenz M Wahl
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Translational Cancer Network (DKTK) and Frankfurt Cancer Institute (FCI), 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Caputo M, Andersson E, Xia Y, Hou W, Cansby E, Erikson M, Lind DE, Hallberg B, Amrutkar M, Mahlapuu M. Genetic Ablation of STE20-Type Kinase MST4 Does Not Alleviate Diet-Induced MASLD Susceptibility in Mice. Int J Mol Sci 2024; 25:2446. [PMID: 38397122 PMCID: PMC10888586 DOI: 10.3390/ijms25042446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its advanced subtype, metabolic dysfunction-associated steatohepatitis (MASH), have emerged as the most common chronic liver disease worldwide, yet there is no targeted pharmacotherapy presently available. This study aimed to investigate the possible in vivo function of STE20-type protein kinase MST4, which was earlier implicated in the regulation of hepatocellular lipotoxic milieu in vitro, in the control of the diet-induced impairment of systemic glucose and insulin homeostasis as well as MASLD susceptibility. Whole-body and liver-specific Mst4 knockout mice were generated by crossbreeding conditional Mst4fl/fl mice with mice expressing Cre recombinase under the Sox2 or Alb promoters, respectively. To replicate the environment in high-risk subjects, Mst4-/- mice and their wild-type littermates were fed a high-fat or a methionine-choline-deficient (MCD) diet. Different in vivo tests were conducted in obese mice to describe the whole-body metabolism. MASLD progression in the liver and lipotoxic damage to adipose tissue, kidney, and skeletal muscle were analyzed by histological and immunofluorescence analysis, biochemical assays, and protein and gene expression profiling. In parallel, intracellular fat storage and oxidative stress were assessed in primary mouse hepatocytes, where MST4 was silenced by small interfering RNA. We found that global MST4 depletion had no effect on body weight or composition, locomotor activity, whole-body glucose tolerance or insulin sensitivity in obese mice. Furthermore, we observed no alterations in lipotoxic injuries to the liver, adipose, kidney, or skeletal muscle tissue in high-fat diet-fed whole-body Mst4-/- vs. wild-type mice. Liver-specific Mst4-/- mice and wild-type littermates displayed a similar severity of MASLD when subjected to an MCD diet, as evidenced by equal levels of steatosis, inflammation, hepatic stellate cell activation, fibrosis, oxidative/ER stress, and apoptosis in the liver. In contrast, the in vitro silencing of MST4 effectively protected primary mouse hepatocytes against ectopic lipid accumulation and oxidative cell injury triggered by exposure to fatty acids. In summary, these results suggest that the genetic ablation of MST4 in mice does not mitigate the initiation or progression of MASLD and has no effect on systemic glucose or insulin homeostasis in the context of nutritional stress. The functional compensation for the genetic loss of MST4 by yet undefined mechanisms may contribute to the apparent discrepancy between in vivo and in vitro phenotypic consequences of MST4 silencing.
Collapse
Affiliation(s)
- Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Wei Hou
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Max Erikson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Dan Emil Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Manoj Amrutkar
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| |
Collapse
|
6
|
Li T, Wen Y, Lu Q, Hua S, Hou Y, Du X, Zheng Y, Sun S. MST1/2 in inflammation and immunity. Cell Adh Migr 2023; 17:1-15. [PMID: 37909712 PMCID: PMC10761064 DOI: 10.1080/19336918.2023.2276616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
The mammalian Sterile 20-like kinase 1/2 (MST1/2) belongs to the serine/threonine (GC) protein kinase superfamily. Collective studies confirm the vital role MST1/2 in inflammation and immunity. MST1/2 is closely related to the progress of inflammation. Generally, MST1/2 aggravates the inflammatory injury through MST1-JNK, MST1-mROS, MST1-Foxo3, and NF-κB pathways, as well as several regulatory factors such as tumor necrosis factor-α (TNF-α), mitochondrial extension factor 1 (MIEF1), and lipopolysaccharide (LPS). Moreover, MST1/2 is also involved in the regulation of immunity to balance immune activation and tolerance by regulating MST1/2-Rac, MST1-Akt1/c-myc, MST1-Foxos, MST1-STAT, Btk pathways, and lymphocyte function-related antigen 1 (LFA-1), which subsequently prevents immunodeficiency syndrome and autoimmune diseases. This article reviews the effects of MST1/2 on inflammation and immunity.
Collapse
Affiliation(s)
- Tongfen Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qiongfen Lu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaohua Du
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Caputo M, Xia Y, Anand SK, Cansby E, Andersson E, Marschall HU, Königsrainer A, Peter A, Mahlapuu M. STE20-type kinases MST3 and MST4 promote the progression of hepatocellular carcinoma: Evidence from human cell culture and expression profiling of liver biopsies. FASEB J 2023; 37:e23105. [PMID: 37490000 DOI: 10.1096/fj.202300397rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal and fastest growing malignancies. Recently, nonalcoholic steatohepatitis (NASH), characterized by liver steatosis, inflammation, cell injury (hepatocyte ballooning), and different stages of fibrosis, has emerged as a major catalyst for HCC. Because the STE20-type kinases, MST3 and MST4, have been described as critical molecular regulators of NASH pathophysiology, we here focused on determining the relevance of these proteins in human HCC. By analyzing public datasets and in-house cohorts, we found that hepatic MST3 and MST4 expression was positively correlated with the incidence and severity of HCC. We also found that the silencing of both MST3 and MST4, but also either of them individually, markedly suppressed the tumorigenesis of human HCC cells including attenuated proliferation, migration, invasion, and epithelial-mesenchymal transition. Mechanistic investigations revealed lower activation of STAT3 signaling in MST3/MST4-deficient hepatocytes and identified GOLGA2 and STRIPAK complex as the binding partners of both MST3 and MST4. These findings reveal that MST3 and MST4 play a critical role in promoting the progression of HCC and suggest that targeting these kinases may provide a novel strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sumit Kumar Anand
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
8
|
Qiu J, Xiong J, Jiang L, Wang X, Zhang K, Yu H. Molecular mechanisms involved in regulating protein activity and biological function of MST3. Cell Div 2023; 18:8. [PMID: 37202821 DOI: 10.1186/s13008-023-00090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
Mammalian sterile 20-like (Ste20-like) protein kinase 3 (MST3) or serine/threonine-protein kinase 24 (STK24) is a serine/threonine protein kinase that belongs to the mammalian STE20-like protein kinase family. MST3 is a pleiotropic protein that plays a critical role in regulating a variety of events, including apoptosis, immune response, metabolism, hypertension, tumor progression, and development of the central nervous system. The MST3-mediated regulation is intricately related to protein activity, post-translational modification, and subcellular location. Here, we review the recent progress on the regulatory mechanisms against MST3 and its-mediated control of disease progression.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, China
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junzhi Xiong
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Jiang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xinmin Wang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Kebin Zhang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yu
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
9
|
Chan CH, Lin P, Yang TY, Bao BY, Jhong JY, Weng YP, Lee TH, Cheng HF, Lu TL. Epithelial polarization in the 3D matrix requires MST3 signaling to regulate ZO-1 position. PLoS One 2023; 18:e0285217. [PMID: 37155619 PMCID: PMC10166550 DOI: 10.1371/journal.pone.0285217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
Apical-basal cell polarity must be tightly controlled for epithelial cyst and tubule formation, and these are important functional units in various epithelial organs. Polarization is achieved through the coordination of several molecules that divide cells into an apical domain and a basolateral domain, which are separated from tight and adherens junctions. Cdc42 regulates cytoskeletal organization and the tight junction protein ZO-1 at the apical margin of epithelial cell junctions. MST kinases control organ size through the regulation of cell proliferation and cell polarity. For example, MST1 relays the Rap1 signal to induce cell polarity and adhesion of lymphocytes. Our previous study showed that MST3 was involved in E-cadherin regulation and migration in MCF7 cells. In vivo, MST3 knockout mice exhibited higher ENaC expression at the apical site of renal tubules, resulting in hypertension. However, it was not clear whether MST3 was involved in cell polarity. Here, control MDCK cells, HA-MST3 and HA-MST3 kinase-dead (HA-MST3-KD) overexpressing MDCK cells were cultured in collagen or Matrigel. We found that the cysts of HA-MST3 cells were fewer and smaller than those of control MDCK cells; ZO-1 was delayed to the apical site of cysts and in cell-cell contact in the Ca2+ switch assay. However, HA-MST3-KD cells exhibited multilumen cysts. Intensive F-actin stress fibers were observed in HA-MST3 cells with higher Cdc42 activity; in contrast, HA-MST3-KD cells had lower Cdc42 activity and weaker F-actin staining. In this study, we identified a new MST3 function in the establishment of cell polarity through Cdc42 regulation.
Collapse
Affiliation(s)
- Chee-Hong Chan
- Department of Nephrology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua, Taiwan
| | - Pei Lin
- Division of Cardiology, Department of Internal Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Tse-Yen Yang
- Molecular and Genomic Epidemiology Center, Department of Medical Research, China Medical University, Tainan, Taiwan
| | - Bo-Ying Bao
- College of School of Pharmacy, China Medical University, Tainan, Taiwan
| | - Jhen-Yang Jhong
- Department of Medical Laboratory Science and Biotechnology, Sin-Lau Hospital, Tainan, Taiwan
| | - Yui-Ping Weng
- Department of Acupressure Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Te-Hsiu Lee
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Hui-Fen Cheng
- Department of Laboratory Medicine, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
| | - Te-Ling Lu
- College of School of Pharmacy, China Medical University, Tainan, Taiwan
| |
Collapse
|
10
|
Wu Y, Qi Z, Wang B, Wang J, Liu Q, Wang A, Shi C, Zhou B, Liang Q, Wang W, Zou F, Qi S, Wang Z, Wang L, Wang W, Liu J, Liu Q. Discovery of IHMT-MST1-58 as a Novel, Potent, and Selective MST1 Inhibitor for the Treatment of Type 1/2 Diabetes. J Med Chem 2022; 65:11818-11839. [PMID: 36037148 DOI: 10.1021/acs.jmedchem.2c00926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The critical pathogenesis of type 1 diabetes (T1D)/type 2 diabetes (T2D) is the physical status, mass, and function of pancreatic β cells. Mammalian STE20-like protein 1 kinase (MST1) plays vital roles in the apoptosis and insulin secretion of β cells. Here, we discovered a novel, potent, and selective MST1 inhibitor 19 (IC50 = 23 nM), which inhibited the phosphorylation of MST1-protected β cells from the damage of inflammatory cytokines in vitro. In vivo, it displayed acceptable pharmacokinetic properties in different species. In the STZ-induced T1D/T2D mouse models, both monotherapy of 19 and in combination with metformin led to the decline of fasting blood glucose and showed protective effect of β cells. In addition, the combination of 19 and metformin decreased the hemoglobin A1c level. Together, our study suggested that 19 might be a useful pharmacological tool to study MST1-mediated physiology and pathology as well as a potential drug candidate for diabetes.
Collapse
Affiliation(s)
- Yun Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Junjie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Chenliang Shi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bin Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qianmao Liang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenliang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Shuang Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zuowei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| |
Collapse
|
11
|
Koehler TJ, Tran T, Weingartner KA, Kavran JM. Kinetic Regulation of the Mammalian Sterile 20-like Kinase 2 (MST2). Biochemistry 2022; 61:1683-1693. [PMID: 35895874 PMCID: PMC10167949 DOI: 10.1021/acs.biochem.2c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Canonically, MST1/2 functions as a core kinase of the Hippo pathway and noncanonically during both apoptotic signaling and with RASSFs in T-cells. Faithful signal transduction by MST1/2 relies on both appropriate activation and regulated substrate phosphorylation by the activated kinase. Considerable progress has been made in understanding the molecular mechanisms regulating the activation of MST1/2 and identifying downstream signaling events. Here, we investigated the ability of MST2 to phosphorylate a peptide substrate and how that activity is regulated. Using a steady-state kinetic system, we parse the contribution of different factors to substrate phosphorylation, including the domains of MST2, phosphorylation, caspase cleavage, and complex formation. We found that in the unphosphorylated state, the SARAH domain stabilizes interactions with a peptide substrate and promotes turnover. Phosphorylation drives the activity of MST2, and once activated, MST2 is not further regulated by complex formation with other Hippo pathway components (SAV1, MOB1A, and RASSF5). We also show that the phosphorylated, caspase-cleaved MST2 is as active as the full-length one, suggesting that caspase-stimulated activity arises through noncatalytic mechanisms. The kinetic analysis presented here establishes a framework for interpreting how signaling events and post-translational modifications contribute to the signaling of MST2 in vivo.
Collapse
Affiliation(s)
- Thomas J Koehler
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Thao Tran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Kyler A Weingartner
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jennifer M Kavran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
12
|
Li Y, Qiu X, Lu Z, Zhan F, Yang M, Sarath Babu V, Li J, Qin Z, Lin L. Molecular and functional characterization of MST2 in grass carp during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2021; 119:19-30. [PMID: 34560286 DOI: 10.1016/j.fsi.2021.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The regulation of host redox homeostasis is critically important in the immune response to pathogens. The "mammalian sterile 20-like" kinase 2 (MST2) has been shown to play a role in apoptosis, cell proliferation, and cancer; however, few studies have examined its ability to modulate redox homeostasis during innate immunity, especially in teleost fish. In this study, we cloned the MST2 gene of Ctenopharyngodon idella (CiMST2) and analyzed its tissue distribution. CiMST2 was present in most of the studied tissues, and it was most highly expressed in brain tissue. Expression patterns analysis revealed that MST2 mRNA and protein were significantly up-regulated under bacterial infection, suggesting that it is involved in the immune response. Bacterial stimulation significantly increased the level of antioxidases. To explore the interplay between CiMST2 and antioxidant regulation, we examined the effects of CiMST2 overexpression and conducted RNA interference assays in vitro. CiMST2 overexpression significantly increased the expression levels of nuclear factor E2-related factor 2 (Nrf2) and other antioxidases and vice versa, revealing that CiMST2 regulated host redox homeostasis via Nrf2-antioxidant responsive element (ARE) signaling. Overall, our findings provide a new perspective on the role of MST2 in innate immunity in teleosts as well as insights that will aid the prevention and control of disease in the grass carp farming industry.
Collapse
Affiliation(s)
- Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - Xiaolong Qiu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - V Sarath Babu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA.
| |
Collapse
|
13
|
Qi Y, Sun D, Yang W, Xu B, Lv D, Han Y, Sun M, Jiang S, Hu W, Yang Y. Mammalian Sterile 20-Like Kinase (MST) 1/2: Crucial Players in Nervous and Immune System and Neurological Disorders. J Mol Biol 2020; 432:3177-3190. [PMID: 32198112 DOI: 10.1016/j.jmb.2020.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
As central components of the Hippo signaling pathway in mammals, the mammalian sterile 20-like kinase 1 (MST1) and MST2 protein kinases regulate cell proliferation, survival, and death and are involved in the homeostasis of many tissues. Recent studies have elucidated the roles of MST1 and MST2 in the nervous system and immune system, particularly in neurological disorders, which are influenced by aging. In this review, we provide a comprehensive overview of these research areas. First, the activation mechanisms and roles of MST1 and MST2 in neurons, non-neuronal cells, and immune cells are introduced. The roles of MST1 and MST2 in neurological disorders, including brain tumors, cerebrovascular diseases, neurodegenerative disorders, and neuromuscular disorders, are then presented. Finally, the existing obstacles for further research are discussed. Collectively, the information compiled herein provides a common framework for the function of MST1 and MST2 in the nervous system, should contribute to the design of further experiments, and sheds light on potential treatments for aging associated neurological disorders.
Collapse
Affiliation(s)
- Yating Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Dewen Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wei Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|