1
|
Stone MC, Mychack A, Coe KA, Walker S. Combining Signal Peptidase and Lipoprotein Processing Inhibitors Overcomes Ayr Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2023; 67:e0011523. [PMID: 37097175 PMCID: PMC10190671 DOI: 10.1128/aac.00115-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
Antibiotic resistance in bacterial pathogens is an ongoing public health concern. The arylomycins are a class of natural product antibiotics that target the type I signal peptidase, which carries out the terminal step in protein secretion. Here, we used transposon sequencing (Tn-Seq) to profile the effects of the optimized arylomycin derivative G0775 in Staphylococcus aureus. Our transposon libraries include both upregulation and inactivation mutants, allowing us to identify resistance mechanisms and targets for synergism. We identified several cell envelope pathways that, when inactivated, sensitize S. aureus to the arylomycin G0775. These pathways include the lipoprotein processing pathway, and we have shown that inhibitors of this pathway synergize with G0775 even though lipoprotein processing is nonessential in S. aureus. Moreover, we found that blocking this pathway completely reverses Ayr resistance, which is a major resistance mechanism to arylomycins, including G0775. Our Tn-Seq data also showed that upregulation of mprF and several other genes is protective against G0775. Because a subset of these genes was previously found in a Tn-Seq profile of the clinically important antibiotic daptomycin, we tested a set of daptomycin-nonsusceptible clinical isolates with gain-of-function mutations in mprF for susceptibility to arylomycin G0775. Despite structural and mechanistic differences between these antibiotics, we observed similar decreases in susceptibility. Taken together, our results highlight how Tn-Seq profiles that include both gene inactivation and upregulation can identify targets, antibiotic resistance mechanisms, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Madeleine C. Stone
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron Mychack
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn A. Coe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Payen S, Roy D, Boa A, Okura M, Auger JP, Segura M, Gottschalk M. Role of Maturation of Lipoproteins in the Pathogenesis of the Infection Caused by Streptococcus suis Serotype 2. Microorganisms 2021; 9:microorganisms9112386. [PMID: 34835511 PMCID: PMC8621357 DOI: 10.3390/microorganisms9112386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen associated with multiple pathologies in piglets. Bacterial lipoproteins (LPPs) have been described as playing important roles in the pathogenesis of the infection of other Gram-positive bacteria as adhesins, pro-inflammatory cell activators and/or virulence factors. In the current study, we aimed to evaluate the role of the prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (Lsp) enzymes, which are responsible for LPP maturation, on the pathogenesis of the infection caused by two different sequence types (STs) of S. suis serotype 2 strains (virulent ST1 and highly virulent ST7). Through the use of isogenic Δlgt, Δlsp and double Δlgt/Δlsp mutants, it was shown that lack of these enzymes did not influence S. suis adhesion/invasion to porcine respiratory epithelial cells. However, in the absence of the Lsp and/or Lgt, a significant reduction in the capacity of S. suis to activate phagocytic cells and induce pro-inflammatory mediators (in vitro and in vivo) was observed. In general, results obtained with the double mutant did not differ in comparison to single mutants, indicating lack of an additive effect. Finally, our data suggest that these enzymes play a differential role in virulence, depending on the genetic background of the strain and being more important for the highly virulent ST7 strain.
Collapse
Affiliation(s)
- Servane Payen
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Anaïs Boa
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba 305-0856, Japan;
| | - Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
- Correspondence:
| |
Collapse
|
3
|
Torres Salazar BO, Heilbronner S, Peschel A, Krismer B. Secondary Metabolites Governing Microbiome Interaction of Staphylococcal Pathogens and Commensals. Microb Physiol 2021; 31:198-216. [PMID: 34325424 DOI: 10.1159/000517082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022]
Abstract
Various Staphylococcus species colonize skin and upper airways of warm-blooded animals. They compete successfully with many other microorganisms under the hostile and nutrient-poor conditions of these habitats using mechanisms that we are only beginning to appreciate. Small-molecule mediators, whose biosynthesis requires complex enzymatic cascades, so-called secondary metabolites, have emerged as crucial components of staphylococcal microbiome interactions. Such mediators belong to a large variety of compound classes and several of them have attractive properties for future drug development. They include, for instance, bacteriocins such as lanthipeptides, thiopeptides, and fibupeptides that inhibit bacterial competitor species; signaling molecules such as thiolactone peptides that induce or inhibit sensory cascades in other bacteria; or metallophores such as staphyloferrins and staphylopine that scavenge scant transition metal ions. For some secondary metabolites such as the aureusimines, the exact function remains to be elucidated. How secondary metabolites shape the fitness of Staphylococcus species in the complex context of other microbial and host defense factors remains a challenging field of future research. A detailed understanding will help to harness staphylococcal secondary metabolites for excluding the pathogenic species Staphylococcus aureus from the nasal microbiomes of at-risk patients, and it will be instrumental for the development of advanced anti-infective interventions.
Collapse
Affiliation(s)
- Benjamin O Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Simon Heilbronner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Liu K, Huigens RW. Instructive Advances in Chemical Microbiology Inspired by Nature's Diverse Inventory of Molecules. ACS Infect Dis 2020; 6:541-562. [PMID: 31842540 PMCID: PMC7346871 DOI: 10.1021/acsinfecdis.9b00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural product antibiotics have played an essential role in the treatment of bacterial infection in addition to serving as useful tools to explore the intricate biology of bacteria. Our current arsenal of antibiotics operate through the inhibition of well-defined bacterial targets critical for replication and growth. Pathogenic bacteria effectively utilize a diversity of mechanisms that lead to acquired resistance and/or innate tolerance toward antibiotic therapies, which can result in devastating consequences to human life. Several research groups have established innovative programs that work at the chemistry-biology interface to develop new molecules that aim to define and address concerns related to antibiotic resistance and tolerance. In this Review, we present recent progress by select research groups that highlight a diversity of integrated chemical biology and medicinal chemistry approaches aimed at the development and utilization of chemical tools that have led to promising new microbiological insights that may lead to significant clinical advances regarding the treatment of pathogenic bacteria.
Collapse
Affiliation(s)
- Ke Liu
- 1345 Center Drive, Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Robert W. Huigens
- 1345 Center Drive, Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
5
|
Abstract
Signal peptidases are the membrane bound enzymes that cleave off the amino-terminal signal peptide from secretory preproteins . There are two types of bacterial signal peptidases . Type I signal peptidase utilizes a serine/lysine catalytic dyad mechanism and is the major signal peptidase in most bacteria. Type II signal peptidase is an aspartic protease specific for prolipoproteins. This chapter will review what is known about the structure, function and mechanism of these unique enzymes.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|