1
|
Folorunso OS, Sebolai OM. A Limited Number of Amino Acid Permeases Are Crucial for Cryptococcus neoformans Survival and Virulence. Int J Microbiol 2024; 2024:5566438. [PMID: 39148675 PMCID: PMC11326883 DOI: 10.1155/2024/5566438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
One unique attribute of Cryptococcus neoformans is its ability to procure essential monomers from its surroundings to survive in diverse environments. Preferentially, sugars are the energy sources for this opportunistic pathogenic fungus under the carbon catabolite repression (CCR); however, sugar restriction induces alternative use of low molecular weight alcohol, organic acids, and amino acids. The expression of transmembrane amino acid permeases (Aaps) allows C. neoformans to utilize different amino acids and their conjugates, notwithstanding under the nitrogen catabolite repression (NCR). Being referred to as global permeases, there is a notion that all cryptococcal Aaps are important to survival and virulence. This functional divergence makes alternative drug targeting against Cryptococcus a challenge. We examine the functions and regulations of C. neoformans Aap variants with the aim of rationalizing their relevance to cryptococcal cell survival and virulence. Based on nutrient bioavailability, we linked the Cac1 pathway to Ras1 activation for thermotolerance that provides a temperature cushion for Aap activity under physiological conditions. Lastly, mutants of Aaps are examined for significant phenotypic deficiencies/advantages, which buttress the specific importance of limited numbers of Aaps involved in cryptococcal infections.
Collapse
Affiliation(s)
- Olufemi S Folorunso
- Department of Microbiology and Biochemistry University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa
| | - Olihile M Sebolai
- Department of Microbiology and Biochemistry University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa
| |
Collapse
|
2
|
Santos RS, Martins-Silva G, Padilla AAÁ, Possari M, Degello SD, Bernardes Brustolini OJ, Vasconcelos ATR, Vallim MA, Pascon RC. Transcriptional and Post-Translational Roles of Calcineurin in Cationic Stress and Glycerol Biosynthesis in Cryptococcus neoformans. J Fungi (Basel) 2024; 10:531. [PMID: 39194857 DOI: 10.3390/jof10080531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Stress management is an adaptive advantage for survival in adverse environments. Pathogens face this challenge during host colonization, requiring an appropriate stress response to establish infection. The fungal pathogen Cryptococcus neoformans undergoes thermal, oxidative, and osmotic stresses in the environment and animal host. Signaling systems controlled by Ras1, Hog1, and calcineurin respond to high temperatures and osmotic stress. Cationic stress caused by Na+, K+, and Li+ can be overcome with glycerol, the preferred osmolyte. Deleting the glycerol phosphate phosphatase gene (GPP2) prevents cells from accumulating glycerol due to a block in the last step of its biosynthetic pathway. Gpp2 accumulates in a phosphorylated form in a cna1Δ strain, and a physical interaction between Gpp2 and Cna1 was found; moreover, the gpp2Δ strain undergoes slow growth and has attenuated virulence in animal models of infection. We provide biochemical evidence that growth in 1 M NaCl increases glycerol content in the wild type, whereas gpp2Δ, cna1Δ, and cnb1Δ mutants fail to accumulate it. The deletion of cnb1Δ or cna1Δ renders yeast cells sensitive to cationic stress, and the Gfp-Gpp2 protein assumes an abnormal localization. We suggest a mechanism in which calcineurin controls Gpp2 at the post-translational level, affecting its localization and activity, leading to glycerol biosynthesis. Also, we showed the transcriptional profile of glycerol-deficient mutants and established the cationic stress response mediated by calcineurin; among the biological processes differentially expressed are carbon utilization, translation, transmembrane transport, glutathione metabolism, oxidative stress response, and transcription regulation. To our knowledge, this is the first time that this transcriptional profile has been described. These results have implications for pathogen stress adaptability.
Collapse
Affiliation(s)
- Ronaldo Silva Santos
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil
| | - Gabriel Martins-Silva
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil
| | | | - Mateus Possari
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil
| | | | - Otávio J Bernardes Brustolini
- Laboratório Nacional de Computação Científica-LNCC, Labinfo-Laboratório de Bioinformática, Petrópolis 25651-075, RJ, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório Nacional de Computação Científica-LNCC, Labinfo-Laboratório de Bioinformática, Petrópolis 25651-075, RJ, Brazil
| | - Marcelo Afonso Vallim
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil
| | - Renata C Pascon
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil
| |
Collapse
|
3
|
Chadwick BJ, Lin X. Effects of CO 2 in fungi. Curr Opin Microbiol 2024; 79:102488. [PMID: 38759247 PMCID: PMC11162916 DOI: 10.1016/j.mib.2024.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
Carbon dioxide supplies carbon for photosynthetic species and is a major product of respiration for all life forms. Inside the human body where CO2 is a by-product of the tricarboxylic acid cycle, its level reaches 5% or higher. In the ambient atmosphere, ∼.04% of the air is CO2. Different organisms can tolerate different CO2 levels to various degrees, and experiencing higher CO2 is toxic and can lead to death. The fungal kingdom shows great variations in response to CO2 that has been documented by different researchers at different time periods. This literature review aims to connect these studies, highlight mechanisms underlying tolerance to high levels of CO2, and emphasize the effects of CO2 on fungal metabolism and morphogenesis.
Collapse
Affiliation(s)
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Nallathambi P, Umamaheswari C, Reddy B, Aarthy B, Javed M, Ravikumar P, Watpade S, Kashyap PL, Boopalakrishnan G, Kumar S, Sharma A, Kumar A. Deciphering the Genomic Landscape and Virulence Mechanisms of the Wheat Powdery Mildew Pathogen Blumeria graminis f. sp. tritici Wtn1: Insights from Integrated Genome Assembly and Conidial Transcriptomics. J Fungi (Basel) 2024; 10:267. [PMID: 38667938 PMCID: PMC11051031 DOI: 10.3390/jof10040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
A high-quality genome sequence from an Indian isolate of Blumeria graminis f. sp. tritici Wtn1, a persistent threat in wheat farming, was obtained using a hybrid method. The assembly of over 9.24 million DNA-sequence reads resulted in 93 contigs, totaling a 140.61 Mb genome size, potentially encoding 8480 genes. Notably, more than 73.80% of the genome, spanning approximately 102.14 Mb, comprises retro-elements, LTR elements, and P elements, influencing evolution and adaptation significantly. The phylogenomic analysis placed B. graminis f. sp. tritici Wtn1 in a distinct monocot-infecting clade. A total of 583 tRNA anticodon sequences were identified from the whole genome of the native virulent strain B. graminis f. sp. tritici, which comprises distinct genome features with high counts of tRNA anticodons for leucine (70), cysteine (61), alanine (58), and arginine (45), with only two stop codons (Opal and Ochre) present and the absence of the Amber stop codon. Comparative InterProScan analysis unveiled "shared and unique" proteins in B. graminis f. sp. tritici Wtn1. Identified were 7707 protein-encoding genes, annotated to different categories such as 805 effectors, 156 CAZymes, 6102 orthologous proteins, and 3180 distinct protein families (PFAMs). Among the effectors, genes like Avra10, Avrk1, Bcg-7, BEC1005, CSEP0105, CSEP0162, BEC1016, BEC1040, and HopI1 closely linked to pathogenesis and virulence were recognized. Transcriptome analysis highlighted abundant proteins associated with RNA processing and modification, post-translational modification, protein turnover, chaperones, and signal transduction. Examining the Environmental Information Processing Pathways in B. graminis f. sp. tritici Wtn1 revealed 393 genes across 33 signal transduction pathways. The key pathways included yeast MAPK signaling (53 genes), mTOR signaling (38 genes), PI3K-Akt signaling (23 genes), and AMPK signaling (21 genes). Additionally, pathways like FoxO, Phosphatidylinositol, the two-component system, and Ras signaling showed significant gene representation, each with 15-16 genes, key SNPs, and Indels in specific chromosomes highlighting their relevance to environmental responses and pathotype evolution. The SNP and InDel analysis resulted in about 3.56 million variants, including 3.45 million SNPs, 5050 insertions, and 5651 deletions within the whole genome of B. graminis f. sp. tritici Wtn1. These comprehensive genome and transcriptome datasets serve as crucial resources for understanding the pathogenicity, virulence effectors, retro-elements, and evolutionary origins of B. graminis f. sp. tritici Wtn1, aiding in developing robust strategies for the effective management of wheat powdery mildew.
Collapse
Affiliation(s)
- Perumal Nallathambi
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643231, Tamil Nadu, India; (P.N.); (C.U.); (B.A.); (P.R.)
| | - Chandrasekaran Umamaheswari
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643231, Tamil Nadu, India; (P.N.); (C.U.); (B.A.); (P.R.)
| | - Bhaskar Reddy
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, Delhi, India; (M.J.); (G.B.)
| | - Balakrishnan Aarthy
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643231, Tamil Nadu, India; (P.N.); (C.U.); (B.A.); (P.R.)
| | - Mohammed Javed
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, Delhi, India; (M.J.); (G.B.)
| | - Priya Ravikumar
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643231, Tamil Nadu, India; (P.N.); (C.U.); (B.A.); (P.R.)
| | - Santosh Watpade
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla 171004, Himachal Pradesh, India;
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (P.L.K.); (S.K.); (A.S.)
| | | | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (P.L.K.); (S.K.); (A.S.)
| | - Anju Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (P.L.K.); (S.K.); (A.S.)
| | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, Delhi, India; (M.J.); (G.B.)
| |
Collapse
|
5
|
Piper-Brown E, Dresel F, Badr E, Gourlay CW. Elevated Levels of Mislocalised, Constitutive Ras Signalling Can Drive Quiescence by Uncoupling Cell-Cycle Regulation from Metabolic Homeostasis. Biomolecules 2023; 13:1619. [PMID: 38002301 PMCID: PMC10669370 DOI: 10.3390/biom13111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The small GTPase Ras plays an important role in connecting external and internal signalling cues to cell fate in eukaryotic cells. As such, the loss of RAS regulation, localisation, or expression level can drive changes in cell behaviour and fate. Post-translational modifications and expression levels are crucial to ensure Ras localisation, regulation, function, and cell fate, exemplified by RAS mutations and gene duplications that are common in many cancers. Here, we reveal that excessive production of yeast Ras2, in which the phosphorylation-regulated serine at position 225 is replaced with alanine or glutamate, leads to its mislocalisation and constitutive activation. Rather than inducing cell death, as has been widely reported to be a consequence of constitutive Ras2 signalling in yeast, the overexpression of RAS2S225A or RAS2S225E alleles leads to slow growth, a loss of respiration, reduced stress response, and a state of quiescence. These effects are mediated via cAMP/PKA signalling and transcriptional changes, suggesting that quiescence is promoted by an uncoupling of cell-cycle regulation from metabolic homeostasis. The quiescent cell fate induced by the overexpression of RAS2S225A or RAS2S225E could be rescued by the deletion of CUP9, a suppressor of the dipeptide transporter Ptr2, or the addition of peptone, implying that a loss of metabolic control, or a failure to pass a metabolic checkpoint, is central to this altered cell fate. Our data suggest that the combination of an increased RAS2 copy number and a dominant active mutation that leads to its mislocalisation can result in growth arrest and add weight to the possibility that approaches to retarget RAS signalling could be employed to develop new therapies.
Collapse
Affiliation(s)
| | | | | | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| |
Collapse
|
6
|
Kim JS, Lee KT, Bahn YS. Deciphering the regulatory mechanisms of the cAMP/protein kinase A pathway and their roles in the pathogenicity of Candida auris. Microbiol Spectr 2023; 11:e0215223. [PMID: 37671881 PMCID: PMC10581177 DOI: 10.1128/spectrum.02152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 09/07/2023] Open
Abstract
The emergence of multidrug-resistant fungal pathogens is a significant concern for global public health. Candida auris poses a considerable threat as a multidrug-resistant fungal pathogen. Our recent study revealed that the adenylyl cyclase Cyr1 and protein kinase A (PKA) pathways play distinct and redundant roles in drug resistance and pathogenicity of C. auris. However, the upstream and negative feedback regulatory mechanisms of C. auris are not yet fully understood. In this study, we discovered that the small GTPase Ras1, along with its nucleotide exchange factor Cdc25 and GTPase-activating protein Ira2, plays a major role in regulating cAMP/PKA-dependent traits, while G-protein-coupled receptor Gpr1 and heterotrimeric G-protein α subunit Gpa2 play a minor role. Pde2 plays a major role in negative feedback regulation of the cAMP/PKA pathway, while Pde1 plays a minor role. Hyperactivation of the Ras/cAMP/PKA pathway by deleting PDE2 or BCY1 renders C. auris cells thermosensitive and susceptible to nutrient deficiency, which leads to attenuated virulence. Our study demonstrates the distinct contributions of hyperactivation of the Ras/cAMP/PKA signaling pathway to C. auris pathogenesis and suggests potential therapeutic targets for C. auris-mediated candidiasis. IMPORTANCE Candida auris is a major concern as a multidrug-resistant fungal pathogen. While our previous studies highlighted the crucial roles of the cAMP/protein kinase A (PKA) pathway in regulating drug resistance, stress responses, morphogenesis, ploidy change, biofilm formation, and pathogenicity in this pathogen, their regulatory mechanism remains unclear. In our study, we provided evidence that the cAMP/PKA signaling pathway in C. auris is primarily governed by the small GTPase RAS rather than a G-protein-coupled receptor. Additionally, we discovered that the negative feedback regulation of cAMP, controlled by phosphodiesterases, is vital for C. auris virulence by promoting resistance to high temperatures and nutrient deficiencies. These findings underscore the diverse pathobiological significance of the Ras/cAMP/PKA signaling pathway in C. auris, shedding light on potential therapeutic targets and strategies for combating this multidrug-resistant fungal pathogen.
Collapse
Affiliation(s)
- Ji-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Jeonbuk, South Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
7
|
Manso JA, Carabias A, Sárkány Z, de Pereda JM, Pereira PJB, Macedo-Ribeiro S. Pathogen-specific structural features of Candida albicans Ras1 activation complex: uncovering new antifungal drug targets. mBio 2023; 14:e0063823. [PMID: 37526476 PMCID: PMC10470544 DOI: 10.1128/mbio.00638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023] Open
Abstract
An important feature associated with Candida albicans pathogenicity is its ability to switch between yeast and hyphal forms, a process in which CaRas1 plays a key role. CaRas1 is activated by the guanine nucleotide exchange factor (GEF) CaCdc25, triggering hyphal growth-related signaling pathways through its conserved GTP-binding (G)-domain. An important function in hyphal growth has also been proposed for the long hypervariable region downstream the G-domain, whose unusual content of polyglutamine stretches and Q/N repeats make CaRas1 unique within Ras proteins. Despite its biological importance, both the structure of CaRas1 and the molecular basis of its activation by CaCdc25 remain unexplored. Here, we show that CaRas1 has an elongated shape and limited conformational flexibility and that its hypervariable region contains helical structural elements, likely forming an intramolecular coiled-coil. Functional assays disclosed that CaRas1-activation by CaCdc25 is highly efficient, with activities up to 2,000-fold higher than reported for human GEFs. The crystal structure of the CaCdc25 catalytic region revealed an active conformation for the α-helical hairpin, critical for CaRas1-activation, unveiling a specific region exclusive to CTG-clade species. Structural studies on CaRas1/CaCdc25 complexes also revealed an interaction surface clearly distinct from that of homologous human complexes. Furthermore, we identified an inhibitory synthetic peptide, prompting the proposal of a key regulatory mechanism for CaCdc25. To our knowledge, this is the first report of specific inhibition of the CaRas1-activation via targeting its GEF. This, together with their unique pathogen-structural features, disclose a set of novel strategies to specifically block this important virulence-related mechanism. IMPORTANCE Candida albicans is the main causative agent of candidiasis, the commonest fungal infection in humans. The eukaryotic nature of C. albicans and the rapid emergence of antifungal resistance raise the challenge of identifying novel drug targets to battle this prevalent and life-threatening disease. CaRas1 and CaCdc25 are key players in the activation of signaling pathways triggering multiple virulence traits, including the yeast-to-hypha interconversion. The structural similarity of the conserved G-domain of CaRas1 to those of human homologs and the lack of structural information on CaCdc25 has impeded progress in targeting these proteins. The unique structural and functional features for CaRas1 and CaCdc25 presented here, together with the identification of a synthetic peptide capable of specifically inhibiting the GEF activity of CaCdc25, open new possibilities to uncover new antifungal drug targets against C. albicans virulence.
Collapse
Affiliation(s)
- José A. Manso
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Arturo Carabias
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, Salamanca, Spain
| | - Zsuzsa Sárkány
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José M. de Pereda
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, Salamanca, Spain
| | - Pedro José Barbosa Pereira
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Li H, Shen X, Wu W, Zhang W, Wang Y. Ras2 Is Responsible for the Environmental Responses, Melanin Metabolism, and Virulence of Botrytis cinerea. J Fungi (Basel) 2023; 9:jof9040432. [PMID: 37108887 PMCID: PMC10142356 DOI: 10.3390/jof9040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Ras proteins are monomeric G proteins that are ubiquitous in fungal cells and play important roles in fungal growth, virulence, and environmental responses. Botrytis cinerea is a phytopathogenic fungus that infects various crops. However, under specific environmental conditions, the overripe grapes infected by B. cinerea can be used to brew valuable noble rot wine. As a Ras protein, the role of Bcras2 in the environmental responses of B. cinerea is poorly understood. In this study, we deleted the Bcras2 gene using homologous recombination and examined its functions. Downstream genes regulated by Bcras2 were explored using RNA sequencing transcriptomics. It was found that ΔBcras2 deletion mutants showed significantly reduced growth rate, increased sclerotia production, decreased resistance to oxidative stress, and enhanced resistance to cell wall stress. Additionally, Bcras2 deletion promoted the expression of melanin-related genes in sclerotia and decreased the expression of melanin-related genes in conidia. The above results indicate that Bcras2 positively regulates growth, oxidative stress resistance, and conidial melanin-related genes expression, and negatively regulates sclerotia production, cell wall stress resistance and sclerotial melanin-related genes expression. These results revealed previously unknown functions of Bcras2 in environmental responses and melanin metabolism in B. cinerea.
Collapse
Affiliation(s)
- Hua Li
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xuemei Shen
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Wenjia Wu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Wanyu Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yousheng Wang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
- Correspondence: ; Tel.: +86-1068984905
| |
Collapse
|
9
|
Khari A, Biswas B, Gangwar G, Thakur A, Puria R. Candida auris biofilm: a review on model to mechanism conservation. Expert Rev Anti Infect Ther 2023; 21:295-308. [PMID: 36755419 DOI: 10.1080/14787210.2023.2179036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Candida auris is included in the fungal infection category 'critical' by WHO because of associated high drug tolerance and spread at an alarming rate which if remains untouched may result in serious outbreaks. Since its discovery in 2009, several assiduous efforts by mycologists across the world have deciphered its biology including growth physiology, drug tolerance, biofilm formation, etc. The differential response of various strains from different clades poses a hurdle in drawing a final conclusion. AREAS COVERED This review provides brief insights into the understanding of C. auris biofilm. It includes information on various models developed to understand the biofilms and conservation of different signaling pathways. Significant development has been made in the recent past with the generation of relevant in vivo and ex vivo models. The role of signaling pathways in the development of biofilm is largely unknown. EXPERT OPINION The selection of an appropriate model system is a must for the accuracy and reproducibility of results. The conservation of major signaling pathways in C. auris with respect to C. albicans and S. cerevisiae highlights that initial inputs acquired from orthologs will be valuable in getting insights into the mechanism of biofilm formation and associated pathogenesis.
Collapse
Affiliation(s)
- Arsha Khari
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | | | | | - Anil Thakur
- Regional Centre for Biotechnology, Faridabad, India
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
10
|
Motta H, Catarina Vieira Reuwsaat J, Daidrê Squizani E, da Silva Camargo M, Wichine Acosta Garcia A, Schrank A, Henning Vainstein M, Christian Staats C, Kmetzsch L. The small heat shock protein Hsp12.1 has a major role in the stress response and virulence of Cryptococcus gattii. Fungal Genet Biol 2023; 165:103780. [PMID: 36780981 DOI: 10.1016/j.fgb.2023.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Cryptococcus gattii is one of the etiological agents of cryptococcosis. To achieve a successful infection, C. gattii cells must overcome the inhospitable host environment and deal with the highly specialized immune system and poor nutrients availability. Inside the host, C. gattii uses a diversified set of tools to maintain homeostasis and establish infection, such as the expression of remarkable and diverse heat shock proteins (Hsps). Grouped by molecular weight, little is known about the Hsp12 subset in pathogenic fungi. In this study, the function of the C. gattii HSP12.1 and HSP12.2 genes was characterized. Both genes were upregulated during murine infection and heat shock. The hsp12.1 Δ null mutant cells were sensitive to plasma membrane and oxidative stressors. Moreover, HSP12 deletion induced C. gattii reactive oxygen species (ROS) accumulation associated with a differential expression pattern of oxidative stress-responsive genes compared to the wild type strain. Apart from these findings, the deletion of the paralog gene HSP12.2 did not lead to any detectable phenotype. Additionally, the double-deletion mutant strain hsp12.1 Δ /hsp12.2 Δ presented a similar phenotype to the single-deletion mutant hsp12.1 Δ, suggesting a minor participation of Hsp12.2 in these processes. Furthermore, HSP12.1 disruption remarkably affected C. gattii virulence and phagocytosis by macrophages in an invertebrate model of infection, demonstrating its importance for C. gattii pathogenicity.
Collapse
Affiliation(s)
- Heryk Motta
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eamim Daidrê Squizani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene Henning Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Charley Christian Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Secretions from Serratia marcescens Inhibit the Growth and Biofilm Formation of Candida spp. and Cryptococcus neoformans. J Microbiol 2023; 61:221-232. [PMID: 36809632 DOI: 10.1007/s12275-022-00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 02/23/2023]
Abstract
Candida spp. and Cryptococcus are conditional pathogenic fungi that commonly infect immunocompromised patients. Over the past few decades, the increase in antifungal resistance has prompted the development of new antifungal agents. In this study, we explored the potential antifungal effects of secretions from Serratia marcescens on Candida spp. and Cryptococcus neoformans. We confirmed that the supernatant of S. marcescens inhibited fungal growth, suppressed hyphal and biofilm formation, and downregulated the expression of hyphae-specific genes and virulence-related genes in Candida spp. and C. neoformans. Furthermore, the S. marcescens supernatant retained biological stability after heat, pH, and protease K treatment. The chemical profile of the S. marcescens supernatant was characterized by ultra-high-performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry analysis and a total of 61 compounds with an mzCloud best match of greater than 70 were identified. In vivo, treatment with the S. marcescens supernatant reduced the mortality of fungi-infected Galleria mellonella. Taken together, our results revealed that the stable antifungal substances in the supernatant of S. marcescens have promising potential applications in the development of new antifungal agents.
Collapse
|
12
|
Wang Y, Xu F, Nichols CB, Shi Y, Hellinga HW, Alspaugh JA, Distefano MD, Beese LS. Structure-Guided Discovery of Potent Antifungals that Prevent Ras Signaling by Inhibiting Protein Farnesyltransferase. J Med Chem 2022; 65:13753-13770. [PMID: 36218371 PMCID: PMC10755971 DOI: 10.1021/acs.jmedchem.2c00902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infections by fungal pathogens are difficult to treat due to a paucity of antifungals and emerging resistances. Next-generation antifungals therefore are needed urgently. We have developed compounds that prevent farnesylation of Cryptoccoccus neoformans Ras protein by inhibiting protein farnesyltransferase with 3-4 nanomolar affinities. Farnesylation directs Ras to the cell membrane and is required for infectivity of this lethal pathogenic fungus. Our high-affinity compounds inhibit fungal growth with 3-6 micromolar minimum inhibitory concentrations (MICs), 4- to 8-fold better than Fluconazole, an antifungal commonly used in the clinic. Compounds bound with distinct inhibition mechanisms at two alternative, partially overlapping binding sites, accessed via different inhibitor conformations. We showed that antifungal potency depends critically on the selected inhibition mechanism because this determines the efficacy of an inhibitor at low in vivo levels of enzyme and farnesyl substrate. We elucidated how chemical modifications of the antifungals encode desired inhibitor conformation and concomitant inhibitory mechanism.
Collapse
Affiliation(s)
- You Wang
- Department of Biochemistry, Duke University School
of Medicine, Durham, North Carolina, USA 27710
| | - Feng Xu
- Department of Chemistry, University of Minnesota,
Minneapolis, Minnesota, USA 55455
| | - Connie B. Nichols
- Department of Medicine, Duke University School of
Medicine, Durham, North Carolina, USA 27710
- Department of Molecular Genetics and Microbiology,
Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Yuqian Shi
- Department of Biochemistry, Duke University School
of Medicine, Durham, North Carolina, USA 27710
| | - Homme W. Hellinga
- Department of Biochemistry, Duke University School
of Medicine, Durham, North Carolina, USA 27710
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of
Medicine, Durham, North Carolina, USA 27710
- Department of Molecular Genetics and Microbiology,
Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota,
Minneapolis, Minnesota, USA 55455
| | - Lorena S. Beese
- Department of Biochemistry, Duke University School
of Medicine, Durham, North Carolina, USA 27710
| |
Collapse
|
13
|
Khalil FO, Taj MB, Ghonaim EM, Abed El-Sattar S, Elkhadry SW, El-Refai H, Ali OM, Elgawad ASA, Alshater H. Hydrothermal assisted biogenic synthesis of silver nanoparticles: A potential study on virulent candida isolates from COVID-19 patients. PLoS One 2022; 17:e0269864. [PMID: 36201485 PMCID: PMC9536612 DOI: 10.1371/journal.pone.0269864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/27/2022] [Indexed: 11/07/2022] Open
Abstract
Till now the exact mechanism and effect of biogenic silver nanoparticles on fungus is an indefinable question. To focus on this issue, the first time we prepared hydrothermal assisted thyme coated silver nanoparticles (T/AgNPs) and their toxic effect on Candida isolates were determined. The role of thyme (Thymus Vulgaris) in the reduction of silver ions and stabilization of T/AgNPs was estimated by Fourier transforms infrared spectroscopy, structure and size of present silver nanoparticles were detected via atomic force microscopy as well as high-resolution transmission electron microscopy. The biological activity of T/AgNPs was observed against Candida isolates from COVID-19 Patients. Testing of virulence of Candida species using Multiplex PCR. T/AgNPs proved highly effective against Candida albicans, Candida kruzei, Candida glabrata and MIC values ranging from 156.25 to 1,250 μg/mL and MFC values ranging from 312.5 to 5,000 μg/mL. The structural and morphological modifications due to T/AgNPs on Candida albicans were detected by TEM. It was highly observed that when Candida albicans cells were subjected to 50 and 100 μg/mL T/AgNPs, a remarkable change in the cell wall and cell membrane was observed.
Collapse
Affiliation(s)
- Fatma O. Khalil
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Muhammad B. Taj
- Division of Inorganic Chemistry, Institute of Chemistry, The Islamia University Bahawalpur, Bahawalpur, Pakistan
- * E-mail: (MBT); (OMA)
| | - Enas M. Ghonaim
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Shimaa Abed El-Sattar
- Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sally W. Elkhadry
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Hala El-Refai
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, Taif Saudi Arabia
- * E-mail: (MBT); (OMA)
| | - Ahmed Salah A. Elgawad
- Department of Clinical Pathology, National Liver Institute, Menoufia University Hospital, Menoufia University, Shebin El-Kom, Egypt
| | - Heba Alshater
- Department of Forensic Medicine and Clinical Toxicology, Menoufia University Hospital, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
14
|
Santos Gomes D, de Andrade Silva EM, de Andrade Rosa EC, Silva Gualberto NG, de Jesus Souza MÁ, Santos G, Pirovani CP, Micheli F. Identification of a key protein set involved in Moniliophthora perniciosa necrotrophic mycelium and basidiocarp development. Fungal Genet Biol 2021; 157:103635. [PMID: 34700000 DOI: 10.1016/j.fgb.2021.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches' broom disease in cacao (Theobroma cacao L.). The biotrophic fungal phase initiates the disease and is characterized by a monokaryotic mycelium, while the necrotrophic phase is characterized by a dikaryotic mycelium and leads to necrosis of infected tissues. A study of the necrotrophic phase was conducted on bran-based solid medium, which is the only medium that enables basidiocarp and basidiospore production. Six different fungal developmental phases were observed according to the mycelium colour or the organ produced: white, yellow, pink, dark pink, primordium and basidiocarp. In this study, we identified notable proteins in each phase, particularly those accumulated prior to basidiocarp formation. Proteins were analysed by proteomics; 2-D gels showed 300-550 spots. Statistically differentially accumulated spots were sequenced by mass spectrometry and 259 proteins were identified and categorized into nine functional classes. Proteins related to energy metabolism, protein folding and morphogenesis that were potentially involved in primordium and basidiocarp formation were identified; these proteins may represent useful candidates for further analysis related to the spread and pathogenesis of this fungus. To the best of our knowledge, this report describes the first proteomic analysis of the developmental phases of Moniliophthora perniciosa.
Collapse
Affiliation(s)
- Dayane Santos Gomes
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Edson Mario de Andrade Silva
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Emilly Caroline de Andrade Rosa
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Nina Gabriela Silva Gualberto
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Monaliza Átila de Jesus Souza
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gesivaldo Santos
- Universidade Estadual do Sudoeste da Bahia (UESB), Av. José Moreira Sobrinho, Jequié, Bahia 45206-190, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil; CIRAD, UMR AGAP, F-34398 Montpellier, France.
| |
Collapse
|
15
|
Khan F, Bamunuarachchi NI, Tabassum N, Jo DM, Khan MM, Kim YM. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. BIOFOULING 2021; 37:626-655. [PMID: 34284656 DOI: 10.1080/08927014.2021.1948538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Candida albicans undergoes a morphological yeast-to-hyphal transition during infection, which plays a significant role in its pathogenesis. The filamentous morphology of the hyphal form has been identified as a virulence factor as it facilitates surface adherence, intertwining with biofilm, invasion, and damage to host tissues and organs. Hence, inhibition of filamentation in addition to biofilm formation is considered a viable strategy against C. albicans infections. Furthermore, a good understanding of the signaling pathways involved in response to environmental cues driving hyphal growth is also critical to an understanding of C. albicans pathogenicity and to develop novel therapies. In this review, first the clinical significance and transcriptional control of C. albicans hyphal morphogenesis are addressed. Then, various strategies employed to suppress filamentation, prevent biofilm formation, and reduce virulence are discussed. These strategies include the inhibition of C. albicans filament formation using natural or synthetic compounds, and their combination with other agents or nanoformulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, University Brunei Darussalam, Gadong, Brunei Darussalam
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
16
|
Botwright NA, Mohamed AR, Slinger J, Lima PC, Wynne JW. Host-Parasite Interaction of Atlantic salmon ( Salmo salar) and the Ectoparasite Neoparamoeba perurans in Amoebic Gill Disease. Front Immunol 2021; 12:672700. [PMID: 34135900 PMCID: PMC8202022 DOI: 10.3389/fimmu.2021.672700] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Marine farmed Atlantic salmon (Salmo salar) are susceptible to recurrent amoebic gill disease (AGD) caused by the ectoparasite Neoparamoeba perurans over the growout production cycle. The parasite elicits a highly localized response within the gill epithelium resulting in multifocal mucoid patches at the site of parasite attachment. This host-parasite response drives a complex immune reaction, which remains poorly understood. To generate a model for host-parasite interaction during pathogenesis of AGD in Atlantic salmon the local (gill) and systemic transcriptomic response in the host, and the parasite during AGD pathogenesis was explored. A dual RNA-seq approach together with differential gene expression and system-wide statistical analyses of gene and transcription factor networks was employed. A multi-tissue transcriptomic data set was generated from the gill (including both lesioned and non-lesioned tissue), head kidney and spleen tissues naïve and AGD-affected Atlantic salmon sourced from an in vivo AGD challenge trial. Differential gene expression of the salmon host indicates local and systemic upregulation of defense and immune responses. Two transcription factors, znfOZF-like and znf70-like, and their associated gene networks significantly altered with disease state. The majority of genes in these networks are candidates for mediators of the immune response, cellular proliferation and invasion. These include Aurora kinase B-like, rho guanine nucleotide exchange factor 25-like and protein NDNF-like inhibited. Analysis of the N. perurans transcriptome during AGD pathology compared to in vitro cultured N. perurans trophozoites, as a proxy for wild type trophozoites, identified multiple gene candidates for virulence and indicates a potential master regulatory gene system analogous to the two-component PhoP/Q system. Candidate genes identified are associated with invasion of host tissue, evasion of host defense mechanisms and formation of the mucoid lesion. We generated a novel model for host-parasite interaction during AGD pathogenesis through integration of host and parasite functional profiles. Collectively, this dual transcriptomic study provides novel molecular insights into the pathology of AGD and provides alternative theories for future research in a step towards improved management of AGD.
Collapse
Affiliation(s)
- Natasha A Botwright
- Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Amin R Mohamed
- Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Joel Slinger
- Livestock and Aquaculture, CSIRO Agriculture and Food, Woorim, QLD, Australia
| | - Paula C Lima
- Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - James W Wynne
- Livestock and Aquaculture, CSIRO Agriculture and Food, Hobart, TAS, Australia
| |
Collapse
|
17
|
Swetha TK, Subramenium GA, Kasthuri T, Sharumathi R, Pandian SK. 5-hydroxymethyl-2-furaldehyde impairs Candida albicans - Staphylococcus epidermidis interaction in co-culture by suppressing crucial supportive virulence traits. Microb Pathog 2021; 158:104990. [PMID: 34048889 DOI: 10.1016/j.micpath.2021.104990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Polymicrobial biofilms involving fungal-bacterial interactions are stated to modulate host immune response and exhibit enhanced antibiotic resistance. In this milieu, clinically important opportunistic pathogens Candida albicans and Staphylococcus epidermidis associate synergistically and instigate implant and blood stream infections. Impediment of virulence traits that support successive pathogenic lifestyle and inter-kingdom interactions without altering the microbial growth represents an attractive alternate strategy. To accomplish this objective, 5-hydroxymethyl-2-furaldehyde (5HM2F), a reported antibiofilm agent against C. albicans, was considered for this study. 5HM2F significantly repressed the biofilm formation of S. epidermidis and mixed-species at 300 μg/mL and 400 μg/mL, respectively without modulating the growth. Microscopic analyses and phenotypic assays explicated the competency of 5HM2F to impede biofilm formation, hyphal growth, initial attachment, intercellular adhesion, and fungal-bacterial interaction. Further, 5HM2F greatly reduced the secreted hydrolases production. Reduced content of biofilm matrix components upon 5HM2F treatment was believed to be the underlying reason for enhanced antibiotic and/antifungal susceptibility. Additionally, qPCR analysis correlated well with in vitro bioassays wherein, 5HM2F was identified to repress the expression of important genes associated with hyphal morphogenesis, adhesion, biofilm formation and virulence in both mono-species and mixed-species. Reduced virulence and colonization of mono-species and mixed-species in 5HM2F treated Caenorhabditis elegans substantiated the antibiofilm and antivirulence potential of 5HM2F. Overall, this study proposes 5HM2F as a potent therapeutic candidate against single and mixed-species biofilm infections of C. albicans and S. epidermidis.
Collapse
Affiliation(s)
| | | | - Thirupathi Kasthuri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - Rajendran Sharumathi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
18
|
Bhosle SM, Makandar R. Comparative transcriptome of compatible and incompatible interaction of Erysiphe pisi and garden pea reveals putative defense and pathogenicity factors. FEMS Microbiol Ecol 2021; 97:fiab006. [PMID: 33476382 DOI: 10.1093/femsec/fiab006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Comparative transcriptome analysis of Erysiphe pisi-infected pea (Pisum sativum) genotypes JI-2480 (resistant) and Arkel (susceptible) at 72 hours post-inoculation (hpi) was carried to detect molecular components involved in compatible and incompatible interactions. Differential gene expression was observed in Arkel and JI-2480 genotype at 72 hpi with E. pisi isolate (Ep01) using EdgeR software. Out of 32 217 transcripts, 2755 transcripts showed significantly altered gene expression in case of plants while 530 were related to E. pisi (P < 0.05). The higher transcript number of differentially expressed genes demonstrated peak activity of pathogenicity genes in plants at 72 hpi. Glycolysis was observed to be the major pathway for energy source during fungal growth. Differential gene expression of plant transcripts revealed significant expression of putative receptor and regulatory sequences involved in defense in the resistant, JI-2480 compared to susceptible, Arkel genotype. Expression of genes involved in defense and hormonal signaling, genes related to hypersensitive response, reactive oxygen species and phenylpropanoid pathway in JI-2480 indicated their crucial role in disease resistance against E. pisi. Down-regulation of transcription factors like-WRKY-28 and up-regulation of several putative pattern recognition receptors in JI-2480 compared to Arkel also suggested activation of host-mediated defense responses against E. pisi in pea.
Collapse
Affiliation(s)
- Sheetal M Bhosle
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Ragiba Makandar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
19
|
Ras2 is important for growth and pathogenicity in Fusarium circinatum. Fungal Genet Biol 2021; 150:103541. [PMID: 33639303 DOI: 10.1016/j.fgb.2021.103541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/21/2022]
Abstract
In this study, we investigated to possible role of Ras2 in Fusarium circinatum- a fungus that causes pine pitch canker disease on many different pine species and has a wide geographic distribution. This protein is encoded by the RAS2 gene and has been shown to control growth and pathogenicity in a number of fungi in a mitogen-activated protein kinase- and/or cyclic adenosyl monophosphate pathway-dependent manner. The aim was therefore to characterize the phenotypes of RAS2 gene knockout and complementation mutants of F. circinatum. These mutants were generated by transforming protoplasts of the fungus with suitable split-marker constructs. The mutant strains, together with the wild type strain, were used in growth studies as well as pathogenicity assays on Pinus patula seedlings. Results showed that the knockout mutant strain produced significantly smaller lesions compared to the complementation mutant and wild type strains. Growth studies also showed significantly smaller colonies and delayed conidial germination in the knockout mutant strain compared to the complement mutant and wild type strains. Interestingly, the knockout mutant strain produced more macroconidia than the wild type strain. Collectively, these results showed that Ras2 plays an important role in both growth and pathogenicity of F. circinatum. Future studies will seek to determine the pathway(s) through which Ras2 controls these traits in F. circinatum.
Collapse
|
20
|
Qadri H, Qureshi MF, Mir MA, Shah AH. Glucose - The X factor for the survival of human fungal pathogens and disease progression in the host. Microbiol Res 2021; 247:126725. [PMID: 33676311 DOI: 10.1016/j.micres.2021.126725] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023]
Abstract
The incidence of human fungal infections is increasing due to the expansion of the immunocompromised patient population. The continuous use of different antifungal agents has eventually resulted in the establishment of resistant fungal species. The fungal pathogens unfold multiple resistance strategies to successfully tackle the effect of different antifungal agents. For the successful colonization and establishment of infection inside the host, the pathogenic fungi switch to the process of metabolic flexibility to regulate distinct nutrient uptake systems as well as to modulate their metabolism accordingly. Glucose the most favourable carbon source helps carry out the important survival and niche colonization processes. Adopting glucose as the center, this review has been put forward to provide an outline of the important processes like growth, the progression of infection, and the metabolism regulated by glucose, affecting the pathogenicity and virulence traits in the human pathogenic fungi. This could help in the identification of better treatment options and appropriate target-oriented antifungal drugs based on the glucose-regulated pathways and processes. In the article, we have also presented a summary of the novel studies and findings pointing to glucose-based potential therapeutic avenues to be explored to tackle the problem of globally increasing multidrug-resistant human fungal infections.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Munazah Fazal Qureshi
- Department of Biotechnology, Central University of Kashmir, Ganderbal, 191201, J&K, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India.
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India.
| |
Collapse
|
21
|
Rajasekar V, Darne P, Prabhune A, Kao RYT, Solomon AP, Ramage G, Samaranayake L, Neelakantan P. A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development. Colloids Surf B Biointerfaces 2021; 200:111617. [PMID: 33592455 DOI: 10.1016/j.colsurfb.2021.111617] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen that is highly resistant to contemporary antifungals, due to their biofilm lifestyle. The ability of C. albicans to invade human tissues is due to its filamentation. Therefore, inhibition of biofilms and filamentation of the yeast are high value targets to develop the next-generation antifungals. Curcumin (CU) is a natural polyphenol with excellent pharmacological attributes, but limitations such as poor solubility, acid, and enzyme tolerance have impeded its practical utility. Sophorolipids (SL) are biologically-derived surfactants that serve as efficient carriers of hydrophobic molecules such as curcumin into biofilms. Here, we synthesised a curcumin-sophorolipid nanocomplex (CUSL), and comprehensively evaluated its effects on C. albicans biofilms and filamentation. Our results demonstrated that sub-inhibitory concentration of CUSL (9.37 μg/mL) significantly inhibited fungal adhesion to substrates, and subsequent biofilm development, maturation, and filamentation. This effect was associated with significant downregulation of a select group of biofilm, adhesins, and hyphal regulatory genes. In conclusion, the curcumin-sophorolipid nanocomplex is a potent inhibitor of the two major virulence attributes of C. albicans, biofilm formation and filamentation, thus highlighting its promise as a putative anti-fungal agent with biofilm penetrative potential.
Collapse
Affiliation(s)
- Vidhyashree Rajasekar
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region; Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, India
| | - Priti Darne
- Green Pyramid Biotech Private Limited, Pune, India
| | | | - Richard Y T Kao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, India
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Lakshman Samaranayake
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
22
|
LeBlanc EV, Polvi EJ, Veri AO, Privé GG, Cowen LE. Structure-guided approaches to targeting stress responses in human fungal pathogens. J Biol Chem 2020; 295:14458-14472. [PMID: 32796038 DOI: 10.1074/jbc.rev120.013731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/11/2020] [Indexed: 11/06/2022] Open
Abstract
Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.
Collapse
Affiliation(s)
- Emmanuelle V LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gilbert G Privé
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLoS Pathog 2019; 15:e1007823. [PMID: 31809527 PMCID: PMC6919631 DOI: 10.1371/journal.ppat.1007823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/18/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Inside the human host, the pathogenic yeast Candida albicans colonizes predominantly oxygen-poor niches such as the gastrointestinal and vaginal tracts, but also oxygen-rich environments such as cutaneous epithelial cells and oral mucosa. This suppleness requires an effective mechanism to reversibly reprogram the primary metabolism in response to oxygen variation. Here, we have uncovered that Snf5, a subunit of SWI/SNF chromatin remodeling complex, is a major transcriptional regulator that links oxygen status to the metabolic capacity of C. albicans. Snf5 and other subunits of SWI/SNF complex were required to activate genes of carbon utilization and other carbohydrates related process specifically under hypoxia. snf5 mutant exhibited an altered metabolome reflecting that SWI/SNF plays an essential role in maintaining metabolic homeostasis and carbon flux in C. albicans under hypoxia. Snf5 was necessary to activate the transcriptional program linked to both commensal and invasive growth. Accordingly, snf5 was unable to maintain its growth in the stomach, the cecum and the colon of mice. snf5 was also avirulent as it was unable to invade Galleria larvae or to cause damage to human enterocytes and murine macrophages. Among candidates of signaling pathways in which Snf5 might operate, phenotypic analysis revealed that mutants of Ras1-cAMP-PKA pathway, as well as mutants of Yak1 and Yck2 kinases exhibited a similar carbon flexibility phenotype as did snf5 under hypoxia. Genetic interaction analysis indicated that the adenylate cyclase Cyr1, a key component of the Ras1-cAMP pathway interacted genetically with Snf5. Our study yielded new insight into the oxygen-sensitive regulatory circuit that control metabolic flexibility, stress, commensalism and virulence in C. albicans. A critical aspect of eukaryotic cell fitness is the ability to sense and adapt to variations in oxygen level in their local environment. Hypoxia leads to a substantial remodeling of cell metabolism and energy homeostasis, and thus, organisms must develop an effective regulatory mechanism to cope with oxygen depletion. Candida albicans is an opportunistic yeast that is the most prevalent human fungal pathogens. This yeast colonizes diverse niches inside the human host with contrasting carbon sources and oxygen concentrations. While hypoxia is the predominant condition that C. albicans encounters inside most of the niches, the impact of this condition on metabolic flexibility, a major determinant of fungal virulence, was completely unexplored. Here, we uncovered that the chromatin remodelling complex SWI/SNF is a master regulator of the circuit that links oxygen status to a broad spectrum of carbon utilization routes. Snf5 was essential for the maintenance of C. albicans as a commensal and also for the expression of its virulence. The oxygen-sensitive regulators identified in this work provide a framework to comprehensively understand the virulence of human fungal pathogens and represent a therapeutic value to fight fungal infections.
Collapse
Affiliation(s)
- Anaïs Burgain
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Émilie Pic
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Laura Markey
- Program in Molecular Microbiology, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Faiza Tebbji
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Adnane Sellam
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Big Data Research Centre (BDRC-UL), Université Laval, Faculty of Sciences and Engineering, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
24
|
Calvete CL, Martho KF, Felizardo G, Paes A, Nunes JM, Ferreira CO, Vallim MA, Pascon RC. Amino acid permeases in Cryptococcus neoformans are required for high temperature growth and virulence; and are regulated by Ras signaling. PLoS One 2019; 14:e0211393. [PMID: 30682168 PMCID: PMC6347259 DOI: 10.1371/journal.pone.0211393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/11/2019] [Indexed: 11/22/2022] Open
Abstract
Cryptococcosis is an Invasive Fungal Infection (IFI) caused by Cryptococcus neoformans, mainly in immunocompromised patients. Therapeutic failure due to pathogen drug resistance, treatment inconstancy and few antifungal options is a problem. The study of amino acid biosynthesis and uptake represents an opportunity to explore possible development of novel antifungals. C. neoformans has 10 amino acids permeases, two of them (Aap3 and Aap7) not expressed at the conditions tested, and five were studied previously (Aap2, Aap4, Aap5, Mup1 and Mup3). Our previous results showed that Aap4 and Aap5 are major permeases with overlapping functions. The aap4Δ/aap5Δ double mutant fails to grow in amino acids as sole nitrogen source and is avirulent in animal model. Here, we deleted the remaining amino acid permeases (AAP1, AAP6, AAP8) that showed gene expression modulation by nutritional condition and created a double mutant (aap1Δ/aap2Δ). We studied the virulence attributes of these mutants and explored the regulatory mechanism behind amino acid uptake in C. neoformans. The aap1Δ/aap2Δ strain had reduced growth at 37°C in L-amino acids, reduced capsule production and was hypovirulent in the Galleria mellonella animal model. Our data, along with previous studies, (i) complement the analysis for all 10 amino acid permeases mutants, (ii) corroborate the idea that these transporters behave as global permeases, (iii) are required during heat and nutritional stress, and (iv) are important for virulence. Our study also indicates a new possible link between Ras1 signaling and amino acids uptake.
Collapse
Affiliation(s)
- Crislaine Lambiase Calvete
- Universidade de São Paulo, Biotechnology Graduate Program, São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Kevin Felipe Martho
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Gabrielle Felizardo
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Alexandre Paes
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - João Miguel Nunes
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Camila Oliveira Ferreira
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Marcelo A. Vallim
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Renata C. Pascon
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
- * E-mail:
| |
Collapse
|
25
|
Bacterial and fungal microbiota in traditional Bangladeshi fermented milk products analysed by culture-dependent and culture-independent methods. Food Res Int 2018; 111:431-437. [DOI: 10.1016/j.foodres.2018.05.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/10/2018] [Accepted: 05/19/2018] [Indexed: 01/22/2023]
|