1
|
Feng J, Gao X, Chen X, Tong X, Qian M, Gao H, Wang J, Wang S, Fei C, Cao L, Wang Z, Xiao W. Mechanism of Jinzhen Oral Liquid against influenza-induced lung injury based on metabonomics and gut microbiome. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115977. [PMID: 36481245 DOI: 10.1016/j.jep.2022.115977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinzhen Oral Liquid (JZOL) is a traditional Chinese patent medicine and widely used clinically, which consists of eight herbs including Bovis Calculus Atifactus, Fritillariae Ussuriensis Bulbus (Fritillaria ussuriensis Maxim.), Caprae Hircus Cornu, Rhei Radix et Rhizoma (Rheum palmatum L.), Scutellariae Radix (Scutellaria baicalensis Georgi), Glycyrrhizae Radix et Rhizoma (Glycyrrhiza uralensis Fisch. ex DC.), Chloriti Lapis, and Gypsum Fibrosum (Their ratio is 9.45 : 47.25: 94.5 : 31.5: 15.75 : 31.5: 15.75 : 23.62). A large number of clinical studies have proved that JZOL has a good antiviral effect and can treat lung injury, pneumonia, and bronchitis caused by a variety of viral infections. AIM OF THE STUDY Influenza infection frequently exhibit dysregulation of gut microbiota and host metabolomes, but the mechanism of JZOL is still unclear and needs to be further explored. Here, after influenza virus infection induced lung injury, the regulation roles of JZOL in metabolic and gut microbiota balances are investigated to comprehensively elucidate its therapeutic mechanism. MATERIALS AND METHODS A mouse model of lung injury was replicated via intranasal instillation of influenza A (H1N1). The efficacy of JZOL was evaluated by pathological sections, lung index, the levels of TNF-α and IFN-γ, and viral load in lung tissue. Its modulation of endogenous metabolites and gut microbiota was assessed using plasma metabolomic technique and 16S rRNA high-throughput sequencing technique. RESULTS JZOL not only significantly relieved lung inflammation and edema in influenza mice, but also alleviated the disturbance of endogenous metabolites and the imbalance of gut microbiota mainly by regulating glycerophospholipid and fatty acid metabolism and Lactobacillus. The anti-influenza effects of JZOL were gut microbiota dependent, as demonstrated by antibiotic treatment. The altered metabolites were significantly correlated with Lactobacillus and pharmacodynamic indicators, further confirming the reliability of these results. CONCLUSIONS JZOL attenuates H1N1 influenza infection induced lung injury by regulating lipid metabolism via the modulation of Lactobacillus. The results support the clinical application of JZOL, and are useful to further understand the mechanism of TCM in the treatment of influenza.
Collapse
Affiliation(s)
- Jian Feng
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Xia Gao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Xialin Chen
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China.
| | - Xiaoyu Tong
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Mengyu Qian
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Huifang Gao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Jiajia Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Shanli Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Chenghao Fei
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Zhenzhong Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China.
| | - Wei Xiao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China.
| |
Collapse
|
2
|
Shikov AN, Shikova VA, Whaley AO, Burakova MA, Flisyuk EV, Whaley AK, Terninko II, Generalova YE, Gravel IV, Pozharitskaya ON. The Ability of Acid-Based Natural Deep Eutectic Solvents to Co-Extract Elements from the Roots of Glycyrrhiza glabra L. and Associated Health Risks. Molecules 2022; 27:7690. [PMID: 36431791 PMCID: PMC9694035 DOI: 10.3390/molecules27227690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
The roots of licorice (Glycyrrhiza glabra L.) have been widely used in traditional and officinal medicines for the treatment of different diseases. Natural deep eutectic solvents (NADES) have become popular for the extraction of active principles from medicinal plants. However, the ability of NADES to co-extract trace elements during the isolation of target active compounds is rarely investigated. The aim of this study was to analyze the content of trace elements in acid-based NADES extracts from the roots of G. glabra and the health risks associated with them. In this study, we have tested for the first time the ability of several acid-based NADES to co-extract glycyrrhizic acid (GA) and trace elements from the roots of G. glabra. GA has been identified as the dominant phytochemical in G. glabra NADES extracts (0.145-0.495 mg/g). Due to the close pKa of lactic acid and GA, the yield of GA in lactic acid-based NADES was higher in comparison with other tested NADES. The yield of GA in NADES3-NADES5 was statistically significant and surpassed the yield of GA in water. The recovery of all elements (except Li) by all tested NADES was low (less than 6%). According to an ANOVA test, the hydrogen bond donor type plays a decisive role in the extraction of elements. A strong positive correlation between the recovery of GA and MPI was noted. The metal pollution index, hazard quotient, hazard index, and chronic daily intake were calculated and suggest that all tested NADES extracts of G. glabra roots were nontoxic and possess no health risk for both ingestion and topical application.
Collapse
Affiliation(s)
- Alexander N. Shikov
- Department of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov, 197376 Saint-Petersburg, Russia
| | - Veronika A. Shikova
- Department of Industrial Technology of Medicines, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov, 197376 Saint-Petersburg, Russia
| | - Anastasiia O. Whaley
- Department of Pharmacognosy, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov, 197376 Saint-Petersburg, Russia
| | - Marina A. Burakova
- Department of Industrial Technology of Medicines, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov, 197376 Saint-Petersburg, Russia
| | - Elena V. Flisyuk
- Department of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov, 197376 Saint-Petersburg, Russia
| | - Andrei K. Whaley
- Department of Pharmacognosy, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov, 197376 Saint-Petersburg, Russia
| | - Inna I. Terninko
- Core Shared Research Facilities “Analytical Center”, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov, 197376 Saint-Petersburg, Russia
| | - Yulia E. Generalova
- Core Shared Research Facilities “Analytical Center”, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov, 197376 Saint-Petersburg, Russia
| | - Irina V. Gravel
- Department of Pharmacognosy, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov, 197376 Saint-Petersburg, Russia
- Department of Pharmaceutical Natural Science, Institute of Pharmacy Named after A.P. Nelyubin, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya, 119991 Moscow, Russia
| | - Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya, 183010 Murmansk, Russia
| |
Collapse
|
3
|
Jiang L, Akram W, Luo B, Hu S, Faruque MO, Ahmad S, Yasin NA, Khan WU, Ahmad A, Shikov AN, Chen J, Hu X. Metabolomic and Pharmacologic Insights of Aerial and Underground Parts of Glycyrrhiza uralensis Fisch. ex DC. for Maximum Utilization of Medicinal Resources. Front Pharmacol 2021; 12:658670. [PMID: 34140890 PMCID: PMC8204184 DOI: 10.3389/fphar.2021.658670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
The roots of Glycyrrhiza spp. have been utilized in Traditional Chinese medicine (TCM) for thousands of years. Non-traditional (aerial) parts constitute a large portion of the biomass of Glycyrrhiza plants and are mostly discarded after harvesting the roots and rhizomes. Through comparative phytochemical and anti-inflammatory activity analyses, this study explored the potential benefits of the aerial parts of Glycyrrhiza uralensis Fisch. ex DC. as medicinal materials. First, a combined approach based on GC/MS and UHPLC-ESI-QTof MS analysis was adopted for the identification and quantitative examination of medicinally important compounds from G. uralensis. Additionally, a bioassay-guided fractioning of ethanolic extracts of G. uralensis leaf material was performed and its anti-inflammatory activity was tested. The aerial portion of G. uralensis was rich in medicinally important compounds. Two compounds (henicosane-1 and decahydroisoquinoline-2) were found to exert a significant anti-inflammatory effect, inhibiting the release of pro-inflammatory mediators (NO and PGE2) and cytokines (IL-1β, IL6, and TNF-α), without exerting cytotoxic effects. Moreover, both compounds down-regulated iNOS and COX-2 mRNA expression. These results suggest that non-traditional parts of G. uralensis are suitable sources of bioactive metabolites that can be explored for medicinal purposes.
Collapse
Affiliation(s)
- Liang Jiang
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Waheed Akram
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National and Local Joint Engineering Research Center for Medicinal Plant Breeding and Cultivation, Wuhan, China
- Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| | - Biaobiao Luo
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National and Local Joint Engineering Research Center for Medicinal Plant Breeding and Cultivation, Wuhan, China
- Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| | - Sheng Hu
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mohammad Omar Faruque
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chittagong, Bangladesh
| | - Shakeel Ahmad
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National and Local Joint Engineering Research Center for Medicinal Plant Breeding and Cultivation, Wuhan, China
- Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| | | | | | - Aqeel Ahmad
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National and Local Joint Engineering Research Center for Medicinal Plant Breeding and Cultivation, Wuhan, China
- Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| | - Alexander N. Shikov
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Jian Chen
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebo Hu
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National and Local Joint Engineering Research Center for Medicinal Plant Breeding and Cultivation, Wuhan, China
- Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| |
Collapse
|
4
|
Shiryaev VA, Klimochkin YN. Main Chemotypes of SARS-CoV-2 Reproduction Inhibitors. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [PMCID: PMC8188765 DOI: 10.1134/s107042802105002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic has forced scientists all over the world to focus their effort on searching for targeted drugs for coronavirus chemotherapy. The present review is an attempt to systematize low-molecular-weight compounds, including well-known pharmaceuticals and natural substances that have exhibited high anti-coronavirus activity, not in terms of action on their targets, but in terms of their structural type.
Collapse
Affiliation(s)
- V. A. Shiryaev
- Samara State Technical University, 443100 Samara, Russia
| | | |
Collapse
|
5
|
Shikov AN, Narkevich IA, Flisyuk EV, Luzhanin VG, Pozharitskaya ON. Medicinal plants from the 14 th edition of the Russian Pharmacopoeia, recent updates. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113685. [PMID: 33309919 DOI: 10.1016/j.jep.2020.113685] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicine in Russia has a long history starting with handwritten herbalist manuscripts from the Middle Ages to the officinal Pharmacopoeia of the 21st century. The "herbophilious" Russian population has accumulated a lot of knowledge about the beneficial effects of local medicinal plants. Yet, for a long time, Russian traditional and officinal herbal medicine was not well known to the international audience. In our previous comprehensive review, we discussed the pharmacological effects of specific plants included in the 11th edition of the Pharmacopoeia of the USSR, which was also for a while used in Russia. The 14th edition of the Russian Federation's State Pharmacopoeia was implemented in 2018. AIM OF THE REVIEW The aims of the present review are: (i) to trace the evolution of medicinal plant handling from handwritten herbalist manuscripts to Pharmacopoeias; (ii) to describe the modern situation with regulatory documents for herbal medicinal products and their updated classification; (iii) to summarize and discuss the pharmacology, safety, and clinical data for new plants, which are included in the new edition of the Pharmacopoeia. METHODS New medicinal plants included in the 14th edition of the Russian Federation's State Pharmacopoeia were selected. We carefully searched the scientific literature for data related to traditional use, pharmacological, clinical application, and safety. The information was collected from local libraries in Saint-Petersburg, the online databases E-library.ru, Scopus, Web of Science, and the search engine Google scholar. RESULTS Investigating the evolution of all medicinal plants referred to in the Russian Pharmacopoeias led us to the identification of ten medicinal plants that were present in all editions of civilian Russian Pharmacopoeias starting from 1778. In the 14th edition of the modern Russian Pharmacopoeia, medicinal plants are described in 107 monographs. Altogether, 25 new monographs were included in the 14th edition, and one monograph was excluded in comparison to the 11th edition. Some of the included plants are not endemic to Russia and do not have a history of traditional use, or on the other hand, are widely used in Western medicine. For 15 plants, we described the specificity of their application in Russian traditional medicine along with the claimed dosages and indications in officinal medicine. The pharmacology, safety, and clinical data are summarized and assessed for nine plants, underlining their therapeutic potential and significance for global phytopharmacotherapy. CONCLUSIONS In this review, we highlight the therapeutical potential of new plants included in the modern edition of the Russian Pharmacopoeia. We hope that these plants will play an imperative role in drug development and will have a priority for future detailed research.
Collapse
Affiliation(s)
- Alexander N Shikov
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia.
| | - Igor A Narkevich
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia
| | - Elena V Flisyuk
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia
| | - Vladimir G Luzhanin
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010, Murmansk, Russia
| |
Collapse
|