1
|
Zhuang Q, Jin Z, Zheng X, Jin T, Xiang L. Long non‑coding RNA LINC00460 serves as a potential biomarker and oncogene via regulation of the miR‑320b/PBX3 axis in acute myeloid leukemia. Mol Med Rep 2021; 23:435. [PMID: 33846790 PMCID: PMC8060808 DOI: 10.3892/mmr.2021.12074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNA 00460 (LINC00460) has been reported to be involved in the tumorigenesis of various cancer types. However, the function of LINC00460 in acute myeloid leukemia (AML) remains elusive. Therefore, the present study aimed to investigate the role of LINC00460 in AML. The expression of LINC00460 in the serum of 80 diagnosed patients with AML and 67 healthy controls was measured via reverse transcription-quantitative polymerase chain reaction, and the results were compared with clinical features and patient outcomes. The expression of LINC00460 in 45 patients with cytogenetically normal-AML (CN-AML) was also assayed. Receiver operating characteristic (ROC) curves were generated to evaluate the sensitivity and specificity of serum LINC00460. In addition, the effects of LINC00460 on the viability, cell cycle distribution and apoptosis of AML cells were investigated. Bioinformatics tools were used to identify the possible mechanisms of how LINC00460 affects AML cells. It was found that the expression of LINC00460 was significantly upregulated in the serum of patients with AML and those with CN-AML. Higher expression of serum LINC00460 was positively associated with French-American-British classification and cytogenetics. Furthermore, ROC curve analyses demonstrated that serum LINC00460 could differentiate patients with AML from healthy individuals with an area under the curve of 0.8488 (95% CI, 0.7697–0.9279). The serum LINC00460 expression was also significantly decreased when the patients achieved complete remission. Kaplan-Meier analysis indicated that patients with high serum LINC00460 expression had a shorter overall survival time compared with the low serum LINC00460 expression group. Knockdown of LINC00460 inhibited viability, while inducing cell cycle arrest and apoptosis in AML cells. LINC00460 was also a decoy of microRNA (miR)-320b, which can further inhibit the expression of PBX homeobox 3 (PBX3). Collectively, the results suggested that LINC00460 may be applied as a potential diagnostic and prognostic biomarker for patients with AML. It was identified that LINC00460 may exert its effects, at least partly, via the miR-320b/PBX3 axis in AML.
Collapse
Affiliation(s)
- Qiang Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhenlin Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiangkuo Zheng
- Department of Experimental Center, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ting Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lina Xiang
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
2
|
Zhang C, Liu T, Luo P, Gao L, Liao X, Ma L, Jiang Z, Liu D, Yang Z, Jiang Q, Wang Y, Tan X, Luo S, Wang Y, Shi C. Near-infrared oxidative phosphorylation inhibitor integrates acute myeloid leukemia-targeted imaging and therapy. SCIENCE ADVANCES 2021; 7:7/1/eabb6104. [PMID: 33523835 PMCID: PMC7775779 DOI: 10.1126/sciadv.abb6104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/04/2020] [Indexed: 05/11/2023]
Abstract
Acute myeloid leukemia (AML) is a deadly hematological malignancy with frequent disease relapse. The biggest challenge for AML therapy is the lack of methods to target and kill the heterogeneous leukemia cells, which lead to disease relapse. Here, we describe a near-infrared (NIR) fluorescent dye, IR-26, which preferentially accumulates in the mitochondria of AML cells, depending on the hyperactive glycolysis of malignant cell, and simultaneously impairs oxidative phosphorylation (OXPHOS) to exert targeted therapeutic effects for AML cells. In particular, IR-26 also exhibits potential for real-time monitoring of AML cells with an in vivo flow cytometry (IVFC) system. Therefore, IR-26 represents a novel all-in-one agent for the integration of AML targeting, detection, and therapy, which may help to monitor disease progression and treatment responses, prevent unnecessary delays in administering upfront therapy, and improve therapeutic efficiency to the residual AML cells, which are responsible for disease relapse.
Collapse
Affiliation(s)
- Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tao Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Li Gao
- Department of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xingyun Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dengqun Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zeyu Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qingzhi Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shenglin Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
3
|
Yadav AK, Kumar V, Bailey DB, Jang BC. AZD1208, a Pan-Pim Kinase Inhibitor, Has Anti-Growth Effect on 93T449 Human Liposarcoma Cells via Control of the Expression and Phosphorylation of Pim-3, mTOR, 4EBP-1, S6, STAT-3 and AMPK. Int J Mol Sci 2019; 20:ijms20020363. [PMID: 30654529 PMCID: PMC6359068 DOI: 10.3390/ijms20020363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Overexpression of Pim kinases has an oncogenic/pro-survival role in many hematological and solid cancers. AZD1208 is a pan-Pim kinase inhibitor that has anti-cancer and anti-adipogenic actions. Here, we investigated the effects of AZD1208 on the growth of 93T449 cells, a differentiated human liposarcoma cell line. At 20 µM, AZD1208 was cytotoxic (cytostatic) but not apoptotic, reducing cell survival without DNA fragmentation, caspase activation or increasing cells in the sub G1 phase; known apoptotic parameters. Notably, AZD1208 reduced phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in 93T449 cells. STAT-3 inhibition by AG490, a JAK2/STAT-3 inhibitor similarly reduced cell survival. AZD1208 down-regulated phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal S6 while up-regulated eukaryotic initiation factor-2α (eIF-2α). In addition, AZD1208 induced a LKB-1-independent AMPK activation, which was crucial for its cytostatic effect, as knock-down of AMPK greatly blocked AZD1208s ability to reduce cell survival. AZD1208 had no effect on expression of two members of Pim kinase family (Pim-1 and Pim-3) but inhibited phosphorylation of 4EBP-1, a downstream effector of Pim kinases. Importantly, a central role for Pim-3 in the actions of AZD1208 was confirmed by knock-down, which not only reduced 93T449 cell survival but also led to the inhibition of 4EBP-1, mTOR, eIF-2α and STAT-3, along with the activation of AMPK. In summary, this is the first report demonstrating that AZD1208 inhibits growth of liposarcoma cells and that this activity is mediated through Pim-3 kinase, STAT-3, mTOR, S6 and AMPK expression and phosphorylation pathways.
Collapse
Affiliation(s)
- Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - Vinoth Kumar
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - David Bishop Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| |
Collapse
|