1
|
Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, Ge X, Liu L, Guo C, Duo M, Li L, Li J, Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer 2023; 22:35. [PMID: 36797756 PMCID: PMC9933290 DOI: 10.1186/s12943-023-01738-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence and mortality of cancer are the major health issue worldwide. Apart from the treatments developed to date, the unsatisfactory therapeutic effects of cancers have not been addressed by broadening the toolbox. The advent of immunotherapy has ushered in a new era in the treatments of solid tumors, but remains limited and requires breaking adverse effects. Meanwhile, the development of advanced technologies can be further boosted by gene analysis and manipulation at the molecular level. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), has demonstrated its potential to break the limits of immunotherapy in cancers. In this review, the mechanism of CRISPR-Cas9-mediated genome editing and a powerful CRISPR toolbox are introduced. Furthermore, we focus on reviewing the impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy (knockout or knockin). Finally, we discuss the CRISPR-Cas9-based genome-wide screening for target identification, emphasis the potential of spatial CRISPR genomics, and present the comprehensive application and challenges in basic research, translational medicine and clinics of CRISPR-Cas9.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Meixin Shi
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuqing Ren
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Siyuan Weng
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wenjing Ning
- grid.207374.50000 0001 2189 3846Department of Emergency Center, Zhengzhou University People’s Hospital, Zhengzhou, 450003 Henan China
| | - Xiaoyong Ge
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chunguang Guo
- grid.412633.10000 0004 1799 0733Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lifeng Li
- grid.412633.10000 0004 1799 0733Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Hu H, Zhang T, Wu Y, Deng M, Deng H, Yang X. Cross-regulation between microRNAs and key proteins of signaling pathways in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2022; 16:753-765. [PMID: 35833844 DOI: 10.1080/17474124.2022.2101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a subtype of primary liver cancer and a major cause of death. Although miRNA plays an important role in hepatocellular carcinoma, the specific regulatory network remains unclear. Therefore, this paper comprehensively describes the miRNA-related signaling pathways in HCC and the possible interactions among different signaling pathways. The aim is to lay the foundation for the discovery of new molecular targets and multi-target therapy. AREAS COVERED Based on miRNA, HCC, and signaling pathways, the literature was searched on Web of Science and PubMed. Then, common targets between different signaling pathways were found from KEGG database, and possible cross-regulation mechanisms were further studied. In this review, we elaborated from two aspects, respectively, laying a foundation for studying the regulatory mechanism and potential targets of miRNA in HCC. EXPERT OPINION Non-coding RNAs have become notable molecules in cancer research in recent years, and many types of targeted drugs have emerged. From the outset, molecular targets and signal pathways are interlinked, which suggests that signal pathways and regulatory networks should be concerned in basic research, which also provides a strong direction for future mechanism research.
Collapse
Affiliation(s)
- Haihong Hu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Taolan Zhang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiwen Wu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Meina Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Huiling Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Yang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Mora GF, Zubieta MR. Galectin-1 and Galectin-3 Expression in Lesional Skin of Patients With Systemic Sclerosis-Association With Disease Severity. J Clin Rheumatol 2021; 27:317-323. [PMID: 32501939 DOI: 10.1097/rhu.0000000000001367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Galectin-1 (Gal-1) and galectin-3 (Gal-3) are carbohydrate-binding proteins involved in normal processes, autoimmunity, and cancer. Increased serum Gal-3 levels in scleroderma were associated with active disease, vasculopathy, and mortality. OBJECTIVES The aim of this study was to evaluate Gal-1 and Gal-3 expression in the lesional skin of patients with scleroderma regarding disease severity and organ involvement. METHODS A cross-sectional study was conducted on patients diagnosed as systemic sclerosis (SSc), after informed consent. Clinical and serological profiles were reviewed from medical records. Lesional skin biopsies were taken by losange incision from patients. Samples were analyzed by immunohistochemistry and compared with normal skin of a healthy patient. Parametric statistical analysis was done with Student t test and Pearson coefficient. Significance was established as p ≤ 0.05 with a 95% confidence interval. RESULTS Biopsies of 10 patients and a healthy control (9 female, 1 male) were analyzed. The mean age was 54.5 years (18-74 years). Four of 10 patients had diffuse, 4 had limited scleroderma, 1 had overlap syndrome, and 1 had sclerodermiform graft-versus-host disease. The mean fibroblasts count per field was 13.2 in scleroderma versus 7.2 in normal skin. The mean expression of Gal-1 in scleroderma fibroblasts was 13% (0%-56%) and 47.5% for Gal-3 (6.5%-95.5%); in normal skin, the mean expression was 91% (90%-95%) for Gal-1 and 97% (89%-100%) for Gal-3. A higher Gal-3 expression in scleroderma (within its lower expression compared with normal skin) was associated with pulmonary artery hypertension (p = 0.004) and to a higher modified Rodnan's skin score (p = 0.0003). In a similar manner, anti-centromere antibodies were associated with a higher Gal-1 expression in SSc skin fibroblasts (p = 0.04). CONCLUSIONS Gal-1 and Gal-3 had a lower expression in scleroderma lesional skin compared with a normal control. We found a significant correlation between a higher Gal-3 expression (within the lower ones compared with normal skin) in fibroblasts from SSc patients and severe disease (pulmonary hypertension and a higher modified Rodnan's skin score) compared with patients with lower expression of this protein. Similarly, the presence of anti-centromere antibodies was associated with a higher expression of Gal-1 within this group of patients.
Collapse
Affiliation(s)
- Gabriela Fernanda Mora
- From the Immunology Unit, Hospital Militar Central Cirujano Mayor Dr Cosme Argerich, Buenos Aires
| | | |
Collapse
|
4
|
Induction of microRNA hsa-let-7d-5p, and repression of HMGA2, contribute protection against lipid accumulation in macrophage 'foam' cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159005. [PMID: 34274506 DOI: 10.1016/j.bbalip.2021.159005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Accumulation of excess cholesterol and cholesteryl ester in macrophage 'foam' cells within the arterial intima characterises early 'fatty streak' atherosclerotic lesions, and is accompanied by epigenetic changes, including altered expression of microRNA sequences which determine of gene and protein expression. This study established that exposure to lipoproteins, including acetylated LDL, induced macrophage expression of microRNA hsa-let-7d-5p, a sequence previously linked with tumour suppression, and repressed expression of one of its target genes, high mobility group AT hook 2 (HMGA2). A let-7d-5p mimic repressed expression of HMGA2 (18%; p < 0.05) while a marked increase (2.9-fold; p < 0.05) in expression of HMGA2 was noted in the presence of let-7d-5p inhibitor. Under these conditions, let-7d-5p mimic significantly (p < 0.05) decreased total (10%), free (8%) and cholesteryl ester (21%) mass, while the inhibitor significantly (p < 0.05) increased total (29%) and free cholesterol (29%) mass, compared with the relevant controls. Let-7d-5p inhibition significantly (p < 0.05) increased endogenous biosynthesis of cholesterol (38%) and cholesteryl ester (39%) pools in macrophage 'foam' cells, without altering the cholesterol efflux pathway, or esterification of exogenous radiolabelled oleate. Let-7d-5p inhibition in sterol-loaded cells increased the level of HMGA2 protein (32%; p < 0.05), while SiRNA knockdown of this protein (29%; p < 0.05) resulted in a (21%, p < 0.05) reduction in free cholesterol mass. Thus, induction of let-7d-5p, and repression of its target HMGA2, in macrophages is a protective response to the challenge of increased cholesterol influx into these cells; dysregulation of this response may contribute to atherosclerosis and other disorders such as cancer.
Collapse
|
5
|
Afolabi LO, Afolabi MO, Sani MM, Okunowo WO, Yan D, Chen L, Zhang Y, Wan X. Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy. Clin Transl Immunology 2021; 10:e1286. [PMID: 34188916 PMCID: PMC8219901 DOI: 10.1002/cti2.1286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) technology has brought advances in the genetic manipulation of eukaryotic cells, which has revolutionised cancer research and treatment options. It is increasingly being used in cancer immunotherapy, including adoptive T and natural killer (NK) cell transfer, secretion of antibodies, cytokine stimulation and overcoming immune checkpoints. CRISPR-Cas9 technology is used in autologous T cells and NK cells to express various innovative antigen designs and combinations of chimeric antigen receptors (CARs) targeted at specific antigens for haematological and solid tumors. Additionally, advanced engineering in immune cells to enhance their sensing circuits with sophisticated functionality is now possible. Intensive research on the CRISPR-Cas9 system has provided scientists with the ability to overcome the hostile tumor microenvironment and generate more products for future clinical use, especially off-the-shelf, universal cellular products, bringing exciting milestones for immunotherapy. This review discussed the application and challenges of CRISPR technology in cancer research and immunotherapy, its advances and prospects for promoting new cell-based therapeutic beyond immune oncology.
Collapse
Affiliation(s)
- Lukman O Afolabi
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- Department of BiochemistryFaculty of ScienceFederal University DutseDutseNigeria
| | - Mariam O Afolabi
- Open FIESTA CenterTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical OncogenomicsGraduate School at ShenzhenTsinghua UniversityShenzhenChina
| | - Musbahu M Sani
- Department of BiochemistryFaculty of ScienceFederal University DutseDutseNigeria
| | - Wahab O Okunowo
- Department of BiochemistryCollege of MedicineUniversity of LagosLagosNigeria
| | - Dehong Yan
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liang Chen
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaou Zhang
- Open FIESTA CenterTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical OncogenomicsGraduate School at ShenzhenTsinghua UniversityShenzhenChina
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Xiaochun Wan
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Pandurangan AK, Divya T, Kumar K, Dineshbabu V, Velavan B, Sudhandiran G. Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: A review. World J Gastrointest Oncol 2018; 10:244-259. [PMID: 30254720 PMCID: PMC6147765 DOI: 10.4251/wjgo.v10.i9.244] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinogenesis (CRC) imposes a major health burden in developing countries. It is the third major cause of cancer deaths. Despite several treatment strategies, novel drugs are warranted to reduce the severity of this disease. Adenomatous polyps in the colon are the major culprits in CRC and found in 45% of cancers, especially in patients 60 years of age. Inflammatory polyps are currently gaining attention in CRC, and a growing body of evidence denotes the role of inflammation in CRC. Several experimental models are being employed to investigate CRC in animals, which include the APCmin/+ mouse model, Azoxymethane, Dimethyl hydrazine, and a combination of Dextran sodium sulphate and dimethyl hydrazine. During CRC progression, several signal transduction pathways are activated. Among the major signal transduction pathways are p53, Transforming growth factor beta, Wnt/β-catenin, Delta Notch, Hippo signalling, nuclear factor erythroid 2-related factor 2 and Kelch-like ECH-associated protein 1 pathways. These signalling pathways collaborate with cell death mechanisms, which include apoptosis, necroptosis and autophagy, to determine cell fate. Extensive research has been carried out in our laboratory to investigate these signal transduction and cell death mechanistic pathways in CRC. This review summarizes CRC pathogenesis and the related cell death and signal transduction pathways.
Collapse
Affiliation(s)
- Ashok kumar Pandurangan
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
- School of Life sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Thomas Divya
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Kalaivani Kumar
- School of Life sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Vadivel Dineshbabu
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Bakthavatchalam Velavan
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Ganapasam Sudhandiran
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| |
Collapse
|
7
|
Torres K, Pietrzyk Ł, Plewa Z, Załuska-Patel K, Majewski M, Radzikowska E, Torres A. TGF-β and inflammatory blood markers in prediction of intraperitoneal adhesions. Adv Med Sci 2018; 63:220-223. [PMID: 29223125 DOI: 10.1016/j.advms.2017.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/11/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Intraperitoneal adhesions (IA) develop as a consequence of the healing process in peritoneum injured during surgeries. IA might be formed after all types of surgical interventions regardless the surgical approach with a higher incidence in obese individuals. Here we determine the diagnostic power of TGF-β and blood inflammatory parameters in the prediction of IA in obese patients undergoing second surgical intervention. MATERIALS AND METHODS Eighty patients were divided into groups according to body mass index (BMI) values and presence of intraperitoneal adhesions (IA). Evaluation of peritoneal adhesion index (PAI), serum TGF-β and blood inflammatory parameters was performed. RESULTS Level of TGF-β, C-reactive protein (CRP), leukocytes, neutrophil to lymphocyte ratio and platelet to lymphocyte ratio were significantly higher in obese patients while TGF-β, CRP, and leukocytes were higher in patients with IA. There was a significant correlation between PAI values and TGF-β concentration (p<0.001; r=0.869) in IA group. CONCLUSIONS The preoperative TGF-β concentration, BMI, CRP and NLR could be strong predictors of intraperitoneal adhesions in patients with the history of surgeries.
Collapse
|
8
|
Hao R, Zheng Z, Du X, Wang Q, Li J, Deng Y, Chen W. Molecular cloning and characteristics analysis of Pmtgfbr1 from Pinctada fucata martensii. ACTA ACUST UNITED AC 2018; 19:e00262. [PMID: 30003053 PMCID: PMC6041369 DOI: 10.1016/j.btre.2018.e00262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/23/2018] [Accepted: 06/03/2018] [Indexed: 11/24/2022]
Abstract
This study obtains the full length of Pmtgfbr1 of the pearl oyster P. fucata martensii. Pmtgfbr1 possesses the conserved domain of Tgfbr1. Pmtgfbr1 holds negatively effect on the growth of P. fucata martensii.
Pinctada fucata martensii is cultured for pearl production. Growth improvement has received considerable research interest. Transforming growth factor β type Ⅰ receptor (TβR-I), which is involved in signals transmission of transforming growth factor beta (TGF-β), participates in cell proliferation and growth. In this study, we characterized a Tgfbr1 gene which encoded TβR-I from P. fucata martensii (Pmtgfbr1). Pmtgfbr1 cDNA contains an open reading frame of 1569 bp and encodes a polypeptide of 522 amino acids (aa). Pmtgfbr1 possesses a typical TβR-I structure (extracellular receptor ligand domain, transmembrane domain, and cytoplasmic tyrosine kinase catalytic domain). Pmtgfbr1 is expressed in all the studied tissues and exhibited the highest expression level in the adductor muscle. Moreover, Pmtgfbr1 exhibited the lower expression level in the larger group (L) than that in the smaller group (S) and is negatively correlated with growth traits (P < 0.01). Our results indicated that Pmtgfbr1 is a candidate functional gene associated with growth traits.
Collapse
Affiliation(s)
- Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Junhui Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Weiyao Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
9
|
Tao Y, Sturgis EM, Huang Z, Wang Y, Wei P, Wang JR, Wei Q, Li G. TGFβ1 Genetic Variants Predict Clinical Outcomes of HPV-Positive Oropharyngeal Cancer Patients after Definitive Radiotherapy. Clin Cancer Res 2018; 24:2225-2233. [PMID: 29463556 DOI: 10.1158/1078-0432.ccr-17-1904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/07/2017] [Accepted: 02/14/2018] [Indexed: 12/17/2022]
Abstract
Purpose: TGFβ1 plays a critical role in inflammation and immune responses and treatment response and survival. TGFβ1 variants may affect its expression level or functional efficiency, thus modifying tumor status and survival in human papillomavirus (HPV)-positive squamous cell carcinoma of the oropharynx (SCCOP).Experimental Design: We determined tumor HPV16 status and genotyped three TGFβ1 polymorphisms in 564 incident SCCOP patients treated with radiotherapy or chemoradiation. Univariate and multivariable Cox models were used to evaluate the associations between the three polymorphisms and survival.Results: Overall, 85% of patients (482 of 564) had HPV16-positive SCCOP. We found that TGFβ1 rs1982073 had statistically significant associations with survival, whereas TGFβ1 rs1800469 and TGFβ1 rs1800471 did not. Patients with TGFβ1 rs1982073 CT/CC variant genotypes had significantly better overall, disease-specific, and disease-free survival compared with those with the corresponding common homozygous TT genotype (all log-rank: P < 0.001). Furthermore, these genotypes were significantly associated with an approximately 5 times reduced risk of overall death, death owing to disease, and recurrence after multivariable adjustment. Moreover, the stratified analyses by tumor HPV status indicated that the significant effects of TGFβ1 rs1982073 polymorphism on survival were found among HPV16-positive SCCOP patients only. Finally, the functional relevance of these variants was further characterized.Conclusions: Our findings support that the TGFβ1 rs1982073 polymorphism plays a significant role in the prognosis of SCCOP, especially in HPV16-positive SCCOP patients treated with chemoradiation. Prospective studies with larger sample sizes are needed to confirm these findings. Clin Cancer Res; 24(9); 2225-33. ©2018 AACR.
Collapse
Affiliation(s)
- Ye Tao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing, China.,Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhigang Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing, China.
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer Rui Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
10
|
Kamel HFM, Al-Amodi HSAB. Exploitation of Gene Expression and Cancer Biomarkers in Paving the Path to Era of Personalized Medicine. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:220-235. [PMID: 28813639 PMCID: PMC5582794 DOI: 10.1016/j.gpb.2016.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/29/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Cancer therapy agents have been used extensively as cytotoxic drugs against tissue or organ of a specific type of cancer. With the better understanding of molecular mechanisms underlying carcinogenesis and cellular events during cancer progression and metastasis, it is now possible to use targeted therapy for these molecular events. Targeted therapy is able to identify cancer patients with dissimilar genetic defects at cellular level for the same cancer type and consequently requires individualized approach for treatment. Cancer therapy begins to shift steadily from the traditional approach of “one regimen for all patients” to a more individualized approach, through which each patient will be treated specifically according to their specific genetic defects. Personalized medicine accordingly requires identification of indicators or markers that guide in the decision making of such therapy to the chosen patients for more effective therapy. Cancer biomarkers are frequently used in clinical practice for diagnosis and prognosis, as well as identification of responsive patients and prediction of treatment response of cancer patient. The rapid breakthrough and development of microarray and sequencing technologies is probably the main tool for paving the way toward “individualized biomarker-driven cancer therapy” or “personalized medicine”. In this review, we aim to provide an updated knowledge and overview of the current landscape of cancer biomarkers and their role in personalized medicine, emphasizing the impact of genomics on the implementation of new potential targeted therapies and development of novel cancer biomarkers in improving the outcome of cancer therapy.
Collapse
Affiliation(s)
- Hala Fawzy Mohamed Kamel
- Biochemistry Department, Faculty of Medicine, Umm AL-Qura University, Makhha 21955, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | | |
Collapse
|
11
|
Mocellin S, Verdi D, Pooley KA, Nitti D. Genetic variation and gastric cancer risk: a field synopsis and meta-analysis. Gut 2015; 64:1209-19. [PMID: 25731870 DOI: 10.1136/gutjnl-2015-309168] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/06/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Data on genetic susceptibility to sporadic gastric carcinoma have been published at a growing pace, but to date no comprehensive overview and quantitative summary has been available. METHODS We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing stomach cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Meta-analysis was also conducted for subgroups, which were defined by ethnicity (Asian vs Caucasian), tumour histology (intestinal vs diffuse), tumour site (cardia vs non-cardia) and Helicobacter pylori infection status (positive vs negative). RESULTS Literature search identified 824 eligible studies comprising 2 530 706 subjects (cases: 261 386 (10.3%)) and investigating 2841 polymorphisms involving 952 distinct genes. Overall, we performed 456 primary and subgroup meta-analyses on 156 variants involving 101 genes. We identified 11 variants significantly associated with disease risk and assessed to have a high level of summary evidence: MUC1 rs2070803 at 1q22 (diffuse carcinoma subgroup), MTX1 rs2075570 at 1q22 (diffuse), PSCA rs2294008 at 8q24.2 (non-cardia), PRKAA1 rs13361707 5p13 (non-cardia), PLCE1 rs2274223 10q23 (cardia), TGFBR2 rs3087465 3p22 (Asian), PKLR rs3762272 1q22 (diffuse), PSCA rs2976392 (intestinal), GSTP1 rs1695 11q13 (Asian), CASP8 rs3834129 2q33 (mixed) and TNF rs1799724 6p21.3 (mixed), with the first nine variants characterised by a low FPRP. We also identified polymorphisms with lower quality significant associations (n=110). CONCLUSIONS We have identified several high-quality biomarkers of gastric cancer susceptibility. These data will form the backbone of an annually updated online resource that will be integral to the study of gastric carcinoma genetics and may inform future screening programmes.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Daunia Verdi
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Karen A Pooley
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Donato Nitti
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Wang LK, Hsiao TH, Hong TM, Chen HY, Kao SH, Wang WL, Yu SL, Lin CW, Yang PC. MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma. PLoS One 2014; 9:e96765. [PMID: 24816813 PMCID: PMC4016005 DOI: 10.1371/journal.pone.0096765] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/10/2014] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancers (NSCLCs) cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. This study demonstrates that miR-133a expression negatively correlates with cell invasiveness in both transformed normal bronchial epithelial cells and lung cancer cell lines. The oncogenic receptors in lung cancer cells, including insulin-like growth factor 1 receptor (IGF-1R), TGF-beta receptor type-1 (TGFBR1), and epidermal growth factor receptor (EGFR), are direct targets of miR-133a. MiR-133a can inhibit cell invasiveness and cell growth through suppressing the expressions of IGF-1R, TGFBR1 and EGFR, which then influences the downstream signaling in lung cancer cell lines. The cell invasive ability is suppressed in IGF-1R- and TGFBR1-repressed cells and this phenomenon is mediated through AKT signaling in highly invasive cell lines. In addition, by using the in vivo animal model, we find that ectopically-expressing miR-133a dramatically suppresses the metastatic ability of lung cancer cells. Accordingly, patients with NSCLCs who have higher expression levels of miR-133a have longer survival rates compared with those who have lower miR-133a expression levels. In summary, we identified the tumor suppressor role of miR-133a in lung cancer outcome prognosis, and we demonstrated that it targets several membrane receptors, which generally produce an activating signaling network during the progression of lung cancer.
Collapse
Affiliation(s)
- Lu-Kai Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Hung Hsiao
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tse-Ming Hong
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Shih-Han Kao
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Lung Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei, Taiwan
- NTU Center of Genomic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Wen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| | - Pan-Chyr Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- NTU Center of Genomic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Kadara H, Fujimoto J, Yoo SY, Maki Y, Gower AC, Kabbout M, Garcia MM, Chow CW, Chu Z, Mendoza G, Shen L, Kalhor N, Hong WK, Moran C, Wang J, Spira A, Coombes KR, Wistuba II. Transcriptomic architecture of the adjacent airway field cancerization in non-small cell lung cancer. J Natl Cancer Inst 2014; 106:dju004. [PMID: 24563515 DOI: 10.1093/jnci/dju004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Earlier work identified specific tumor-promoting abnormalities that are shared between lung cancers and adjacent normal bronchial epithelia. We sought to characterize the yet unknown global molecular and adjacent airway field cancerization (FC) in early-stage non-small cell lung cancer (NSCLC). METHODS Whole-transcriptome expression profiling of resected early-stage (I-IIIA) NSCLC specimens (n = 20) with matched tumors, multiple cytologically controlled normal airways with varying distances from tumors, and uninvolved normal lung tissues (n = 194 samples) was performed using the Affymetrix Human Gene 1.0 ST platform. Mixed-effects models were used to identify differentially expressed genes among groups. Ordinal regression analysis was performed to characterize site-dependent airway expression profiles. All statistical tests were two-sided, except where noted. RESULTS We identified differentially expressed gene features (n = 1661) between NSCLCs and airways compared with normal lung tissues, a subset of which (n = 299), after gene set enrichment analysis, statistically significantly (P < .001) distinguished large airways in lung cancer patients from airways in cancer-free smokers. In addition, we identified genes (n = 422) statistically significantly and progressively differentially expressed in airways by distance from tumors that were found to be congruently modulated between NSCLCs and normal lung tissues. Furthermore, LAPTM4B, with statistically significantly increased expression (P < .05) in airways with shorter distance from tumors, was upregulated in human immortalized cells compared with normal bronchial epithelial cells (P < .001) and promoted anchorage-dependent and -independent lung cancer cell growth. CONCLUSIONS The adjacent airway FC comprises both site-independent profiles as well as gradient and localized airway expression patterns. Profiling of the airway FC may provide new insights into NSCLC oncogenesis and molecular tools for detection of the disease.
Collapse
Affiliation(s)
- Humam Kadara
- Affiliations of authors: Department of Translational Molecular Pathology (HK, JF, TM, MMG, C-WC, ZC, GM, IIW), Department of Thoracic/Head and Neck Medical Oncology (MK, WKH, IIW), Department of Pathology (NK, CM), Department of Bioinformatics (S-YY, LS, JW, KRC), University of Texas MD Anderson Cancer Center, Houston, TX; Section of Computational Medicine, Department of Medicine, Boston University, Boston, MA (ACG, AS)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yang H, Fang F, Chang R, Yang L. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor β receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology 2013; 58:205-17. [PMID: 23401231 DOI: 10.1002/hep.26315] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/05/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED By comparing the expression profiles of microRNAs (miRNAs) in different hepatocellular carcinoma (HCC) subtypes, we identified miR-140-5p as an HCC-related miRNA. We found that miR-140-5p was significantly decreased in HCC tissues and all of six liver cancer cell lines examined and its expression levels were correlated with multiple nodules, vein invasion, capsular formation, and differentiation, as well as overall and disease-free survival of HCC. We also found that miR-140-5p suppressed HCC cell proliferation and HCC metastasis. Multipathway reporter arrays suggested that miR-140-5p inhibited transforming growth factor β (TGF-β) and mitogen-activated protein kinase / extracellular signal-regulated kinase (MAPK/ERK) signaling. TGFB receptor 1 (TGFBR1) and fibroblast growth factor 9 (FGF9) were then characterized as the direct targets for miR-140-5p after it was found that ectopic miR-140-5p expression suppressed TGFBR1 and FGF9 expression. Silencing TGFBR1 and FGF9 by small interfering RNA (siRNA) resembled the phenotype resulting from ectopic miR-140-5p expression, while overexpression of TGFBR1 and FGF9 attenuated the effect of miR-140-5p on HCC growth and metastasis. CONCLUSION These data elucidated a tumor suppressor role for miR-140-5p in HCC development and progression with therapeutic potential. Our correlation studies in clinical HCC samples further suggest that miR-140-5p could be a valuable biomarker for HCC prognosis.
Collapse
Affiliation(s)
- Hao Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Hunan, China
| | | | | | | |
Collapse
|
15
|
Zhang H, Ma H, Xu Y, Li L. Association of SMAD7 rs12953717 polymorphism with cancer: a meta-analysis. PLoS One 2013; 8:e58170. [PMID: 23472153 PMCID: PMC3589366 DOI: 10.1371/journal.pone.0058170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/31/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Accumulating evidence has suggested that Mothers against decapentaplegic homolog 7 (SMAD7) rs12953717 polymorphism might be related to cancer risk. However, epidemiologic findings have been inconsistent. We therefore performed a meta-analysis to clarify the association between the SMAD7 rs12953717 polymorphism and cancer risk. METHODS A comprehensive search was conducted to identify all eligible studies of SMAD7 rs12953717 polymorphism and cancer risk. We used odds ratios (ORs) to assess the strength of the association, and 95% confidence intervals (CIs) to give a sense of the precision of the estimate. Heterogeneity, publication bias, and sensitivity analysis were also explored. RESULTS A total of 14 case-control studies, including 16928 cases and 14781 controls, were included in the present meta-analysis. The overall results showed that the variant genotypes were associated with a significantly increased risk of all cancer types (homozygote comparison, OR = 1.23, 95%CI = 1.10-1.38, P<0.01; heterozygote comparison, OR = 1.12, 95%CI = 1.02-1.22, P = 0.02; recessive model, OR = 1.17, 95%CI = 1.07-1.29, P<0.01; dominant model, OR = 1.15, 95%CI = 1.06-1.25, P<0.01; allelic model, OR = 1.12, 95%CI = 1.06-1.18, P<0.01). Further sensitivity analysis confirmed the significant association. In the subgroup analysis by ethnicity, SMAD7 rs12953717 polymorphism was significantly associated with cancer risk in both Caucasians and Asians. In the subgroup analysis by cancer types, SMAD7 rs12953717 polymorphism was significantly associated with colorectal cancer. CONCLUSIONS Our investigations demonstrate that rs12953717 polymorphism is associated with the susceptibility of cancer. Large-scale and well-designed case-control studies are necessary to validate the risk identified in the present meta-analysis.
Collapse
Affiliation(s)
- Hongtuan Zhang
- Department of Urology, Second Affiliated Hospital of Tianjin Medical University, Tianjin Key Institute of Urology, Tianjin, China
| | - Hui Ma
- Department of Epidemiology, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Urology, Second Affiliated Hospital of Tianjin Medical University, Tianjin Key Institute of Urology, Tianjin, China
| | - Liang Li
- Laboratory of Population and Quantitative Genetics, School of Life Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Völler D, Ott C, Bosserhoff A. MicroRNAs in malignant melanoma. Clin Biochem 2013; 46:909-17. [PMID: 23360785 DOI: 10.1016/j.clinbiochem.2013.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 12/11/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, and the incidence of melanoma has been increasing faster than that of most other cancers. While the survival rate following surgical resection of early-stage primary tumors is nearly 100%, the survival of patients with metastasized tumors is strongly reduced, likely due to resistance to conventional therapies. Therefore, it is important to use new molecular approaches to develop new biomarkers to better prevent and diagnose melanoma. MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate gene expression via repression of translation or direct degradation of their complementary mRNA. In this review, we summarize our current understanding of the involvement of miRNAs and their corresponding targets in melanomagenesis as well as the potential use of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Daniel Völler
- Institute of Pathology, Molecular Pathology, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
17
|
Molecular characterization of TGF-β type I receptor gene (Tgfbr1) in Chlamys farreri, and the association of allelic variants with growth traits. PLoS One 2012; 7:e51005. [PMID: 23209843 PMCID: PMC3510168 DOI: 10.1371/journal.pone.0051005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 10/31/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Scallops are an economically important aquaculture species in Asian countries, and growth-rate improvement is one of the main focuses of scallop breeding. Investigating the genetic regulation of scallop growth could benefit scallop breeding, as such research is currently limited. The transforming growth factor beta (TGF-β) signaling through type I and type II receptors, plays critical roles in regulating cell proliferation and growth, and is thus a plausible candidate growth regulator in scallops. RESULTS We cloned and characterized the TGF-β type I receptor (Tgfbr1) gene from Zhikong scallops (Chlamys farreri). The deduced amino acid sequence contains characteristic residues and exhibits the conserved structure of Tgfbr1 proteins. A high expression level of scallop Tgfbr1 was detected during early embryonic stages, whereas Tgfbr1 expression was enriched in the gonad and striated muscle in adults. A single nucleotide polymorphism (SNP, c. 1815C>T) in the 3' UTR was identified. Scallops with genotype TT had higher growth traits values than those with genotype CC or CT in a full-sib family, and significant differences were found between genotypes CC and TT for shell length, shell height, and striated muscle weight. An expression analysis detected significantly more Tgfbr1 transcripts in the striated muscle of scallops with genotype CC compared to those with genotype TT or CT. Further evaluation in a population also revealed higher striated muscle weight in scallops with genotype TT than those with the other two genotypes. The inverse correlation between striated muscle mass and Tgfbr1 expression is consistent with TGF-β signaling having a negative effect on cell growth. CONCLUSION The scallop Tgfbr1 gene was cloned and characterized, and an SNP potentially associated with both scallop growth and Tgfbr1 expression was identified. Our results suggest the negative regulation of Tgfbr1 in scallop growth and provide a candidate marker for Zhikong scallop breeding.
Collapse
|
18
|
The association of polymorphisms on TGFBR1 and colorectal cancer risk: a meta-analysis. Mol Biol Rep 2011; 39:2567-74. [PMID: 21858550 DOI: 10.1007/s11033-011-1009-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 06/02/2011] [Indexed: 01/06/2023]
Abstract
Epidemiological studies found inconsistent results on the association of two variants on TGFBR1 (TGFBR1*6A and Int7G24A) with colorectal cancer (CRC) risk. The present study was aimed to evaluate the association of these two variants with CRC susceptibility via the meta-analysis methods. For variant TGFBR1*6A, nine reports including 6,765 CRC patients and 8,496 unrelated controls were identified. The heterozygotes *6A/*9A showed a significant increased risk of CRC with the pooled OR was 1.12 (95% CI = 1.02-1.23), and the pooled OR for the homozygotes *6A/*6A was 1.13 (95% CI = 0.80-1.58) compared to the homozygotes *9A/*9A. However, under the dominant effect model, the TGFBR1*6A carriers showed a significantly increased CRC risk (pooled OR = 1.12, 95% CI = 1.03-1.23, *6A/*6A and *6A/*9A vs. *9A/*9A). For variant Int7G24A, three case-control studies with 1,074 cases and 1,945 controls were found. Although no significant association was found for heterozygosity Int7G24A carriers with CRC risk (pooled OR = 0.97, 95% CI = 0.67-1.42), the homozygosity A/A carriers showed a significant elevated risk of CRC (pooled OR = 1.68, 95% CI = 1.14-2.47) compared to G/G homozygotes. Under the recessive effect model, homozygotes A/A showed a 71% increase of CRC risk compared to the A/G and G/G genotype carriers (pooled OR = 1.71, 95% CI = 1.17-2.51). These data strongly suggested that the two polymorphisms of TGFBR1 may confer low-penetrance susceptibility of CRC risk.
Collapse
|
19
|
Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of mutations in TGFBR1. Nat Genet 2011; 43:365-9. [PMID: 21358634 DOI: 10.1038/ng.780] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 02/04/2011] [Indexed: 11/08/2022]
Abstract
Multiple self-healing squamous epithelioma (MSSE), also known as Ferguson-Smith disease (FSD), is an autosomal-dominant skin cancer condition characterized by multiple squamous-carcinoma-like locally invasive skin tumors that grow rapidly for a few weeks before spontaneously regressing, leaving scars. High-throughput genomic sequencing of a conservative estimate (24.2 Mb) of the disease locus on chromosome 9 using exon array capture identified independent mutations in TGFBR1 in three unrelated families. Subsequent dideoxy sequencing of TGFBR1 identified 11 distinct monoallelic mutations in 18 affected families, firmly establishing TGFBR1 as the causative gene. The nature of the sequence variants, which include mutations in the extracellular ligand-binding domain and a series of truncating mutations in the kinase domain, indicates a clear genotype-phenotype correlation between loss-of-function TGFBR1 mutations and MSSE. This distinguishes MSSE from the Marfan syndrome-related disorders in which missense mutations in TGFBR1 lead to developmental defects with vascular involvement but no reported predisposition to cancer.
Collapse
|
20
|
Li X, Yang XX, Hu NY, Sun JZ, Li FX, Li M. A risk-associated single nucleotide polymorphism of SMAD7 is common to colorectal, gastric, and lung cancers in a Han Chinese population. Mol Biol Rep 2011; 38:5093-7. [PMID: 21221812 DOI: 10.1007/s11033-010-0656-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 12/04/2010] [Indexed: 01/10/2023]
Abstract
SMAD7 has been demonstrated to antagonize TGF-β-mediated fibrosis, carcinogenesis, and inflammation. Two previous genome-wide association studies identified three single nucleotide polymorphisms (SNPs) (rs4939827, rs12953717 and rs4464148) in SMAD7 to be associated with colorectal cancer in a Western population. We conducted the first case-control study in a Han Chinese population to explore the associations between these three SNPs and colorectal, gastric, and lung cancers. Of the three SNPs, only rs12953717 was strongly associated with the three types of cancer, fitting the overdominant model. Compared with the CC/TT (CC combined with TT) genotype, the adjusted odds ratios for the CT genotype were 2.002 (95% CI, 1.250-3.207, P = 0.004), 1.678 (95% CI, 1.048-2.689, P = 0.031), 3.825 (95% CI, 2.310-6.335, P < 1 × 10(-4)), and 2.294 (95% CI, 1.537-3.343, P < 1 × 10(-4)), respectively, for colorectal, gastric, lung, and combined cancers. These outcomes suggest that rs12953717 is a common risk marker of these three types of cancer in the Han Chinese.
Collapse
Affiliation(s)
- Xin Li
- School of Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Song JH, Lee HS, Yoon JH, Kang YH, Nam SW, Lee JY, Park WS. TGFBR2 frameshift mutation in gastric tumors with microsatellite instability. Mol Cell Toxicol 2010. [DOI: 10.1007/s13273-010-0043-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Gholamin M, Moaven O, Memar B, Farshchian M, Naseh H, Malekzadeh R, Sotoudeh M, Rajabi-Mashhadi MT, Forghani MN, Farrokhi F, Abbaszadegan MR. Overexpression and interactions of interleukin-10, transforming growth factor beta, and vascular endothelial growth factor in esophageal squamous cell carcinoma. World J Surg 2009; 33:1439-45. [PMID: 19440651 DOI: 10.1007/s00268-009-0070-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Sharing the role of immune suppression, interleukin-10 (IL-10), transforming growth factor beta (TGF-beta), and vascular endothelial growth factor (VEGF) are critical genes in several aspects of tumorigenesis. To elucidate the role of these cytokines in esophageal squamous cell carcinoma (ESCC), their relative mRNA expression in tumoral tissue compared with corresponding tumor-free tissue was evaluated. METHODS A total of 49 patients with histologically confirmed ESCC were included in the study prior to any therapeutic interventions. Quantitative analysis of the mRNA expression was performed by real-time reverse transcription-polymerase chain reaction and the clinicopathologic associations were assessed. RESULTS The mRNA of IL-10, VEGF, and TGF-beta was frequently overexpressed in 53.2%, 44.9%, and 37.5% of ESCC patients, respectively. TGF-beta was significantly co-expressed with IL-10 and with VEGF. Although VEGF was not independently associated with increased tumor size (p = 0.065), concomitant overexpression of VEGF with TGF-beta was significantly correlated with increased size of the tumor (p < 0.05). CONCLUSIONS Overexpression of IL-10, TGF-beta, and VEGF plays an important role in ESCC and consequently leads to the frequent event of immune evasion in ESCC. TGF-beta is concomitantly overexpressed with IL-10 and with VEGF in ESCC. A stimulatory signal from TGF-beta to VEGF is necessary for VEGF to promote tumor progression.
Collapse
Affiliation(s)
- Mehran Gholamin
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lundberg M, Pajusto M, Koskinen WJ, Mäkitie AA, Aaltonen LM, Mattila PS. Association between transforming growth factor beta1 genetic polymorphism and response to chemoradiotherapy in head and neck squamous cell cancer. Head Neck 2009; 31:664-72. [PMID: 19260117 DOI: 10.1002/hed.21014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Transforming growth factor beta (TGF-beta) is a pleiotropic cytokine that has diverse roles in cancer. Rate of production of the major isoform, TGF-beta1, is linked with rs1982073 single nucleotide polymorphism in TGFB1 gene signal sequence. METHODS Peripheral blood DNA of 175 head and neck squamous cell carcinoma patients were genotyped using real-time PCR and fluorescent probes. The median follow-up time was 2.9 years (range, 0.1-15.9 years). Survival was assessed using Cox regression. RESULTS Among the 38 patients who had received chemoradiotherapy without surgical resection the high-producer TGFB1 genotypes CC and CT were associated with a better disease-free and overall survival when compared with the low-producer TT genotype (hazard ratios for interaction 3.42, 95% CI 1.12-10.5 and 3.09, 95% CI 0.96-10.0, respectively). CONCLUSION Genetic polymorphism of the TGFB1 signal sequence is associated with the response to chemoradiotherapy. TGF-beta1 may sensitize cancer stem cells to chemoradiotherapy.
Collapse
Affiliation(s)
- Marie Lundberg
- Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
24
|
Combined analysis of EGF+61G>A and TGFB1+869T>C functional polymorphisms in the time to androgen independence and prostate cancer susceptibility. THE PHARMACOGENOMICS JOURNAL 2009; 9:341-6. [PMID: 19488063 DOI: 10.1038/tpj.2009.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proliferative mechanisms involving the epidermal growth factor (EGF) and transforming growth factor beta (TGF-beta(1)) ligands are potential alternative pathways for prostate cancer (PC) progression to androgen independence (AI). Thus, the combined effect of EGF and TGFB1 functional polymorphisms might modulate tumor microenvironment and consequently its development. We studied EGF+61G>A and TGFB1+869T>C functional polymorphisms in 234 patients with PC and 243 healthy individuals. Intermediate- and high-proliferation genetic profile carriers have increased risk for PC (odds ratio (OR)=3.76, P=0.007 and OR=3.98, P=0.004, respectively), when compared with low proliferation individuals. Multivariate analysis showed a significantly lower time to AI in the high proliferation group, compared with the low/intermediate proliferation genetic profile carriers (HR=2.67, P=0.039), after adjustment for age, metastasis and stage. Results suggest that combined analysis of target genetic polymorphisms may contribute to the definition of cancer susceptibility and pharmacogenomic profiles. Combined blockage of key molecules in proliferation signaling pathways could be one of the most promising strategies for androgen-independent prostate cancer.
Collapse
|
25
|
Kim KS, Jung HS, Chung YJ, Jung TS, Jang HW, Lee MS, Kim KW, Chung JH. Overexpression of USF increases TGF-beta1 protein levels, but G1 phase arrest was not induced in FRTL-5 cells. J Korean Med Sci 2008; 23:870-6. [PMID: 18955796 PMCID: PMC2580023 DOI: 10.3346/jkms.2008.23.5.870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of cellular growth and proliferation by G1 phase arrest or apoptosis. We investigated the association of TGF-beta1 with the anti-proliferative effect of upstream stimulatory factor (USF) in Fischer rat thyroid cell line (FRTL-5) cells. [methyl-(3)H] thymidine uptake was measured after treatment of FRTL-5 cells with TGF-beta1 to identify its anti-proliferative effect. USF-1 and USF-2 proteins were in vitro translated, and an electrophoretic mobility shift assay was performed to identify the interaction between USF and the TGF-beta1 promoter. FRTL-5 cells were transfected with USF cDNA, and then the expression of TGF-beta1 was examined with Northern and Western blotting. The cell cycle-regulating proteins associated with TGF-beta1 were also measured. TGF-beta1 significantly inhibited [methyl-(3)H] thymidine uptake in FRTL-5 cells. Two specific binding sites for USF were found in the TGF-beta1 promoter: -1,846 approximately -1,841 (CACATG) and -621 approximately -616 (CATGTG). Overexpression of USF increased both the mRNA levels and protein levels of TGF-beta1. However, the expression of cyclin D1, CDK4, cyclin E, and CDK2, and the phosphorylation of retinoblastoma protein remained unchanged. Overexpression of USF in FRTL-5 cells increased the expression of TGF-beta10 through specific binding to TGF-beta1 promoter. However, the USF-induced expression of TGF-beta1 did not cause G1 arrest.
Collapse
Affiliation(s)
| | - Hye Seung Jung
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Tae Sik Jung
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Won Jang
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kwang-Won Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hoon Chung
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Calabro AR, Konsoula R, Barile FA. Evaluation of in vitro cytotoxicity and paracellular permeability of intact monolayers with mouse embryonic stem cells. Toxicol In Vitro 2008; 22:1273-84. [PMID: 18468840 DOI: 10.1016/j.tiv.2008.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 12/14/2022]
Abstract
Mouse embryonic stem (mES) cells were induced to form intact monolayers in cell culture inserts, using combinations of extracellular matrix (ECM) components and growth factors (GFs). Progressive formation of intact monolayers was monitored using transepithelial electrical resistance (TEER) and passage of paracellular permeability (PP) markers. The mES cells were initially inoculated on inactivated mouse embryonic fibroblasts (MEFs) plus leukemia inhibitory factor (LIF). At 75% confluence, cells were passaged in the absence of MEF and LIF to stimulate formation of rounded multicellular aggregates (MA). After 4 days, cultures containing MA were transferred to culture inserts coated with ECM components only, and grown in the presence of selected individual GFs. An additional 10-14 days revealed confluent monolayers with TEER values of 500-700 ohms cm2 (Omega cm2). Monolayers grown on inserts coated with ECM components, such as fibronectin or collagen-IV, in the presence of epidermal growth factor or keratinocyte growth factor in the medium, yielded the highest TEER measurements when compared to cultures grown without GFs or ECM. Acute cytotoxicity (AC) studies with confluent monolayers of mES cells in 96-well plates indicated that there is a high correlation (R2=0.91) between cell viability and TEER for 24-h exposure time. Also, decrease in TEER is inversely proportional with increase in PP of markers. In comparison to standardized Registry of Cytotoxicity (RC) data and TEER measurements, MTT IC50 values for mES cells are lower. Thus, at equivalent concentrations for the same chemicals, cell viability decreases before the integrity of the monolayer is compromised. This system represents a novel approach for the manipulation of mES cells toward specific intact monolayers, as an in vitro model for biological monolayer formation, and most importantly, for applications to cytotoxicity testing.
Collapse
Affiliation(s)
- Anthony R Calabro
- St. John's University College of Pharmacy and Allied Health Professions, Department of Pharmaceutical Sciences, Toxicology Division, 8000 Utopia Parkway, Queens, NY 11439, United States
| | | | | |
Collapse
|
27
|
Intestinal adenomagenesis involves core molecular signatures of the epithelial-mesenchymal transition. J Mol Histol 2008; 39:283-94. [PMID: 18327651 DOI: 10.1007/s10735-008-9164-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/16/2008] [Indexed: 01/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) occurs commonly during carcinoma invasion and metastasis, but not during early tumorigenesis. Microarray data demonstrated elevation of vimentin, a mesenchymal marker, in intestinal adenomas from Apc Min/+ (Min) mice. We have tested the involvement of EMT in early tumorigenesis in mammalian intestines by following EMT-associated markers. Elevated vimentin RNA expression and protein production were detected within neoplastic cells in murine intestinal adenomas. Similarly, vimentin protein was detected in both adenomas and invasive adenocarcinomas of the human colon, but not in the normal colonic epithelium or in hyperplastic polyps. Expression of E-cadherin varied inversely with vimentin. In addition, the expression of fibronectin was elevated while that of E-cadherin decreased. Canonical E-cadherin suppressors, such as Snail, were not elevated in the same tumor. Elevated vimentin expression in the adenoma was not correlated with persistent Ras signaling, but was strongly correlated with reduced proliferation indices, active Wnt signaling, and TGF-beta signaling, as demonstrated by its dependence on Smad3. We designate our observations of expression of only some of the canonical features of EMT as "truncated EMT". These unexpected observations are interpreted as reflecting the involvement of a core of the EMT system during the tissue remodeling of early tumorigenesis.
Collapse
|
28
|
Rodriguez GC, Rimel B, Watkin W, Turbov JM, Barry C, Du H, Maxwell GL, Cline J. Progestin Treatment Induces Apoptosis and Modulates Transforming Growth Factor- in the Uterine Endometrium. Cancer Epidemiol Biomarkers Prev 2008; 17:578-84. [DOI: 10.1158/1055-9965.epi-07-0551] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Embryonal rhabdomyosarcoma secondary to an open fracture of the tibia: a case report and review of literature. South Med J 2008; 101:99-101. [PMID: 18176302 DOI: 10.1097/smj.0b013e31815d256e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Embryonal rhabdomyosarcoma (ERMS) is a highly malignant tumor in children and adolescents. It rarely occurs in adults. A 47-year-old patient presented with ERMS of the muscle flap transplant 20 years after an open type III-comminuted fracture of the lower leg. The affected leg was amputated. The patient refused adjuvant chemotherapy and one year after surgery remains disease-free and in good general condition.
Collapse
|
30
|
Lee YK, Hwang JT, Kim YM, Park OJ. Cell Survival, Apoptosis and AMPK-COX-2 Signaling Pathway of Mammary Tumor Cells after Genistein Treatment Combined with Estrogen. Prev Nutr Food Sci 2007. [DOI: 10.3746/jfn.2007.12.4.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Yang L, Avila H, Wang H, Trevino J, Gallick GE, Kitadai Y, Sasaki T, Boyd DD. Plasticity in urokinase-type plasminogen activator receptor (uPAR) display in colon cancer yields metastable subpopulations oscillating in cell surface uPAR density--implications in tumor progression. Cancer Res 2007; 66:7957-67. [PMID: 16912170 DOI: 10.1158/0008-5472.can-05-3208] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is becoming increasingly clear that tumor growth and progression is not entirely due to genetic aberrations but also reflective of tumor cell plasticity. It follows therefore that proteins contributing to tumor progression oscillate in their expression a contention yet to be shown. Because the urokinase-type plasminogen activator receptor (uPAR) promotes tumor growth and invasion, we determined whether its expression is itself plastic. In fluorescence-activated cell sorting (FACS), three independent colon cancer clonal populations revealed the expected Gaussian distribution for cell surface uPAR display. However, subcloning of cells collected from the trailing edge of the FACS yielded subpopulations, displaying low cell surface uPAR number. Importantly, these subclones spontaneously reverted to cells enriched in uPAR display, indicating a metastable phenotype. uPAR display plasticity was associated with divergent in vivo behavior with weak tumor growth and progression segregating with receptor deficiency. Mechanistically, reduced uPAR display reflected not repressed gene expression but a switch in uPAR protein trafficking from membrane insertion to shedding. To our knowledge, this is the first demonstration that uPAR cell surface density is oscillatory and we propose that such an event might well contribute to tumor progression.
Collapse
Affiliation(s)
- Lin Yang
- Department of Cancer Biology, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Song B, Margolin S, Skoglund J, Zhou X, Rantala J, Picelli S, Werelius B, Lindblom A. TGFBR1(*)6A and Int7G24A variants of transforming growth factor-beta receptor 1 in Swedish familial and sporadic breast cancer. Br J Cancer 2007; 97:1175-9. [PMID: 17848956 PMCID: PMC2360454 DOI: 10.1038/sj.bjc.6603961] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two common variants in transforming growth factor-β receptor 1 (TGFBR1), TGFBR1*6A and Int7G24A, A allele, have been shown to act as low-penetrance tumour susceptibility alleles in several common cancers, including breast cancer. We evaluated the TGFBR1 9A/6A and Int7G24A variant frequencies in two breast cancer cohorts; a population-based cohort of breast cancer with defined family history (n=459) and in breast cancer patients from a familial cancer clinic (n=340) and in 856 controls from the Stockholm region. The familial patients from both cohorts were further divided into high- and low-risk familial breast cancer based on pedigree analysis. There was no overall association with either variant and breast cancer risk. The TGFBR1*6A allelic frequency was, however, higher in low-risk familial breast cancer (0.138), compared to controls (0.106; P=0.04). No significant difference was found in the high-risk familial (0.102) or sporadic cases (0.109; P=0.83 and 0.83, respectively). TGFBR1*6A carrier status was further associated with a high-grade sporadic breast cancer (odds ratio: 2.27; 95% confidence interval: 1.01–5.11; P=0.049). These results indicate that the TGFBR1*6A variant may be associated with an increased risk of low-risk familial breast cancer and might be a marker for poorly differentiated breast cancer. The Int7G24A variant was not associated with breast cancer risk or clinical presentation of the disease including prognosis in our material.
Collapse
Affiliation(s)
- B Song
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
- Department of Pathology, Dalian Medical University, Dalian 116027, China
| | - S Margolin
- Department of Oncology, Karolinska University Hospital at Södersjukhuset, Stockholm 118 83, Sweden
- E-mail:
| | - J Skoglund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - X Zhou
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - J Rantala
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - S Picelli
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - B Werelius
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - A Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| |
Collapse
|
33
|
Abstract
Despite major advances in understanding the mechanisms leading to tumor immunity, a number of obstacles hinder the successful translation of mechanistic insights into effective tumor immunotherapy. Such obstacles include the ability of tumors to foster a tolerant microenvironment and the activation of a plethora of immunosuppressive mechanisms, which may act in concert to counteract effective immune responses. Here we discuss different strategies employed by tumors to thwart immune responses, including tumor-induced impairment of antigen presentation, the activation of negative costimulatory signals, and the elaboration of immunosuppressive factors. In addition, we underscore the influence of regulatory cell populations that may contribute to this immunosuppressive network; these include regulatory T cells, natural killer T cells, and distinct subsets of immature and mature dendritic cells. The current wealth of preclinical information promises a future scenario in which the synchronized blockade of immunosuppressive mechanisms may be effective in combination with other conventional strategies to overcome immunological tolerance and promote tumor regression.
Collapse
Affiliation(s)
- Gabriel A Rabinovich
- Division of Immunogenetics, Hospital de Clínicas José de San Martín, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
34
|
Daroqui CM, Ilarregui JM, Rubinstein N, Salatino M, Toscano MA, Vazquez P, Bakin A, Puricelli L, Bal de Kier Joffé E, Rabinovich GA. Regulation of galectin-1 expression by transforming growth factor beta1 in metastatic mammary adenocarcinoma cells: implications for tumor-immune escape. Cancer Immunol Immunother 2007; 56:491-9. [PMID: 16900348 PMCID: PMC11030564 DOI: 10.1007/s00262-006-0208-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/14/2006] [Indexed: 12/31/2022]
Abstract
Tumors escape from immune surveillance by producing immunosuppressive cytokines and proapototic factors, including TGF-beta and galectin-1 (Gal-1). Since immunosuppressive mechanisms might act in concert to confer tumor-immune privilege, we investigated the potential cross talk between TGF-beta and Gal-1 in highly metastatic mammary adenocarcinoma (LM3) cells. While Gal-1 treatment was not capable of regulating TGF-beta synthesis, a pronounced and dose-dependent increase in Gal-1 expression was observed when tumor cells were treated with TGF-beta(1. )This effect was also observed in the murine lung adenocarcinoma LP07 and in the human breast adenocarcinoma MCF-7 cell lines. TGF-beta1-mediated upregulation of Gal-1 expression was specifically mediated by TbetaRI and TbetaRII, since it was abrogated when LM3 cells were infected with retroviral vectors expressing the dominant negative forms of these receptors. In addition, gal-1 gene sequence analysis revealed the presence of three putative binding sites for Smad4 and Smad3 transcription factors, consistent with the ability of TGF-beta(1) to trigger a Smad-dependent signaling pathway in these cells. Thus, TGF-beta(1) may trigger a Smad-dependent pathway to control Gal-1 expression, suggesting that distinct mechanisms might cooperate in tilting the balance toward an immunosuppressive environment at the tumor site.
Collapse
Affiliation(s)
- Cecilia M. Daroqui
- Research Area, Institute of Oncology “Angel H. Roffo”, University of Buenos Aires, San Martin Avenue 5481, Buenos Aires, Argentina
- Present Address: Department of Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY USA
| | - Juan M. Ilarregui
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín”, Faculty of Medicine, University of Buenos Aires, Avenue Córdoba 2351. 3er Piso. (1120) Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Rubinstein
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín”, Faculty of Medicine, University of Buenos Aires, Avenue Córdoba 2351. 3er Piso. (1120) Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Salatino
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín”, Faculty of Medicine, University of Buenos Aires, Avenue Córdoba 2351. 3er Piso. (1120) Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Marta A. Toscano
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín”, Faculty of Medicine, University of Buenos Aires, Avenue Córdoba 2351. 3er Piso. (1120) Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Vazquez
- Research Area, Institute of Oncology “Angel H. Roffo”, University of Buenos Aires, San Martin Avenue 5481, Buenos Aires, Argentina
| | - Andrei Bakin
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Lydia Puricelli
- Research Area, Institute of Oncology “Angel H. Roffo”, University of Buenos Aires, San Martin Avenue 5481, Buenos Aires, Argentina
| | - Elisa Bal de Kier Joffé
- Research Area, Institute of Oncology “Angel H. Roffo”, University of Buenos Aires, San Martin Avenue 5481, Buenos Aires, Argentina
| | - Gabriel A. Rabinovich
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín”, Faculty of Medicine, University of Buenos Aires, Avenue Córdoba 2351. 3er Piso. (1120) Ciudad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
35
|
Brokelman WJA, Holmdahl L, Bergström M, Falk P, Klinkenbijl JHG, Klinkonbijl JHG, Reijnen MMPJ, Reijnen MMPJ. Peritoneal transforming growth factor beta-1 expression during laparoscopic surgery: a clinical trial. Surg Endosc 2007; 21:1537-41. [PMID: 17332965 DOI: 10.1007/s00464-006-9164-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 09/27/2006] [Accepted: 10/01/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Transforming growth factor-beta 1 (TGF-beta1) is a growth factor involved in various biologic processes, including peritoneal wound healing and dissemination of malignancies. Laparoscopic surgery is evolving rapidly, and indications are increasing. The peritoneal TGF-beta1 expression during laparoscopic surgery is unknown. METHODS For this study, 50 patients scheduled for laparoscopic cholecystectomy were randomized into five groups, then surgically treated with various pressures, light intensities, and dissection devices. Peritoneal biopsies were taken at the beginning and end of surgery. Tissue concentrations of total and active TGF-beta1 were measured using enzyme-linked immunosorbent assay (ELISA) techniques. RESULTS There was no significant difference in either total or active TGF-beta1 concentration between peritoneal biopsies taken at the start of surgery and samples taken at the end of the procedure. Patients who underwent surgery with the ultrasonic scalpel had significant lower levels of both active (p < 0.005) and total (p < 0.01) TGF-beta1 at the end of surgery than patients treated with electrocautery. Patients who had surgery with a high light intensity had significantly lower levels of total TGF-beta1 levels (p < 0.005) with an unchanged active part than patients who had surgery with low light intensity. CONCLUSION The choice of dissection device and the light intensity used in laparoscopic surgery affect peritoneal TGF-beta1 concentrations, indicating that peritoneal biology can be affected by laparoscopic surgery. Because TGF-beta1 is involved in various biologic processes in the peritoneal cavity, this observation may have important clinical consequences.
Collapse
Affiliation(s)
- Walter J A Brokelman
- Department of Surgery, Alysis Zorggroep, Locatie Rijnstate Wagnerlaan, 55 6815 AD, Arnhem, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Quan C, Park MS, Jo SW, Lee SC, Kim WJ. Effects of Transforming Growth Factor-β1 and Its Receptor on the Development, Recurrence and Progression of Human Bladder Cancer. Korean J Urol 2006. [DOI: 10.4111/kju.2006.47.4.426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Changyi Quan
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Moon-Seon Park
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sung-Whan Jo
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang-Cheol Lee
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
37
|
Luo X, Slater JM, Gridley DS. Enhancement of radiation effects by pXLG-mEndo in a lung carcinoma model. Int J Radiat Oncol Biol Phys 2005; 63:553-64. [PMID: 15964154 DOI: 10.1016/j.ijrobp.2005.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/19/2005] [Accepted: 01/19/2005] [Indexed: 12/20/2022]
Abstract
PURPOSE Endostatin is a potent antiangiogenesis protein with little or no toxicity that has potential to enhance radiotherapy. The major goal of this study was to evaluate the combination of radiation and endostatin gene therapy in a preclinical lung cancer model. METHODS Plasmid pXLG-mEndo, constructed in our laboratory, includes the mouse endostatin gene cloned into the pWS4 vector. The kinetics of endostatin expression and efficacy of the pXLG-mEndo and radiation ((60)Co gamma-rays) combination was evaluated in the C57BL/6 mouse-Lewis lung carcinoma (LLC) model. The LLC cells were implanted s.c. and pXLG-mEndo was injected intratumorally 12-14 days later without any transfection agent; a dose of 10 Gy radiation was applied approximately 16 h thereafter. Some groups received each modality twice. Endostatin, vascular endothelial growth factor (VEGF), and transforming growth factor-beta1 (TGF-beta1) were quantified in plasma and tumors, and tumor vasculature was examined. RESULTS Endostatin expression within LLC tumors peaked on Day 7 after pXLG-mEndo injection. Addition of radiation to pXLG-mEndo significantly enhanced the level of tumor endostatin compared with plasmid alone (p < 0.05). Tumor growth was significantly delayed in mice receiving pXLG-mEndo plus radiation compared with no treatment (p < 0.005), radiation (p < 0.05), and control plasmid (p < 0.05). The number of LLC tumor vessels was reduced after combined treatment (p < 0.05), and significant treatment-related changes were observed in both VEGF and TGF-beta1. CONCLUSIONS The data demonstrate that delivery of endostatin by pXLG-mEndo as an adjuvant to radiation can significantly enhance the antitumor efficacy of radiotherapy in the LLC mouse tumor model and support further investigation of this unique combination therapy.
Collapse
Affiliation(s)
- Xian Luo
- Department of Biochemistry and Microbiology, Loma Linda University and Medical Center, Loma Linda, CA 92354, USA
| | | | | |
Collapse
|
38
|
Thompson TB, Lerch TF, Cook RW, Woodruff TK, Jardetzky TS. The Structure of the Follistatin:Activin Complex Reveals Antagonism of Both Type I and Type II Receptor Binding. Dev Cell 2005; 9:535-43. [PMID: 16198295 DOI: 10.1016/j.devcel.2005.09.008] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 09/13/2005] [Accepted: 09/14/2005] [Indexed: 11/18/2022]
Abstract
TGF-beta ligands stimulate diverse cellular differentiation and growth responses by signaling through type I and II receptors. Ligand antagonists, such as follistatin, block signaling and are essential regulators of physiological responses. Here we report the structure of activin A, a TGF-beta ligand, bound to the high-affinity antagonist follistatin. Two follistatin molecules encircle activin, neutralizing the ligand by burying one-third of its residues and its receptor binding sites. Previous studies have suggested that type I receptor binding would not be blocked by follistatin, but the crystal structure reveals that the follistatin N-terminal domain has an unexpected fold that mimics a universal type I receptor motif and occupies this receptor binding site. The formation of follistatin:BMP:type I receptor complexes can be explained by the stoichiometric and geometric arrangement of the activin:follistatin complex. The mode of ligand binding by follistatin has important implications for its ability to neutralize homo- and heterodimeric ligands of this growth factor family.
Collapse
Affiliation(s)
- Thomas B Thompson
- Department of Biochemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Transforming growth factor-beta (TGF-beta) plays an essential role in regulating the homeostasis of cells in the lymphoid lineage. TGF-beta signaling is not required for normal thymopoiesis, but is essential for regulating the expansion, activation, and effector function of the mature CD4+ and CD8+ T cells in the peripheral lymphoid organs and target tissues. Recent studies in both mice and humans have elucidated an important and complex role for TGF-beta in regulatory T-cell biology. Disruption of TGF-beta signaling in T cells impairs the maintenance of regulatory T cells, results in the expansion of activated effector T cells, and is associated with the production of cytokines that have major effects on cells in their environment. While autoimmunity and inflammation are the principal phenotypes associated with the abrogation of TGF-beta signaling in T cells in mice, emerging evidence now also directly links Smad-dependent TGF-beta signaling in T cells to the suppression of epithelial neoplasia. The TGF-beta receptor-activated Smad3 plays a critical role in mediating many of the inhibitory effects of TGF-beta signaling in T cells, and has now been established as an important suppressor of leukemogenesis. These studies are increasing our awareness of the many complex mechanisms through which TGF-beta signaling controls the pathogenesis of cancer.
Collapse
Affiliation(s)
- John J Letterio
- The Laboratory of Cell Regulation and Carcinogenesis, The Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA.
| |
Collapse
|