1
|
Suaifan GARY, Shehadeh MB, Darwish R, Alterify M, Abu Jbara W, Abu Jbara F, Zourob M. Magnetic Nanobead Paper-Based Biosensors for Colorimetric Detection of Candida albicans. ACS OMEGA 2024; 9:43005-43015. [PMID: 39464470 PMCID: PMC11500164 DOI: 10.1021/acsomega.4c05941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024]
Abstract
Candida albicans (C. albicans) infections pose significant challenges in clinical settings due to their high morbidity and mortality rates in addition to their role in tumor progression. Current diagnostic methods, while effective, often suffer from limitations that hinder a timely intervention. Therefore, there is an urgent need for a simple, sensitive, specific, and low-cost colorimetric biosensor for the rapid detection of C. albicans. This new biosensing platform comprises a gold platform carrying a specific C. albicans peptide substrate conjugated with magnetic nanobeads. Hence, the sensing platform was black, and the operation was based on the proteolytic activity of C. albicans, offering a visual color change to yellow upon cleavage of the conjugated peptide substrates on the magnetic nanobeads. Specificity testing demonstrated the biosensor's ability to distinguish C. albicans from other Candida species and microorganisms, while stability testing confirmed its long-term performance. Clinical testing revealed the biosensor's high sensitivity in detecting C. albicans in both standard cultures and clinically isolated samples with a lower limit of detestation of 3.5 × 103 CFU/mL. Although further validation against conventional and molecular methods is warranted, our colorimetric biosensor holds promise as a rapid (5 min) and cheap (Less than 2 $) point-of-care solution for the early detection of C. albicans infections, facilitating a timely intervention and improving patient outcomes in clinical practice.
Collapse
Affiliation(s)
- Ghadeer A. R. Y. Suaifan
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mayadah B. Shehadeh
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Rula Darwish
- Department
of Pharmaceutics and Pharmaceutical Biotechnology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Manar Alterify
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Ward Abu Jbara
- School
of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Fahid Abu Jbara
- School
of Dentistry, The University of Jordan, Amman 11942, Jordan
| | - Mohammed Zourob
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
- Department
of Chemistry, Alfaisal University, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
- King Faisal
Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia
| |
Collapse
|
2
|
Surface Plasmon Resonance for Protease Detection by Integration of Homogeneous Reaction. BIOSENSORS-BASEL 2021; 11:bios11100362. [PMID: 34677318 PMCID: PMC8534046 DOI: 10.3390/bios11100362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
The heterogeneous assays of proteases usually require the immobilization of peptide substrates on the solid surface for enzymatic hydrolysis reactions. However, immobilization of peptides on the solid surface may cause a steric hindrance to prevent the interaction between the substrate and the active center of protease, thus limiting the enzymatic cleavage of the peptide. In this work, we reported a heterogeneous surface plasmon resonance (SPR) method for protease detection by integration of homogeneous reaction. The sensitivity was enhanced by the signal amplification of streptavidin (SA)-conjugated immunoglobulin G (SA-IgG). Caspase-3 (Cas-3) was determined as the model. A peptide labeled with two biotin tags at the N- and C-terminals (bio-GDEVDGK-bio) was used as the substrate. In the absence of Cas-3, the substrate peptide was captured by neutravidin (NA)-covered SPR chip to facilitate the attachment of SA-IgG by the avidin-biotin interaction. However, once the peptide substrate was digested by Cas-3 in the aqueous phase, the products of bio-GDEVD and GK-bio would compete with the substrate to bond NA on the chip surface, thus limiting the attachment of SA-IgG. The method integrated the advantages of both heterogeneous and homogeneous assays and has been used to determine Cas-3 inhibitor and evaluate cell apoptosis with satisfactory results.
Collapse
|
3
|
Low-cost colorimetric diagnostic screening assay for methicillin resistant Staphylococcus aureus. Talanta 2021; 225:121946. [PMID: 33592701 DOI: 10.1016/j.talanta.2020.121946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
The timely diagnosis of MRSA in clinical samples helps to reduce the attendant morbidity/mortality associated with infection due to the organism. The early institution of appropriate therapy or deployment of infection control protocols are dependent on a timely report from the microbiology laboratory. Various assays currently used in the identification of MRSA are associated with inherent shortcomings, thus there is a need to explore newer diagnostic frontiers that can eliminate some of these short comings at a relatively cheap, timely, specific and sensitive manner. We present in this study a MRSA specific optical immunosensor to detect the presence of the pathogen on contaminated surface using control and patient strains. Results revealed a detection limits of 103 CFU mL-1 upon visual observation, and 29 CFU mL-1 as determined by the linear regression equation, following the use of ImageJ to quantify activated cotton swab color intensity. The specificity of the sensor was examined by blind testing a panel of non-MRSA bacteria (E. coli, S. aureus and S. epidermis). Negative visual read-out was observed for all tested non-specific bacteria except for MRSA. Assay takes an average of 5 min and presents a powerful point-of-care diagnostic platform for the detection of MRSA.
Collapse
|
4
|
Raji MA, Suaifan G, Shibl A, Weber K, Cialla-May D, Popp J, Al-Kattan K, Zourob M. Aptasensor for the detection of Methicillin resistant Staphylococcus aureus on contaminated surfaces. Biosens Bioelectron 2021; 176:112910. [PMID: 33395571 DOI: 10.1016/j.bios.2020.112910] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022]
Abstract
There is mounting evidence that contaminated hospital environment plays a crucial role in the transmission of nosocomial pathogens such as MRSA. The institution of infection control protocols is predicated on the early laboratory detection of the pathogen from relevant samples. Processing of environmental samples for the presence of bacterial contaminants in the clinical environment is poorly standardized when compared with analysis of clinical samples. The various laboratory methods available for processing environmental samples are difficult to standardized and most require a long turnaround time before results are available. In this study, we present a report of the performance of a novel pathogen aptasensor swab designed to qualitatively and quantitatively detect MRSA, on contaminated non-absorbable surfaces. The visual detection limit of the MRSA aptasensor swab was less than 100 CFU/ml and theoretically using a standard curve, was 2 CFU/ml. A relatively short turnaround time of 5 min was established for the assay while the linear range of quantitation was 102-105 CFU/ml. Engineered aptasensor targets MRSA selectively and binds to none of the other tested bacterial pathogen, on a multi-contaminated surface. This novel detection tool was easy to use and relatively cheap to produce.
Collapse
Affiliation(s)
- Muhabat Adeola Raji
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia
| | - Ghadeer Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman-Jordan, P.O. Box 11942, Amman, Jordan
| | - Atef Shibl
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia
| | - Karina Weber
- InfectoGnostics Research Campus Jena, Center for Applied Research, Friedrich-Schiller-University, Philosophenweg7, Jena, 07743, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance, Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Dana Cialla-May
- InfectoGnostics Research Campus Jena, Center for Applied Research, Friedrich-Schiller-University, Philosophenweg7, Jena, 07743, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance, Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Jürgen Popp
- InfectoGnostics Research Campus Jena, Center for Applied Research, Friedrich-Schiller-University, Philosophenweg7, Jena, 07743, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance, Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Khaled Al-Kattan
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, College of Science, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia.
| |
Collapse
|
5
|
A novel immunosensor for the monitoring of PSA using binding of biotinylated antibody to the prostate specific antigen based on nano-ink modified flexible paper substrate: efficient method for diagnosis of cancer using biosensing technology. Heliyon 2020; 6:e04327. [PMID: 32671252 PMCID: PMC7347657 DOI: 10.1016/j.heliyon.2020.e04327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer is the most significant reason for deaths in men, outside of lung cancer. The clinical examination of cancer proteins or biomarkers is extremely significant in early examination and monitoring of recurrence of disease after treatment. Biomarkers have expanded great clinical significance owing to their extensive spectra in the identification, elimination, early diagnosis and cure of cancer. In this work, novel, ultrasensitive sandwich-type portable bio device based on citrate-capped silver nanoparticles (Citrate-AgNPs) modified graphene quantum dots (GQDs) nano ink for detection of Prostate specific antigen (PSA) was fabricated. Functionalized cysteamine with gold nanoparticles (Cys-AuNPs) was also utilized to amplify the signal. It provides a good and high external area for the immobilization biotinylated antibody of PSA in the large amount. For the first time, citrate-AgNPs-GQDs nano ink was directly written on the cellulose paper surface (ivory sheet and photographic paper) and modified by Cys-AuNPs. So, final structure of the immunodevices was completed after including of Ab1 and PSA (antigen). The immunosensors were used for the recognition of PSA by using DPVs (differential pulse voltammetry) technique. The obtained low limit of quantification (LLOQ) of the first immunodevice (ivory sheet/Citrate AgNPs-GQDs nano-ink/CysA-Au NPs/Ab1/BSA/PSA/Ab2) was 0.07 μg/L and the linear range for the calibration plot was from 0.07 to 60 μg/L. Also, the achieved LLOQ of the second immunodevice (photographic paper/Citrate AgNPs-GQDs nano-ink/Cys-Au NPs/Ab1/BSA/PSA/Ab2) was 0.05 μg/L with the linear range of 10 to 0.05 μg/L. It is noteworthy that, proposed immunoassay was effectively utilized to the monitoring of PSA glycoprotein in unprocessed human plasma sample. Obtained results show that the constructed immunosensor is able to apply as portable bio device for the clinical analysis of PSA in human plasma samples.
Collapse
|
6
|
Alhogail S, Suaifan GA, Bikker FJ, Kaman WE, Weber K, Cialla-May D, Popp J, Zourob MM. Rapid Colorimetric Detection of Pseudomonas aeruginosa in Clinical Isolates Using a Magnetic Nanoparticle Biosensor. ACS OMEGA 2019; 4:21684-21688. [PMID: 31891046 PMCID: PMC6933554 DOI: 10.1021/acsomega.9b02080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/08/2019] [Indexed: 05/21/2023]
Abstract
A rapid, sensitive, and specific colorimetric biosensor based on the use of magnetic nanoparticles (MNPs) was designed for the detection of Pseudomonas aeruginosa in clinical samples. The biosensing platform was based on the measurement of P. aeruginosa proteolytic activity using a specific protease substrate. At the N-terminus, this substrate was covalently bound to MNPs and was linked to a gold sensor surface via cystine at the C-terminus of the substrates. The golden sensor appears black to naked eyes because of the coverage of the MNPs. However, upon proteolysis, the cleaved peptide-MNP moieties will be attracted by an external magnet, revealing the golden color of the sensor surface, which can be observed by the naked eye. In vitro, the biosensor was able to detect specifically and quantitatively the presence of P. aeruginosa with a detection limit of 102 cfu/mL in less than 1 min. The colorimetric biosensor was used to test its ability to detect in situ P. aeruginosa in clinical isolates from patients. This biochip is anticipated to be useful as a rapid point-of-care device for the diagnosis of P. aeruginosa-related infections.
Collapse
Affiliation(s)
- Sahar Alhogail
- Department
of Clinical Laboratory Science, King Saud
University, Ad Diriyah District, 11433 Riyadh, Kingdom of Saudi
Arabia
- Department
of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al
Takhassusi Road, 11533 Riyadh, Saudi Arabia
| | - Ghadeer A.R.Y. Suaifan
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, 11942 Amman, Jordan
| | - Floris J. Bikker
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Wendy E. Kaman
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
- Department
of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Wytemaweg 80, 3015 CE Rotterdam, The Netherlands
| | - Karina Weber
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics
Research Campus Jena, Center for Applied
Research, Philosophenweg
7, 07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Dana Cialla-May
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics
Research Campus Jena, Center for Applied
Research, Philosophenweg
7, 07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Jürgen Popp
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics
Research Campus Jena, Center for Applied
Research, Philosophenweg
7, 07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Mohammed M. Zourob
- Department
of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al
Takhassusi Road, 11533 Riyadh, Saudi Arabia
- King
Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia
- E-mail:
| |
Collapse
|
7
|
Suaifan GARY, Zourob M. Portable paper-based colorimetric nanoprobe for the detection of Stachybotrys chartarum using peptide labeled magnetic nanoparticles. Mikrochim Acta 2019; 186:230. [DOI: 10.1007/s00604-019-3313-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
|
8
|
Xia N, Deng D, Wang Y, Fang C, Li SJ. Gold nanoparticle-based colorimetric method for the detection of prostate-specific antigen. Int J Nanomedicine 2018; 13:2521-2530. [PMID: 29731627 PMCID: PMC5923276 DOI: 10.2147/ijn.s154046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Prostate-specific antigen (PSA), a serine protease, is a biomarker for preoperative diagnosis and screening of prostate cancer and monitoring of its posttreatment. Methods In this work, we reported a colorimetric method for clinical detection of PSA using gold nanoparticles (AuNPs) as the reporters. The method is based on ascorbic acid (AA)-induced in situ formation of AuNPs and Cu2+-catalyzed oxidation of AA. Specifically, HAuCl4 can be reduced into AuNPs by AA; Cu2+ ion can catalyze the oxidation of AA by O2 to inhibit the formation of AuNPs. In the presence of the PSA-specific peptide (DAHSSKLQLAPP)-modified gold-coated magnetic microbeads (MMBs; denoted as DAHSSKLQLAPP-MMBs), complexation of Cu2+ by the MMBs through the DAH-Cu2+ interaction depressed the catalyzed oxidation of AA and thus allowed for the formation of red AuNPs. However, once the peptide immobilized on the MMB surface was cleaved by PSA, the DAHSSKLQ segment would be released. The resultant LAPP fragment remaining on the MMB surface could not sequestrate Cu2+ to depress its catalytic activity toward AA oxidation. Consequently, no or less AuNPs were generated. Results The linear range for PSA detection was found to be 0~0.8 ng/mL with a detection limit of 0.02 ng/mL. Because of the separation of cleavage step and measurement step, the interference of matrix components in biological samples was avoided. Conclusion The high extinction coefficient of AuNPs facilitates the colorimetric analysis of PSA in serum samples. This work is helpful for designing of other protease biosensors by matching specific peptide substrates.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| | - Dehua Deng
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, People's Republic of China
| | - Yiru Wang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| | - Chao Fang
- School of Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Su-Juan Li
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| |
Collapse
|
9
|
On site visual detection of Porphyromonas gingivalis related periodontitis by using a magnetic-nanobead based assay for gingipains protease biomarkers. Mikrochim Acta 2018; 185:149. [PMID: 29594603 DOI: 10.1007/s00604-018-2677-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/27/2022]
Abstract
Porphyromonas gingivalis (P. gingivalis) is a pathogen causing periodontitis. A rapid assay is described for the diagnosis of periodontal infections related to P. gingivalis. The method is making use of gingipains, a group of P. gingivalis specific proteases as a detection biomarker. Magnetic-nanobeads were labeled with gingipain-specific peptide substrates and immobilized on a gold biosensing platform via gold-thiol linkage. As a result of this, the color of the gold layer turns black. Upon cleavage of the immobilized substrates by gingipains, the magnetic-nanobeads-peptide fragments were attracted by a magnet so that the golden surface color becomes visible again. This assay is highly sensitive and specific. It is capable of detecting as little as 49 CFU·mL-1 of P. gingivalis within 30 s. Examination of periodontitis patients and healthy control saliva samples showed the potential of the assay. The simplicity and rapidity of the assay makes it an effective point-of-care device. Graphical abstract Schematic of the assay for the detection of P. gingivalis proteases as one of the promising biomarkers associated with periodontal diseases.
Collapse
|
10
|
Suaifan GA, Alhogail S, Zourob M. Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens Bioelectron 2017; 90:230-237. [DOI: 10.1016/j.bios.2016.11.047] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 01/26/2023]
|
11
|
Alhogail S, Suaifan GA, Zourob M. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen. Biosens Bioelectron 2016; 86:1061-1066. [DOI: 10.1016/j.bios.2016.07.043] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022]
|
12
|
Wignarajah S, Suaifan GARY, Bizzarro S, Bikker FJ, Kaman WE, Zourob M. Colorimetric Assay for the Detection of Typical Biomarkers for Periodontitis Using a Magnetic Nanoparticle Biosensor. Anal Chem 2015; 87:12161-8. [PMID: 26631371 DOI: 10.1021/acs.analchem.5b03018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Periodontitis is a chronic disease which affects at least 10% of the population. If untreated, periodontitis can lead to teeth loss. Unfortunately, current diagnostic tests are limited in their sensitivity and specificity. In this study, a novel multiplex hand-held colorimetric diagnostic biosensor, using two typical inflammatory salivary biomarkers, Human Neutrophil Elastase (HNE) and Cathepsin-G, was constructed as proof of concept to potentially detect periodontitis. The biosensing method was based on the measurement of proteolytic activity using specific proteases probes. These probes consist of specific proteases substrates covalently bound to a magnetic bead from one end and to the gold sensor surface by the other end. When intact, this renders the golden sensor black. Upon proteolysis, the cleaved magnetic beads will be attracted by an external magnet revealing the golden color of the sensor surface observable by the naked eye. The biosensor was capable of specific and quantitative detection of HNE and Cathepsin-G in solution and in spiked saliva samples with a lower detection limit of 1 pg/mL and 100 fg/mL for HNE and Cathepsin-G, respectively. Examination of periodontitis patients' sample and a healthy control showed the potential of the multiplex biosensor to detect the presence of HNE and Cathepsin-G activity in situ. This approach is anticipated to be a useful biochip array amenable to low-cost point-of-care devices.
Collapse
Affiliation(s)
- Shayalini Wignarajah
- Centre of Biomedical Engineering, Cranfield University , Cranfield, Bedfordshire MK43 0AL, U.K.,Department of Chemistry, Alfasal University , Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Kingdom of Saudi Arabia
| | - Ghadeer A R Y Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan , Amman, 11942 Jordan
| | - Sergio Bizzarro
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam , Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam , Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Wendy E Kaman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam , Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center , Wytemaweg 80, 3015 CE Rotterdam, The Netherlands
| | - Mohammed Zourob
- Department of Chemistry, Alfasal University , Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Herpoldt KL, Artzy-Schnirman A, Christofferson AJ, Makarucha AJ, de la Rica R, Yarovsky I, Stevens MM. Designing Fluorescent Peptide Sensors with Dual Specificity for the Detection of HIV-1 Protease. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2015; 27:7187-7195. [PMID: 28479671 PMCID: PMC5419500 DOI: 10.1021/acs.chemmater.5b03651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
HIV-1 protease is a key enzyme in the life cycle of HIV/AIDS, as it is responsible for the formation of the mature virus particle. We demonstrate here that phage-display peptides raised against this enzyme can be used as peptide sensors for the detection of HIV-1 protease in a simple, one-pot assay. The presence of the enzyme is detected through an energy transfer between two peptide sensors when simultaneously complexed with the target protein. The multivalent nature of this assay increases the specificity of the detection by requiring all molecules to be interacting in order for there to be a FRET signal. We also perform molecular dynamics simulations to explore the interaction between the protease and the peptides in order to guide the design of these peptide sensors and to understand the mechanisms which cause these simultaneous binding events. This approach aims to facilitate the development of new assays for enzymes that are not dependent on the cleavage of a substrate and do not require multiple washing steps.
Collapse
Affiliation(s)
- Karla-Luise Herpoldt
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Arbel Artzy-Schnirman
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | | | - Adam J. Makarucha
- Health Innovations Research Institute, RMIT University, GPO Box 2476, Victoria 3001, Australia
| | - Roberto de la Rica
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Irene Yarovsky
- Health Innovations Research Institute, RMIT University, GPO Box 2476, Victoria 3001, Australia
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| |
Collapse
|