1
|
[Preanalytics and biobanking : Influence of preanalytical factors on tissue sample quality]. DER PATHOLOGE 2018; 39:297-302. [PMID: 29619508 DOI: 10.1007/s00292-018-0437-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Access to well-characterized human biosamples is one of the most important prerequisites for modern biomedical research. Biobanks play a decisive role here, as they provide corresponding biosamples for planned analyses. Many interfering factors influencing the quality of biosamples have to be taken into account. In addition to logistical, ethical, and data protection aspects, preanalytical variables in the context of sample acquisition, storage, and processing should be mentioned in particular. In this paper, therefore, the most important preanalytical influencing factors are presented systematically and an overview of current national and international activities for the standardized recording of these factors is provided with the goal of being able to better understand their influence on results and to minimize them in the near future.
Collapse
|
2
|
Baldelli E, Calvert V, Hodge A, VanMeter A, Petricoin EF, Pierobon M. Reverse Phase Protein Microarrays. Methods Mol Biol 2018; 1606:149-169. [PMID: 28502000 DOI: 10.1007/978-1-4939-6990-6_11] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While genes and RNA encode information about cellular status, proteins are considered the engine of the cellular machine, as they are the effective elements that drive all cellular functions including proliferation, migration, differentiation, and apoptosis. Consequently, investigations of the cellular protein network are considered a fundamental tool for understanding cellular functions.Alteration of the cellular homeostasis driven by elaborate intra- and extracellular interactions has become one of the most studied fields in the era of personalized medicine and targeted therapy. Increasing interest has been focused on developing and improving proteomic technologies that are suitable for analysis of clinical samples. In this context, reverse-phase protein microarrays (RPPA) is a sensitive, quantitative, high-throughput immunoassay for protein analyses of tissue samples, cells, and body fluids.RPPA is well suited for broad proteomic profiling and is capable of capturing protein activation as well as biochemical reactions such as phosphorylation, glycosylation, ubiquitination, protein cleavage, and conformational alterations across hundreds of samples using a limited amount of biological material. For these reasons, RPPA represents a valid tool for protein analyses and generates data that help elucidate the functional signaling architecture through protein-protein interaction and protein activation mapping for the identification of critical nodes for individualized or combinatorial targeted therapy.
Collapse
Affiliation(s)
- Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA
| | - Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA
| | - Amy VanMeter
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA.
| |
Collapse
|
3
|
Schröter J, Fülöp A, Hopf C, Schiller J. The combination of 2,5-dihydroxybenzoic acid and 2,5-dihydroxyacetophenone matrices for unequivocal assignment of phosphatidylethanolamine species in complex mixtures. Anal Bioanal Chem 2018; 410:2437-2447. [PMID: 29445834 DOI: 10.1007/s00216-018-0926-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022]
Abstract
Unequivocal assignment of phospholipid peaks in complex mixtures is difficult if only the m/z values but no tandem mass spectrometry (MS/MS) data are available. This is usually the case for matrix-assisted laser/desorption ionization time-of-flight (MALDI-TOF) MS imaging experiments and the analysis has normally to be performed without prior separation. Another problem might be the often matrix-induced loss of one methyl group in phosphatidylcholine (PC) species, which makes them detectable as negative ions becoming isomers of some phosphatidylethanolamines (PEs). Selected lipid mixtures of known compositions were investigated by negative ion MALDI-TOF MS and various imaging experiments. In addition to common matrices such as 2,5-dihydroxybenzoic acid (DHB) and 9-aminoacridine (9-AA), different binary matrices, including 2,5-dihydroxyacetophenone (2,5-DHAP) as matrix additive to DHB, were tested to probe their performance in both ionization modes. Beside artificial PC and PE mixtures of known compositions, egg yolk and liver extracts as well as cryosections from liver and pancreas tissue were selected as biologically relevant systems. The majority of the binary MALDI matrices used here leads to the loss of a methyl group from PC in the negative ion mode, which makes the clear identification of PE species ambiguous. However, this problem does not apply if a mixture of DHB and 2,5-DHAP is used. Therefore, the application of DHB/2,5-DHAP as matrix is a simple method to unequivocally identify PEs even in complex mixtures and tissue sections as negative ions and without the necessity to separate the individual lipid classes prior to MS detection. Graphical abstract Many common MALDI matrices (such as 9-AA) induce the loss of a methyl group from PC rendering the PC detectable as negative ion. These ions (m/z 744.6 in the upper trace) represent isomers of typical PE species. It will be shown that this problem can be avoided if mixtures between DHB and 2,5-DHAP are applied. At these conditions, POPC is exclusively detectable as a matrix adduct with DHB (at m/z 912.6, lower trace) and does not interfere with PE. This approach can also be used in MALDI MS imaging.
Collapse
Affiliation(s)
- Jenny Schröter
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany.
| | - Annabelle Fülöp
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, 68163, Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, 68163, Mannheim, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| |
Collapse
|
4
|
Abstract
Bone metastasis from primary cancer sites creates diagnostic and therapeutic challenges. Calcified bone is difficult to biopsy due to tissue hardness and patient discomfort, thus limiting the frequency and availability of bone/bone marrow biopsy material for molecular profiling. In addition, bony tissue must be demineralized (decalcified) prior to histomorphologic analysis. Decalcification processes rely on three main principles: (a) solubility of calcium salts in an acid, such as formic or nitric acid; (b) calcium chelation with ethylenediaminetetraacetic acid (EDTA); or (c) ion-exchange resins in a weak acid. A major roadblock in molecular profiling of bony tissue has been the lack of a suitable demineralization process that preserves histomorphology of calcified and soft tissue elements while also preserving phosphoproteins and nucleic acids. In this chapter, we describe general issues relevant to specimen collection and preservation of osseous tissue for molecular profiling. We provide two protocols: (a) one-step preservation of tissue histomorphology and proteins and posttranslational modifications, with simultaneous decalcification of bony tissue, and (b) ethanol-based tissue processing for TheraLin-fixed bony tissue.
Collapse
|
5
|
Popkova Y, Schiller J. Addition of CsCl reduces ion suppression effects in the matrix-assisted laser desorption/ionization mass spectra of triacylglycerol/phosphatidylcholine mixtures and adipose tissue extracts. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:411-418. [PMID: 27958640 DOI: 10.1002/rcm.7806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/27/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Ion suppression is a known disadvantage in mixture analysis. Matrix-assisted laser desorption/ionization (MALDI) mass spectra of crude adipose tissue extracts are dominated by triacylglycerol (TAG) signals while less abundant phospholipids such as phosphatidylcholines (PC) and particularly phosphatidylethanolamines (PE) are suppressed. It is suggested that addition of an excess of cesium (Cs) ions helps to overcome this problem. METHODS Selected lipid mixtures of known compositions and organic adipose tissue extracts were investigated by positive ion MALDI-time-of-flight mass spectrometry (TOF MS). 2,5-Dihydroxybenzoic acid (DHB) in methanol was used as the matrix. In selected cases the methanolic DHB solution was saturated by the addition of different solid alkali chlorides (such as NaCl, KCl, RbCl and CsCl). Studies on the solubilities of these salts in methanol and the interaction with DHB (by 13 C NMR) were also performed. RESULTS Saturation of the DHB matrix with solid CsCl leads to tremendous intensity differences, i.e. the intensities of the TAG signals (which otherwise dominate the mass spectra) are significantly reduced. In contrast, the intensity of small signals of phospholipids increases considerably. Decrease in the TAG signal intensity is particularly caused by the considerable size of the Cs+ ion which prevents successful analyte ionization. CONCLUSIONS The addition of CsCl improves the detectability of otherwise invisible or weak phospholipid ions. This is a simple approach to detect small amounts of phospholipids in the presence of an excess of TAG. No laborious and time-consuming separation of the total lipid extract into the individual lipid classes is required. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yulia Popkova
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107, Leipzig, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107, Leipzig, Germany
| |
Collapse
|
6
|
Wachter A, Bernhardt S, Beissbarth T, Korf U. Analysis of Reverse Phase Protein Array Data: From Experimental Design towards Targeted Biomarker Discovery. ACTA ACUST UNITED AC 2015; 4:520-39. [PMID: 27600238 PMCID: PMC4996411 DOI: 10.3390/microarrays4040520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
Mastering the systematic analysis of tumor tissues on a large scale has long been a technical challenge for proteomics. In 2001, reverse phase protein arrays (RPPA) were added to the repertoire of existing immunoassays, which, for the first time, allowed a profiling of minute amounts of tumor lysates even after microdissection. A characteristic feature of RPPA is its outstanding sample capacity permitting the analysis of thousands of samples in parallel as a routine task. Until today, the RPPA approach has matured to a robust and highly sensitive high-throughput platform, which is ideally suited for biomarker discovery. Concomitant with technical advancements, new bioinformatic tools were developed for data normalization and data analysis as outlined in detail in this review. Furthermore, biomarker signatures obtained by different RPPA screens were compared with another or with that obtained by other proteomic formats, if possible. Options for overcoming the downside of RPPA, which is the need to steadily validate new antibody batches, will be discussed. Finally, a debate on using RPPA to advance personalized medicine will conclude this article.
Collapse
Affiliation(s)
- Astrid Wachter
- Statistical Bioinformatics, Department of Medical Statistics, University Medical Center Goettingen, Humboldtallee 32, D-37073 Goettingen, Germany.
| | | | - Tim Beissbarth
- Statistical Bioinformatics, Department of Medical Statistics, University Medical Center Goettingen, Humboldtallee 32, D-37073 Goettingen, Germany.
| | | |
Collapse
|