1
|
Li Y, Li C, Zhang C, Zhao L, Huang Y. Triplex DNA-based aggregation-induced emission probe: A new platform for hybridization chain reaction-based fluorescence sensing assay. Anal Chim Acta 2024; 1299:342406. [PMID: 38499412 DOI: 10.1016/j.aca.2024.342406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
The hybridization chain reaction (HCR), as one of the nucleic acid amplification technologies, is combined with fluorescence signal output with excellent sensitivity, simplicity, and stability. However, current HCR-based fluorescence sensing methods still have some defects such as the blocking effect of the HCR combination with fluorophores and the aggregation-caused quenching (ACQ) phenomenon of traditional fluorophores. Herein, a triplex DNA-based aggregation-induced emission probe (AIE-P) was designed as the fluorescent signal transduction, which is able to provide a new platform for HCR-based sensing assay. The AIE-P was synthesized by attaching the AIE fluorophores to terminus of the oligonucleotide through amido bond, and captured the products of HCR to form triplex DNA. In this case, the AIE fluorophores were located in close proximity to generate fluorescence. This assay provided turn-on fluorescence efficiency with a high signal-to-noise ratio and excellent amplification capability to solve the shortcoming of HCR-based fluorescence sensing methods. It enabled sensitive detection of Vibrio parahaemolyticus in the range of 102-106 CFU mL-1, and with a low limit of detection down to 39 CFU mL-1. In addition, this assay expressed good specificity and practicability. The triplex DNA-based AIE probe forms a universal molecular tool for developing HCR-based fluorescence sensing methods.
Collapse
Affiliation(s)
- Yubin Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China; Research Center for Coastal Environmental Protection and Ecological Resilience, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Ciling Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangqiang Zhang
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liting Zhao
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yaoyun Huang
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Rusling DA. Triplex-forming properties and enzymatic incorporation of a base-modified nucleotide capable of duplex DNA recognition at neutral pH. Nucleic Acids Res 2021; 49:7256-7266. [PMID: 34233006 PMCID: PMC8287925 DOI: 10.1093/nar/gkab572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 11/14/2022] Open
Abstract
The sequence-specific recognition of duplex DNA by unmodified parallel triplex-forming oligonucleotides is restricted to low pH conditions due to a necessity for cytosine protonation in the third strand. This has severely restricted their use as gene-targeting agents, as well as for the detection and/or functionalisation of synthetic or genomic DNA. Here I report that the nucleobase 6-amino-5-nitropyridin-2-one (Z) finally overcomes this constraint by acting as an uncharged mimic of protonated cytosine. Synthetic TFOs containing the nucleobase enabled stable and selective triplex formation at oligopurine-oligopyrimidine sequences containing multiple isolated or contiguous GC base pairs at neutral pH and above. Moreover, I demonstrate a universal strategy for the enzymatic assembly of Z-containing TFOs using its commercially available deoxyribonucleotide triphosphate. These findings seek to improve not only the recognition properties of TFOs but also the cost and/or expertise associated with their chemical syntheses.
Collapse
Affiliation(s)
- David A Rusling
- School of Biological Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| |
Collapse
|
3
|
Zhang M, Li R, Wang J, Ling L. Sequence-specific recognition of HIV-1 DNA based upon nicking-assisted strand displacement amplification and triplex DNA. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9112-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Cuadrado Á, Jouve N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 2016; 119:495-503. [PMID: 20393739 DOI: 10.1007/s00412-010-0273-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Simple Sequence Repeats (SSRs) are known to be scattered and present in high number in eukaryotic genomes. We demonstrate that dye-labeled oligodeoxyribonucleotides with repeated mono-, di-, tri, or tetranucleotide motifs (15-20 nucleotides in length) have an unexpected ability to recognize SSR target sequences in non-denatured chromosomes. The results show that all these probes are able to invade chromosomes, independent of the size of the repeat motif, their nucleotide sequence, or their ability to form alternative B-DNA structures such as triplex DNA. This novel and remarkable property of binding SSR oligonucleotides to duplex DNA targets permitted the development of a non-denaturing fluorescence in situ hybridization method that quickly and efficiently detects SSR-enriched chromosome regions in mitotic, meiotic, and polytene chromosome spreads of different model organisms. These results have implications for genome analysis and for investigating the roles of SSRs in chromosome structure and function.
Collapse
Affiliation(s)
- Ángeles Cuadrado
- Department of Cell Biology and Genetics, University of Alcalá de Henares, 28871, Alcalá de Henares, Madrid, Spain.
| | | |
Collapse
|
5
|
Kuhn H, Sahu B, Rapireddy S, Ly DH, Frank-Kamenetskii MD. Sequence specificity at targeting double-stranded DNA with a γ-PNA oligomer modified with guanidinium G-clamp nucleobases. ARTIFICIAL DNA, PNA & XNA 2014; 1:45-53. [PMID: 21687526 DOI: 10.4161/adna.1.1.12444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 05/19/2010] [Accepted: 05/24/2010] [Indexed: 11/19/2022]
Abstract
γ-PNA, a new class of peptide nucleic acids, promises to overcome previous sequence limitations of double-stranded DNA (dsDNA) targeting with PNA. To check the potential of γ-PNA, we have synthesized a biotinylated, pentadecameric γ-PNA of mixed sequence carrying three guanidinium G-clamp nucleobases. We have found that strand invasion reactions of the γ-PNA oligomer to its fully complementary target within dsDNA occurs with significantly higher binding rates than to targets containing single mismatches. Association of the PNA oligomer to mismatched targets does not go to completion but instead reaches a stationary level at or below 60%, even at conditions of very low ionic strength. Initial binding rates to both matched and mismatched targets experience a steep decrease with increasing salt concentration. We demonstrate that a linear DNA target fragment with the correct target sequence can be purified from DNA mixtures containing mismatched target or unrelated genomic DNA by affinity capture with streptavidin-coated magnetic beads. Similarly, supercoiled plasmid DNA is obtained with high purity from an initial sample mixture that included a linear DNA fragment with the fully complementary sequence. Based on the results obtained in this study we believe that γ-PNA has a great potential for specific targeting of chosen duplex DNA sites in a sequence-unrestricted fashion.
Collapse
Affiliation(s)
- Heiko Kuhn
- Center for Advanced Biotechnology; Department of Biomedical Engineering; Boston University; Boston, MA USA
| | | | | | | | | |
Collapse
|
6
|
Kaur M, Rob A, Caton-Williams J, Huang Z. Biochemistry of Nucleic Acids Functionalized with Sulfur, Selenium, and Tellurium: Roles of the Single-Atom Substitution. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1152.ch005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Manindar Kaur
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Abdur Rob
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | | | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
7
|
Mendez MA, Szalai VA. Synapsable quadruplex-mediated fibers. NANOSCALE RESEARCH LETTERS 2013; 8:210. [PMID: 23641903 PMCID: PMC3655031 DOI: 10.1186/1556-276x-8-210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/20/2013] [Indexed: 06/02/2023]
Abstract
We have fabricated a DNA-based nanofiber created by self-assembly of guanine quadruplex (Hoogsteen base pairing) and double-stranded DNA (Watson-Crick base pairing). When duplexes containing a long stretch of contiguous guanines and single-stranded overhangs are incubated in potassium-containing buffer, the preformed duplexes create high molecular weight species that contain quadruplexes. In addition to observation of these larger species by gel electrophoresis, solutions were analyzed by atomic force microscopy to reveal nanofibers. Analysis of the atomic force microscopy images indicates that fibers form with lengths ranging from 250 to 2,000 nm and heights from 0.45 to 4.0 nm. This work is a first step toward the creation of new structurally heterogeneous (quadruplex/duplex), yet controllable, DNA-based materials exhibiting novel properties suitable for a diverse array of nanotechnology applications.
Collapse
Affiliation(s)
- Miguel Angel Mendez
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD, 21250, USA
- Universidad San Francisco de Quito, Vía Interoceánica Km 2 1/2, Cumbayá, Quito, 17-1200-84, Ecuador
| | - Veronika A Szalai
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD, 21250, USA
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-6204, USA
| |
Collapse
|
8
|
Kanamori T, Masaki Y, Mizuta M, Tsunoda H, Ohkubo A, Sekine M, Seio K. DNA duplexes and triplex-forming oligodeoxynucleotides incorporating modified nucleosides forming stable and selective triplexes. Org Biomol Chem 2011; 10:1007-13. [PMID: 22146807 DOI: 10.1039/c1ob06411h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have previously reported DNA triplexes containing the unnatural base triad G-PPI·C3, in which PPI is an indole-fused cytosine derivative incorporated into DNA duplexes and C3 is an abasic site in triplex-forming oligonucleotides (TFOs) introduced by a propylene linker. In this study, we developed a new unnatural base triad A-ψ·C(R1) where ψ and C(R1) are base moieties 2'-deoxypseudouridine and 5-substituted deoxycytidine, respectively. We examined several electron-withdrawing substituents for R1 and found that 5-bromocytosine (C(Br)) could selectively recognize ψ. In addition, we developed a new PPI derivative, PPI(Me), having a methyl group on the indole ring in order to achieve selective triplex formation between DNA duplexes incorporating various Watson-Crick base pairs, such as T-A, C-G, A-ψ, and G-PPI(Me), and TFOs containing T, C, C(Br), and C3. We studied the selective triplex formation between these duplexes and TFOs using UV-melting and gel mobility shift assays.
Collapse
|
9
|
Ayel E, Escudé C. In vitro selection of oligonucleotides that bind double-stranded DNA in the presence of triplex-stabilizing agents. Nucleic Acids Res 2010; 38:e31. [PMID: 20007154 PMCID: PMC2836567 DOI: 10.1093/nar/gkp1139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A SELEX approach has been developed in order to select oligonucleotides that bind double-stranded DNA in the presence of a triplex-stabilizing agent, and was applied to a target sequence containing an oligopurine-oligopyrimidine stretch. After only seven rounds of selection, the process led to the identification of oligonucleotides that were able to form triple helices within the antiparallel motif. Inspection of the selected sequences revealed that, contrary to GC base pair which were always recognized by guanines, recognition of AT base pair could be achieved by either adenine or thymine, depending on the sequence context. While thymines are strongly preferred for several positions, some others can accommodate the presence of adenines. These results contribute to set the rules for designing oligonucleotides that form stable triple helices in the presence of triplex-stabilizing agents at physiological pH. They set the basis for further experiments regarding extension of potential target sequences for triple-helix formation or recognition of ligand-DNA complexes.
Collapse
Affiliation(s)
- Elodie Ayel
- CNRS UMR 7196, Muséum National d'Histoire Naturelle, INSERM U 565, Case Postale 26, 43 rue Cuvier, Cedex 05, 75005 Paris, France
| | | |
Collapse
|
10
|
Rusling DA, Rachwal PA, Brown T, Fox KR. The stability of triplex DNA is affected by the stability of the underlying duplex. Biophys Chem 2009; 145:105-10. [PMID: 19819611 DOI: 10.1016/j.bpc.2009.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 11/16/2022]
Abstract
We have studied the formation of DNA triple helices in different sequence contexts and show that, for the most stable triplexes, their apparent stability is affected by the stability of the underlying duplex. For a 14-mer parallel triplex-forming oligonucleotide (generating C(+).GC and T.AT triplets) at pH 5.0 the T(m) is more than 10 degrees C lower with an intermolecular 14-mer duplex target, than it is with an intramolecular duplex, or one which is flanked by 6 GC base pairs at either end. A similar effect is seen with triplex-forming oligonucleotides that contain stabilising analogues, for which the T(m) is higher for an intramolecular than an intermolecular duplex target. These results suggest that the use of simple intermolecular duplex targets may underestimate the triplex stabilisation that is produced by some nucleotide analogues.
Collapse
Affiliation(s)
- David A Rusling
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | |
Collapse
|
11
|
Rusling DA, Peng G, Srinivasan N, Fox KR, Brown T. DNA triplex formation with 5-dimethylaminopropargyl deoxyuridine. Nucleic Acids Res 2009; 37:1288-96. [PMID: 19139069 PMCID: PMC2651792 DOI: 10.1093/nar/gkn1060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have prepared triplex-forming oligonucleotides containing the nucleotide analogue 5-dimethylaminopropargyl deoxyuridine (DMAPdU) in place of thymidine and examined their ability to form intermolecular triple helices by thermal melting and DNase I footprinting studies. The results were compared with those for oligonucleotides containing 5-aminopropargyl-dU (APdU), 5-guanidinopropargyl-dU (GPdU) and 5-propynyl dU (PdU). We find that DMAPdU enhances triplex stability relative to T, though slightly less than the other analogues that bear positive charges (T << PdU < DMAPdU < APdU < GPdU). For oligonucleotides that contain multiple substitutions with DMAPdU dispersed residues are more effective than clustered combinations. DMAPdU will be especially useful as a nucleotide analogue as, unlike APdU and GPdU, the base does not require protection during oligonucleotide synthesis and it can therefore be used with other derivatives that require mild deprotection conditions.
Collapse
Affiliation(s)
- David A Rusling
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | |
Collapse
|
12
|
Kuhn H, Frank-Kamenetskii MD. Labeling of unique sequences in double-stranded DNA at sites of vicinal nicks generated by nicking endonucleases. Nucleic Acids Res 2008; 36:e40. [PMID: 18344522 PMCID: PMC2373456 DOI: 10.1093/nar/gkn107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe a new approach for labeling of unique sequences within dsDNA under nondenaturing conditions. The method is based on the site-specific formation of vicinal nicks, which are created by nicking endonucleases (NEases) at specified DNA sites on the same strand within dsDNA. The oligomeric segment flanked by both nicks is then substituted, in a strand displacement reaction, by an oligonucleotide probe that becomes covalently attached to the target site upon subsequent ligation. Monitoring probe hybridization and ligation reactions by electrophoretic mobility retardation assay, we show that selected target sites can be quantitatively labeled with excellent sequence specificity. In these experiments, predominantly probes carrying a target-independent 3′ terminal sequence were employed. At target labeling, thus a branched DNA structure known as 3′-flap DNA is obtained. The single-stranded terminus in 3′-flap DNA is then utilized to prime the replication of an externally supplied ssDNA circle in a rolling circle amplification (RCA) reaction. In model experiments with samples comprised of genomic λ-DNA and human herpes virus 6 type B (HHV-6B) DNA, we have used our labeling method in combination with surface RCA as reporter system to achieve both high sequence specificity of dsDNA targeting and high sensitivity of detection. The method can find applications in sensitive and specific detection of viral duplex DNA.
Collapse
Affiliation(s)
- Heiko Kuhn
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, MA 02215, USA.
| | | |
Collapse
|
13
|
Abstract
Despite tremendous progress in our understanding of fibrogenesis, injury stimuli process, inflammation, and hepatic stellate cell (HSC) activation, there is still no standard treatment for liver fibrosis. Delivery of small molecular weight drugs, proteins, and nucleic acids to specific liver cell types remains a challenge due to the overexpression of extracellular matrix (ECM) and consequent closure of sinusoidal gaps. In addition, activation of HSCs and subsequent release of inflammatory cytokines and infiltration of immune cells are other major obstacles to the treatment of liver fibrosis. To overcome these barriers, different therapeutic approaches are being investigated. Among them, the modulation of certain aberrant protein production is quite promising for treating liver fibrosis. In this review, we describe the mechanism of antisense, antigene, and RNA interference (RNAi) therapies and discuss how the backbone modification of oligonucleotides affects their in vivo stability, biodistribution, and bioactivity. Strategies for delivering these nucleic acids to specific cell types are discussed. This review critically addresses various insights developed with each individual strategy and for multipronged approaches, which will be helpful in achieving more effective outcomes.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
14
|
Smolina IV, Kuhn H, Lee C, Frank-Kamenetskii MD. Fluorescence-based detection of short DNA sequences under non-denaturing conditions. Bioorg Med Chem 2007; 16:84-93. [PMID: 17512202 DOI: 10.1016/j.bmc.2007.04.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 02/26/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
The ability of peptide nucleic acid (PNA) to open up duplex DNA in a highly sequence-specific manner makes it possible to detect short DNA sequences on the background of or within genomic DNA under non-denaturing conditions. To do so, chosen marker sites in double-stranded DNA are locally opened by a pair of PNA openers, thus transforming one strand within the target region (20-30 bp) into the single-stranded form. Onto this accessible DNA sequence a circular oligonucleotide probe is assembled, which serves as a template for rolling circle amplification (RCA). Both homogeneous and heterogeneous assay formats are investigated, as are different formats for fluorescence-based amplicon detection. Our recent data with immobilized analytes suggest that marker sequences in plasmid and bacterial chromosomal DNA can be successfully detected.
Collapse
Affiliation(s)
- Irina V Smolina
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington Street, MA 02215, USA
| | | | | | | |
Collapse
|
15
|
Smolina I, Lee C, Frank-Kamenetskii M. Detection of low-copy-number genomic DNA sequences in individual bacterial cells by using peptide nucleic acid-assisted rolling-circle amplification and fluorescence in situ hybridization. Appl Environ Microbiol 2007; 73:2324-8. [PMID: 17293504 PMCID: PMC1855634 DOI: 10.1128/aem.02038-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An approach is proposed for in situ detection of short signature DNA sequences present in single copies per bacterial genome. The site is locally opened by peptide nucleic acids, and a circular oligonucleotide is assembled. The amplicon generated by rolling circle amplification is detected by hybridization with fluorescently labeled decorator probes.
Collapse
Affiliation(s)
- Irina Smolina
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington St., Boston, MA 02215, USA
| | | | | |
Collapse
|
16
|
Mahato RI, Cheng K, Guntaka RV. Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Expert Opin Drug Deliv 2006; 2:3-28. [PMID: 16296732 DOI: 10.1517/17425247.2.1.3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antisense oligodeoxynucleotides, triplex-forming oligodeoxynucleotides and double-stranded small interfering RNAs have great potential for the treatment of many severe and debilitating diseases. Concerted efforts from both industry and academia have made significant progress in turning these nucleic acid drugs into therapeutics, and there is already one FDA-approved antisense drug in the clinic. Despite the success of one product and several other ongoing clinical trials, challenges still exist in their stability, cellular uptake, disposition, site-specific delivery and therapeutic efficacy. The principles, strategies and delivery consideration of these nucleic acids are reviewed. Furthermore, the ways to overcome the biological barriers are also discussed so that therapeutic concentrations at their target sites can be maintained for a desired period.
Collapse
MESH Headings
- Animals
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- Drug Carriers
- Gene Expression Regulation
- Gene Silencing
- Gene Targeting/methods
- Genetic Therapy/methods
- Humans
- Nucleic Acid Conformation/drug effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Biosynthesis/drug effects
- RNA Interference
- RNA Splicing/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Ram I Mahato
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, 26 South Dunlap Street, Feurt Bldg RM 406, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
17
|
Rusling DA, Brown T, Fox KR. DNA triple-helix formation at target sites containing duplex mismatches. Biophys Chem 2006; 123:134-40. [PMID: 16735088 DOI: 10.1016/j.bpc.2006.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 04/28/2006] [Accepted: 04/29/2006] [Indexed: 11/29/2022]
Abstract
We have studied the formation of DNA triple helices at target sites that contain mismatches in the duplex target. Fluorescence melting studies were used to examine a series of parallel triple helices that contain all 64 N.XZ triplet combinations at the centre (where N, X and Z are each of the four natural DNA bases in turn). Similar experiments were also performed with N=bis-amino-U (BAU) (for stable recognition of AT base pairs) and N=S (for recognition of TA inversions). We find that the introduction of a duplex mismatch destabilises the C+.GZ, T.AZ and G.TZ triplets. A similar effect is seen with BAU.AZ triplets. In contrast, other base combinations, based on non-standard triplets such as C.AZ, T.TZ, G.CZ and A.CZ are stabilised by the presence of a duplex mismatch. In each case S binds to sites containing duplex mismatches better than the corresponding Watson-Crick base pairs.
Collapse
Affiliation(s)
- David A Rusling
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
18
|
Abstract
T4 DNA ligase is one of the workhorses of molecular biology and used in various biotechnological applications. Here we report that this ligase, unlike Escherichia coli DNA ligase, Taq DNA ligase and Ampligase, is able to join the ends of single-stranded DNA in the absence of any duplex DNA structure at the ligation site. Such nontemplated ligation of DNA oligomers catalyzed by T4 DNA ligase occurs with a very low yield, as assessed by quantitative competitive PCR, between 10(-6) and 10(-4) at oligonucleotide concentrations in the range 0.1-10 nm, and thus is insignificant in many molecular biological applications of T4 DNA ligase. However, this side reaction may be of paramount importance for diagnostic detection methods that rely on template-dependent or target-dependent DNA probe ligation in combination with amplification techniques, such as PCR or rolling-circle amplification, because it can lead to nonspecific background signals or false positives. Comparison of ligation yields obtained with substrates differing in their strandedness at the terminal segments involved in ligation shows that an acceptor duplex DNA segment bearing a 3'-hydroxy end, but lacking a 5'-phosphate end, is sufficient to play a role as a cofactor in blunt-end ligation.
Collapse
Affiliation(s)
- Heiko Kuhn
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, MA 02215, USA.
| | | |
Collapse
|
19
|
Abstract
We report on a sequence-specific double-stranded DNA labelling strategy in which a stem-loop triplex forming oligonucleotide (TFO) is able to encircle its DNA target. Ligation of this TFO to either a short hairpin oligonucleotide or a long double-stranded DNA fragment leads to the formation of a topological complex. This process requires the hybridization of both extremities of the TFO to each other on a few base pairs. The effects of different factors on the formation of these complexes have been investigated. Efficient complex formation was observed using both GT or TC TFOs. The stem-loop structure enhances the specificity of the complex. The topologically linked TFO remains associated with its target even under conditions that do not favour triple-helix formation. This approach is sufficiently sensitive for detection of a 20-bp target sequence at the subfemtomolar level. This study provides new insights into the mechanics and properties of stem-loop TFOs and their complexes with double-stranded DNA targets. It emphasizes the interest of such molecules in the development of new tools for the specific labelling of short DNA sequences.
Collapse
Affiliation(s)
- Bénédicte Géron-Landre
- Laboratoire Régulation et Dynamique des Génomes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris Cedex, France
| | | | | |
Collapse
|
20
|
Eisenschmidt K, Lanio T, Simoncsits A, Jeltsch A, Pingoud V, Wende W, Pingoud A. Developing a programmed restriction endonuclease for highly specific DNA cleavage. Nucleic Acids Res 2005; 33:7039-47. [PMID: 16356926 PMCID: PMC1316111 DOI: 10.1093/nar/gki1009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Specific cleavage of large DNA molecules at few sites, necessary for the analysis of genomic DNA or for targeting individual genes in complex genomes, requires endonucleases of extremely high specificity. Restriction endonucleases (REase) that recognize DNA sequences of 4-8 bp are not sufficiently specific for this purpose. In principle, the specificity of REases can be extended by fusion to sequence recognition modules, e.g. specific DNA-binding domains or triple-helix forming oligonucleotides (TFO). We have chosen to extend the specificity of REases using TFOs, given the combinatorial flexibility this fusion offers in addressing a short, yet precisely recognized restriction site next to a defined triple-helix forming site (TFS). We demonstrate here that the single chain variant of PvuII (scPvuII) covalently coupled via the bifunctional cross-linker N-(gamma-maleimidobutryloxy) succinimide ester to a TFO (5'-NH2-[CH2](6 or 12)-MPMPMPMPMPPPPPPT-3', with M being 5-methyl-2'-deoxycytidine and P being 5-[1-propynyl]-2'-deoxyuridine), cleaves DNA specifically at the recognition site of PvuII (CAGCTG) if located in a distance of approximately one helical turn to a TFS (underlined) complementary to the TFO ('addressed' site: 5'-TTTTTTTCTCTCTCTCN(approximately 10)CAGCTG-3'), leaving 'unaddressed' PvuII sites intact. The preference for cleavage of an 'addressed' compared to an 'unaddressed' site is >1000-fold, if the cleavage reaction is initiated by addition of Mg2+ ions after preincubation of scPvuII-TFO and substrate in the absence of Mg2+ ions to allow triple-helix formation before DNA cleavage. Single base pair substitutions in the TFS prevent addressed DNA cleavage by scPvuII-TFO.
Collapse
Affiliation(s)
| | | | - András Simoncsits
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
| | - Albert Jeltsch
- School of Engineering and Science, International University BremenCampus Ring 1, D-28725 Bremen, Germany
| | | | | | - Alfred Pingoud
- To whom correspondence should be addressed. Tel: +49 641 9935400; Fax: +49 641 9935409;
| |
Collapse
|
21
|
Rusling DA, Le Strat L, Powers VEC, Broughton-Head VJ, Booth J, Lack O, Brown T, Fox KR. Combining nucleoside analogues to achieve recognition of oligopurine tracts by triplex-forming oligonucleotides at physiological pH. FEBS Lett 2005; 579:6616-20. [PMID: 16293248 DOI: 10.1016/j.febslet.2005.10.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/12/2005] [Accepted: 10/27/2005] [Indexed: 10/25/2022]
Abstract
We have used DNase I footprinting to examine DNA triple helix formation at a 12 base pair oligopurine.oligopyrimidine sequence, using oligonucleotides that contain combinations of 2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine (bis-amino-U, BAU) and 3-methyl-2-aminopyridine (MeP) in place of T and C, respectively. This combination acts cooperatively to enable high affinity triple helix formation at physiological pH. The affinity depends on the number of substitutions and their arrangement; oligonucleotides in which these analogues are evenly distributed throughout the third strand bind much better than those in which they are clustered together.
Collapse
Affiliation(s)
- David A Rusling
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rusling DA, Powers VEC, Ranasinghe RT, Wang Y, Osborne SD, Brown T, Fox KR. Four base recognition by triplex-forming oligonucleotides at physiological pH. Nucleic Acids Res 2005; 33:3025-32. [PMID: 15911633 PMCID: PMC1137030 DOI: 10.1093/nar/gki625] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 04/29/2005] [Accepted: 05/12/2005] [Indexed: 11/29/2022] Open
Abstract
We have achieved recognition of all 4 bp by triple helix formation at physiological pH, using triplex-forming oligonucleotides that contain four different synthetic nucleotides. BAU [2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine] recognizes AT base pairs with high affinity, (Me)P (3-methyl-2 aminopyridine) binds to GC at higher pHs than cytosine, while (A)PP (6-(3-aminopropyl)-7-methyl-3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one) and S [N-(4-(3-acetamidophenyl)thiazol-2-yl-acetamide)] bind to CG and TA base pairs, respectively. Fluorescence melting and DNase I footprinting demonstrate successful triplex formation at a 19mer oligopurine sequence that contains two CG and two TA interruptions. The complexes are pH dependent, but are still stable at pH 7.0. BAU, (Me)P and (A)PP retain considerable selectivity, and single base pair changes opposite these residues cause a large reduction in affinity. In contrast, S is less selective and tolerates CG pairs as well as TA.
Collapse
Affiliation(s)
- David A. Rusling
- School of Biological Sciences, University of SouthamptonBassett Crescent East, Southampton SO16 7PX, UK
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Vicki E. C. Powers
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Rohan T. Ranasinghe
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Yang Wang
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Sadie D. Osborne
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Tom Brown
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Keith R. Fox
- To whom correspondence should be addressed. Tel: +44 23 8059 4374; Fax: +44 23 8059 4459;
| |
Collapse
|
23
|
Petraccone L, Erra E, Mattia CA, Fedullo V, Barone G, Giancola C. Linkage of proton binding to the thermal dissociation of triple helix complex. Biophys Chem 2004; 110:73-81. [PMID: 15223145 DOI: 10.1016/j.bpc.2004.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 01/05/2004] [Accepted: 01/05/2004] [Indexed: 12/01/2022]
Abstract
The effects of cytosine protonation on the thermodynamic properties of parallel pyrimidine motif DNA triplex were investigated and characterized by different techniques, such as circular dichroism (CD), ultraviolet spectroscopy (UV) and differential scanning calorimetry (DSC). A thermodynamic model was developed which, by linking the cytosine ionization equilibrium to the dissociation process of the triplex, is able to rationalize the experimental data and to reproduce the pH dependence of the free energy, enthalpy and entropy changes associated with the triplex formation. The results are useful to systematically introduce the effect of pH in a more general model able to predict the stability of DNA triplexes on the basis of the sequence alone.
Collapse
Affiliation(s)
- Luigi Petraccone
- Dipartimento di Scienze Farmaceutiche, Via Ponte Don Melillo, 84084, Fisciano (SA), Italy
| | | | | | | | | | | |
Collapse
|
24
|
Coman D, Russu IM. Site-resolved stabilization of a DNA triple helix by magnesium ions. Nucleic Acids Res 2004; 32:878-83. [PMID: 14769945 PMCID: PMC373380 DOI: 10.1093/nar/gkh228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proton exchange and NMR spectroscopy have been used to define the effects of Mg2+ ions upon the stability of individual base pairs in the intramolecular parallel triple helix formed by the DNA oligonucleotide d(GAAGAGGTTTTTCCTCTTCTTTTTCTTCTCC). The rates of exchange of individual Watson-Crick and Hoogsteen imino protons in the DNA triple helix were measured in the absence and in the presence of Mg2+ ions. The results reveal that Mg2+ lowers the exchange rates of most imino protons in the structure by stabilizing the corresponding base pairs in their native closed conformation. Comparison of the DNA triple helix containing Na+ counterions to the same helix containing Mg2+ counterions shows that these stabilizing effects result, in large part, from Mg2+ ions closely associated with the DNA. Moreover, the effects are site-specific and depend on the number and location of protonated cytosines relative to the observed base. These findings provide new insights into the molecular roles of C+*GC triads in determining the stability of DNA triple-helical structures.
Collapse
Affiliation(s)
- Daniel Coman
- Department of Chemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|