1
|
Das A, Suarez DL. Development and Bench Validation of Real-Time Reverse Transcription Polymerase Chain Reaction Protocols for Rapid Detection of the Subtypes H6, H9, and H11 of Avian Influenza Viruses in Experimental Samples. J Vet Diagn Invest 2016; 19:625-34. [DOI: 10.1177/104063870701900603] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Real-time reverse transcription polymerase chain reaction (RRT-PCR) is commonly used for the rapid detection, as well as to determine the subtype, of avian influenza viruses (AIVs). There are 16 known serologically distinct hemagglutinin (HA) subtypes of AIV described. Currently, determination of the subtypes of AIVs by RRT-PCR tests has been limited to the H5 and H7 subtypes. In this study, RRT-PCR assays were developed in simplex formats for rapid detection of AIV subtypes H6, H9, and H11. The primers and probes for RRT-PCR were designed from nucleotide sequences of the HA genes, which were either downloaded from GenBank (for H6 and H9) or sequenced for this study. The specificity and sensitivity of the RRT-PCR assays were determined based on the detection of the virus from a proficiency panel consisting of 15 different HA subtypes of AIVs and from serial dilutions of target viral RNA. The subtype-specific RRT-PCR assays were used to detect the virus in cloacal and oropharyngeal swabs of experimental chickens inoculated with H6, H9, and H11 AIVs, and the test results were compared with validated RRT-PCR assays based on the amplification of AI matrix (MA) gene. A high correlation of the matrix test and the specific H6, H9, and H11 by the RRT-PCR assays was observed; kappa coefficients for the agreement of test results in cloacal and oropharyngeal swabs combined were 0.927, 0.962, and 0.981, respectively.
Collapse
Affiliation(s)
- Amaresh Das
- From the Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA
| | - David L. Suarez
- From the Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA
| |
Collapse
|
2
|
Borrebaeck CAK, Wingren C. High-throughput proteomics using antibody microarrays: an update. Expert Rev Mol Diagn 2014; 7:673-86. [PMID: 17892372 DOI: 10.1586/14737159.7.5.673] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antibody-based microarrays are a rapidly emerging technology that has advanced from the first proof-of-concept studies to demanding serum protein profiling applications during recent years, displaying great promise within disease proteomics. Miniaturized micro- and nanoarrays can be fabricated with an almost infinite number of antibodies carrying the desired specificities. While consuming only minute amounts of reagents, multiplexed and ultrasensitive assays can be performed targeting high- as well as low-abundance analytes in complex nonfractionated proteomes. The microarray images generated can then be converted into protein expression profiles or protein atlases, revealing a detailed composition of the sample. The technology will provide unique opportunities for fields such as disease diagnostics, biomarker discovery, patient stratification, predicting disease recurrence and drug target discovery. This review describes an update of high-throughput proteomics, using antibody-based microarrays, focusing on key technological advances and novel applications that have emerged over the last 3 years.
Collapse
Affiliation(s)
- Carl A K Borrebaeck
- Lund University, Department of Immunotechnology & CREATE Health, BMC D13, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
3
|
Chen YW, Wang H, Hupert M, Soper SA. Identification of methicillin-resistant Staphylococcus aureus using an integrated and modular microfluidic system. Analyst 2013; 138:1075-83. [DOI: 10.1039/c2an36430a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Abstract
Hybridoma technology has long been a remarkable and indispensable platform for generating high-quality monoclonal antibodies (mAbs). Hybridoma-derived mAbs have not only served as powerful tool reagents but also have emerged as the most rapidly expanding class of therapeutic biologics. With the establishment of mAb humanization and with the development of transgenic-humanized mice, hybridoma technology has opened new avenues for effectively generating humanized or fully human mAbs as therapeutics. In this chapter, an overview of hybridoma technology and the laboratory procedures used routinely for hybridoma generation are discussed and detailed in the following sections: cell fusion for hybridoma generation, antibody screening and characterization, hybridoma subcloning and mAb isotyping, as well as production of mAbs from hybridoma cells.
Collapse
Affiliation(s)
- Chonghui Zhang
- NIBR Biologics Center, Novartis Institutes for BioMedical Research.
| |
Collapse
|
5
|
Merbl Y, Kirschner MW. Protein microarrays for genome-wide posttranslational modification analysis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:347-56. [PMID: 20865779 DOI: 10.1002/wsbm.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein microarray technology has emerged as a powerful tool for comparing binding interactions, expression level, substrate specificities, and posttranslational modifications (PTMs) of different proteins in a parallel and high-throughput manner. The ability to immobilize proteins to a solid surface and register the specific address of each protein has bridged major limitations for investigating the proteome in biological samples, namely, the wide dynamic range of protein concentrations and the perturbation of the physical and chemical properties of proteins by their modification. Recent advances introduced the use of functional mammalian cell extracts to assay PTMs under different cellular conditions. This assay offers a new approach for performing large-scale complex biochemical analysis of protein modifications. Here, we review studies of PTM profiling using protein microarrays and discuss the limitations and potential applications of the system. We believe that the information generated from such proteomic studies may be of significant value in our elucidation of the molecular mechanisms that govern human physiology.
Collapse
Affiliation(s)
- Yifat Merbl
- Systems Biology Department, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
6
|
Verma M, Seminara D, Arena FJ, John C, Iwamoto K, Hartmuller V. Genetic and epigenetic biomarkers in cancer : improving diagnosis, risk assessment, and disease stratification. Mol Diagn Ther 2007; 10:1-15. [PMID: 16646573 DOI: 10.1007/bf03256438] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene expression patterns change during the initiation, progression, and development of cancer, as a result of both genetic and epigenetic mechanisms. Genetic changes arise due to irreversible changes in the nucleotide sequence, whereas epigenetic changes occur due to changes in chromatin conformation, histone acetylation, and methylation of the CpG islands located primarily in the promoter region of a gene. Both genetic and epigenetic markers can potentially be utilized to identify different stages of tumor development. Several such markers exhibit high sensitivity and specificity for different tumor types and can be assayed in biofluids and other specimens collected by noninvasive technologies. In spite of the availability of large numbers of diagnostic markers, only a few have been clinically validated so far. The current status and the challenges in the field of genetic and epigenetic markers in cancer diagnosis, risk assessment, and disease stratification are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Analytic Epidemiology Research Branch, Epidemiology and Genetics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland 20852, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Since the hallmark report of the PCR-based telomeric repeat amplification protocol (TRAP) in 1994, there has been a flurry of investigations of telomerase activity on normal, benign, premalignant and cancerous samples representative of the various stages of tumorigenesis. Basic research and technological advances in human genetics, biochemistry and model systems have brought much progress towards the understanding of human infectious, hereditary and somatically acquired diseases. The knowledge of carcinogenesis has increased very rapidly in the past few years, particularly with the development of automated molecular biologic analysis of tumors and preneoplastic lesions. Despite the wide variety of studies on the potential use of telomerase as a cancer biomarker, the variability of reported telomerase activity and the lack of a transferable detection method have prevented it from becoming a routine clinical application. Real-time PCR is a clinically transferable method and the advancement of real-time measurements of telomerase will facilitate moving telomerase activity and technologies towards clinical validation. It is expected that the next 5 years will see telomerase integrated into the initial detection and follow-up monitoring of cancer patients. The hope is that the use of telomerase will finally translate into a diagnostic to help realize longer survival and a better quality of life.
Collapse
Affiliation(s)
- John P Jakupciak
- National Institute of Standards & Technology, Biotechnology Division, 100 Bureau Drive, MS 8311, Gaithersburg, MD 20899, USA.
| |
Collapse
|
8
|
Das A, Spackman E, Senne D, Pedersen J, Suarez DL. Development of an internal positive control for rapid diagnosis of avian influenza virus infections by real-time reverse transcription-PCR with lyophilized reagents. J Clin Microbiol 2006; 44:3065-73. [PMID: 16954228 PMCID: PMC1594697 DOI: 10.1128/jcm.00639-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We developed an internal positive control (IPC) RNA to help ensure the accuracy of the detection of avian influenza virus (AIV) RNA by reverse transcription (RT)-PCR and real-time RT-PCR (RRT-PCR). The IPC was designed to have the same binding sites for the forward and reverse primers of the AIV matrix gene as the target amplicon, but it had a unique internal sequence used for the probe site. The amplification of the viral RNA and the IPC by RRT-PCR were monitored with two different fluorescent probes in a multiplex format, one specific for the AIV matrix gene and the other for the IPC. The RRT-PCR test was further simplified with the use of lyophilized bead reagents for the detection of AIV RNA. The RRT-PCR with the bead reagents was more sensitive than the conventional wet reagents for the detection of AIV RNA. The IPC-based RRT-PCR detected inhibitors in blood, kidney, lungs, spleen, intestine, and cloacal swabs, but not allantoic fluid, serum, or tracheal swabs The accuracy of RRT-PCR test results with the lyophilized beads was tested on cloacal and tracheal swabs from experimental birds inoculated with AIV and compared with virus isolation (VI) on embryonating chicken eggs. There was 97 to 100% agreement of the RRT-PCR test results with VI for tracheal swabs and 81% agreement with VI for cloacal swabs, indicating a high level of accuracy of the RRT-PCR assay. The same IPC in the form of armored RNA was also used to monitor the extraction of viral RNA and subsequent detection by RRT-PCR.
Collapse
Affiliation(s)
- Amaresh Das
- Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA
| | | | | | | | | |
Collapse
|
9
|
Manne U, Srivastava RG, Srivastava S. Recent advances in biomarkers for cancer diagnosis and treatment. Drug Discov Today 2006; 10:965-76. [PMID: 16023055 DOI: 10.1016/s1359-6446(05)03487-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the availability of new technologies and the increased interest of medical practitioners to use molecular biomarkers in early detection and diagnosis, and in the prediction of therapeutic treatment efficacy and clinical outcomes, the academic and research institutions, as well as the pharmaceutical industry, have increased their efforts to develop novel molecular biomarkers for several human diseases, including cancer. The identification of molecular biomarkers also enables the development of a new generation of diagnostic products and to integrate diagnostics and therapeutics. This integrated approach will aid in 'individualizing' the medical practice. Here, we address issues related to the development of biomarkers, novel technological platforms used for drug development, future technologies and strategies for validating biomarkers for their clinical utility.
Collapse
|
10
|
McGruder BM, Atha DH, Wang W, Huppi K, Wei WQ, Abnet CC, Qiao YL, Dawsey SM, Taylor PR, Jakupciak JP. Real-time telomerase assay of less-invasively collected esophageal cell samples. Cancer Lett 2006; 244:91-100. [PMID: 16569479 DOI: 10.1016/j.canlet.2005.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 12/04/2005] [Indexed: 02/06/2023]
Abstract
Genomic and proteomic efforts have discovered a complex list of biomarkers that identify human disease, stratify risk of disease within populations, and monitor drug or therapy responses for treatment. Attention is needed to characterize these biomarkers and to develop high-throughput technologies to evaluate their accuracy and precision. Telomerase activity is correlated with tumor progression, indicating cells that express telomerase possess aggressive clinical behavior and that telomerase activity could be a clinically important cancer biomarker. Traditionally, the detection of cancer has involved invasive procedures to procure samples. There is a need for less invasive approaches suitable for population- and clinic-based assays for cancer early detection. Esophageal balloon cytology (EBC) is a low-invasive screening technique, which samples superficial epithelial cells from the esophagus. Since telomerase activity is absent in superficial cells of normal esophageal squamous epithelium but is often present in superficial cells from dysplastic lesions and ESCCs, measuring telomerase activity in EBC samples may be a good way to screen for these lesions. The development of rapid real-time telomerase activity assays raises the possibility of extending such screening to high-risk populations. In this study, we evaluate the feasibility of using rapid Real-Time Telomerase Repeat Amplification Protocol (RTTRAP) for the analysis of NIST telomerase candidate reference material and esophageal clinical samples. The telomerase activity of eight EBC samples was also measured by capillary electrophoresis of RTTRAP products, RApidTRAP, and hTERT mRNA RT-PCR assays. These findings demonstrate the feasibility of using the RTTRAP assay in EBC samples and suggest that individuals from high-risk populations can be screened for telomerase activity.
Collapse
Affiliation(s)
- Brenna M McGruder
- Biochemical Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS 8311, 20899, Gaithersburg, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
El-Bayoumy K, Sinha R. Molecular chemoprevention by selenium: a genomic approach. Mutat Res 2005; 591:224-36. [PMID: 16099479 DOI: 10.1016/j.mrfmmm.2005.04.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/02/2005] [Accepted: 04/03/2005] [Indexed: 10/25/2022]
Abstract
Basic research and clinical chemoprevention trials support the protective role of selenium in cancer prevention but the mechanisms based on the molecular level remain to be fully defined. This mini-review focuses only on the elucidation of the molecular mechanisms of cancer prevention by selenium using the genomics approach; target organs discussed here are breast, prostate, colon and lung. The results described here support the utility of microarray technology in delineating the molecular mechanisms of cancer prevention by selenium. These results are based on studies employing human and rodent cell lines and tissues from animal models ranging from normal to frank cancer. The dose and the form of selenium are determining factors in cancer chemoprevention. The results of the microarray analysis reviewed here indicate that selenium, independent of its form and the target organ examined, alters several genes in a manner that can account for cancer prevention. Selenium can up regulate genes related to phase II detoxification enzymes, certain selenium-binding proteins and select apoptotic genes, while down regulating those related to phase I activating enzymes and cell proliferation. Independent of tissue type, selenium arrests cells in G1 phase of cell cycle, inhibits CYCLIN A, CYCLIN D1, CDC25A, CDK4, PCNA and E2F gene expressions while induces the expressions of P19, P21, P53, GST, SOD, NQO1, GADD153 and certain CASPASES. In addition to those described above, genes such as OPN, which is mainly involved in metastasis and recently reported to be down regulated by selenium, should be considered as potential molecular marker in clinical chemoprevention trials. Collectively, literature data indicate that some of these genes that were altered by selenium are also involved in the development of human cancers described in this review. It appears that androgen receptor status may influence the effect of selenium on gene expression profile in prostate cancer; whether estrogen receptor may influence the effect of selenium on gene expression in breast cancer requires further studies. Knowledge from gene array data in combination with proteomics approaches, using homogenous population of cell types with the aid of laser capture microdissection, may provide an individualized dimension of information on cancer risk and potential targets for its prevention. The molecular (genetic) biomarkers presented in this review will provide the foundation for future studies of the chemopreventive properties of structurally varied selenium compounds.
Collapse
Affiliation(s)
- Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Pennsylvania State Cancer Institute, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | |
Collapse
|
12
|
Greenberg SA, Walsh RJ. Molecular diagnosis of inheritable neuromuscular disorders. Part I: Genetic determinants of inherited disease and their laboratory detection. Muscle Nerve 2005; 31:418-30. [PMID: 15704142 DOI: 10.1002/mus.20278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding of the genetic basis of inheritable neuromuscular disorders has grown rapidly over the last decade, resulting in improved classification and understanding of their pathogenesis. A consequence of these advances has been the development of genetic tests of blood specimens for the diagnosis of many of these diseases. For many patients, these blood tests have eliminated the need for other more invasive diagnostic tests such as muscle or nerve biopsy, and for some patients, reduced exposure to immunosuppressive medication and its complications. The first part of this review focuses on the nature of genetic disorders, the laboratory methods used in the performance of genetic tests, and general practical aspects of their use and interpretation. The second part discusses the applicability of these tests to the range of neuromuscular disorders.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Division of Neuromuscular Disease, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|