1
|
Ermencheva P, Kotov G, Shumnalieva R, Velikova T, Monov S. Exploring the Role of the Microbiome in Rheumatoid Arthritis-A Critical Review. Microorganisms 2024; 12:1387. [PMID: 39065155 PMCID: PMC11278530 DOI: 10.3390/microorganisms12071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune rheumatic disease characterized by synovial joint inflammation with subsequent destruction as well as systemic manifestation, leading to impaired mobility and impaired quality of life. The etiopathogenesis of RA is still unknown, with genetic, epigenetic and environmental factors (incl. tobacco smoking) contributing to disease susceptibility. The link between genetic factors like "shared epitope alleles" and the development of RA is well known. However, why only some carriers have a break in self-tolerance and develop autoimmunity still needs to be clarified. The presence of autoantibodies in patients' serum months to years prior to the onset of clinical manifestations of RA has moved the focus to possible epigenetic factors, including environmental triggers that could contribute to the initiation and perpetuation of the inflammatory reaction in RA. Over the past several years, the role of microorganisms at mucosal sites (i.e., microbiome) has emerged as an essential mediator of inflammation in RA. An increasing number of studies have revealed the microbial role in the immunopathogenesis of autoimmune rheumatic diseases. Interaction between the host immune system and microbiota initiates loss of immunological tolerance and autoimmunity. The alteration in microbiome composition, the so-called dysbiosis, is associated with an increasing number of diseases. Immune dysfunction caused by dysbiosis triggers and sustains chronic inflammation. This review aims to provide a critical summary of the literature findings related to the hypothesis of a reciprocal relation between the microbiome and the immune system. Available data from studies reveal the pivotal role of the microbiome in RA pathogenesis.
Collapse
Affiliation(s)
- Plamena Ermencheva
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
| | - Georgi Kotov
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
| | - Russka Shumnalieva
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
- Department of Rheumatology, Medical University of Sofia, 13 Urvich Str., 1612 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Kozyak 1, 1407 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Kozyak 1, 1407 Sofia, Bulgaria
| | - Simeon Monov
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
- Department of Rheumatology, Medical University of Sofia, 13 Urvich Str., 1612 Sofia, Bulgaria
| |
Collapse
|
2
|
Wang L, Liu H, Wu Q, Liu Y, Yan Z, Chen G, Shang Y, Xu S, Zhou Q, Yan T, Cheng X. miR-451a was selectively sorted into exosomes and promoted the progression of esophageal squamous cell carcinoma through CAB39. Cancer Gene Ther 2024; 31:1060-1069. [PMID: 38649419 DOI: 10.1038/s41417-024-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Exosomes are emerging mediators of cell-cell communication, which are secreted from cells and may be delivered into recipient cells in cell biological processes. Here, we examined microRNA (miRNA) expression in esophageal squamous cell carcinoma (ESCC) cells. We performed miRNA sequencing in exosomes and cells of KYSE150 and KYSE450 cell lines. Among these differentially expressed miRNAs, 20 of the miRNAs were detected in cells and exosomes. A heat map indicated that the level of miR-451a was higher in exosomes than in ESCC cells. Furthermore, miRNA pull-down assays and combined exosomes proteomic data showed that miR-451a interacts with YWHAE. Over-expression of YWHAE leads to miR-451a accumulation in the exosomes instead of the donor cells. We found that miR-451a was sorted into exosomes. However, the biological function of miR-451a remains unclear in ESCC. Here, Dual-luciferase reporter assay was conducted and it was proved that CAB39 is a target gene of miR-451a. Moreover, CAB39 is related to TGF-β1 from RNA-sequencing data of 155 paired of ESCC tissues and the matched tissues. Western Blot and qPCR revealed that CAB39 and TGF-β1 were positively correlated in ESCC. Over-expression of CAB39 were cocultured with PBMCs from the blood from healthy donors. Flow cytometry assays showed that apoptotic cells were significantly reduced after CAB39 over-expression and significantly increased after treated with TGF-β1 inhibitors. Thus, our data indicate that CAB39 weakens antitumor immunity through TGF-β1 in ESCC. In summary, YWHAE selectively sorted miR-451a into exosomes and it can weaken antitumor immunity promotes tumor progression through CAB39.
Collapse
Affiliation(s)
- Lu Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huijuan Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qinglu Wu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yiqian Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhenpeng Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Guohui Chen
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yao Shang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Songrui Xu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qichao Zhou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Xiaolong Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
3
|
Niu C, Liu J, Xing X, Zhang C. Exploring the Trans-Cleavage Activity with Rolling Circle Amplification for Fast Detection of miRNA. BIODESIGN RESEARCH 2023; 5:0010. [PMID: 37849464 PMCID: PMC10085249 DOI: 10.34133/bdr.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/28/2023] [Indexed: 10/19/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous short noncoding RNA. They regulate gene expression and function, essential to biological processes. It is necessary to develop an efficient detection method to determine these valuable biomarkers for the diagnosis of cancers. In this paper, we proposed a general and rapid method for sensitive and quantitative detection of miRNA by combining CRISPR-Cas12a and rolling circle amplification (RCA) with the precircularized probe. Eventually, the detection of miRNA-21 could be completed in 70 min with a limit of detection of 8.1 pM with high specificity. The reaction time was reduced by almost 4 h from more than 5 h to 70 min, which makes detection more efficient. This design improves the efficiency of CRISPR-Cas and RCA-based sensing strategy and shows great potential in lab-based detection and point-of-care test.
Collapse
Affiliation(s)
- Chenqi Niu
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Xinhui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Pourgholamali B, Sohrabi B, Salbi M, Akbari S, Rastan I, Sayaf M, Jalil AT, Kadhim MM, Sheervalilou R, Mehrzad N. Bioinformatic Analysis Divulged Novel Prognostic Circulating MicroRNAs and Their Potential Target Genes in Breast Cancer. Appl Biochem Biotechnol 2023; 195:283-297. [PMID: 36074234 DOI: 10.1007/s12010-022-04151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Breast cancer (BC) is both an inherited and environmental-based disease which is the leading cause of death among women. Early detection of BC can prevent invasion and metastasis in patients. Currently, researchers endeavor to find non-invasive biological markers from body fluids. Circulating non-coding RNAs such as microRNAs (miRNAs) can potentially be valuable prognostic and detective biomarkers. To identify novel miRNA-based biomarkers, we utilized bioinformatic tools. To reach this goal, the miRNA expression profiles of GSE31309, GSE 44,281, GSE98181, and GSE118782 were analyzed through a limma package of R. Target gene prediction of differentially expressed miRNAs, called differentially expressed miRNAs (DEMs), between samples of healthy individuals and BC patients was implemented through Multimir package of R. Functional enrichment analysis of predicted target genes through Enrich R (online database) revealed that most of the genes are enriched in the mitochondrial outer membrane for cellular component, intrinsic apoptotic signaling regulations for biological processes, transcription co-receptor activity for molecular functions, and dopaminergic synapse pathway. Furthermore, our survival analysis results revealed that miR-29c and mir-361 have the potential to serve as prognostic biomarkers.
Collapse
Affiliation(s)
- Babak Pourgholamali
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Behnoush Sohrabi
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Mandana Salbi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | | | - Iman Rastan
- Department of Electronic and Electrical Engineering, Shiraz Azad University, Shiraz, Iran
| | - Masoud Sayaf
- Azad University Central Tehran Branch Faculty of Basic Sciences, Department of Cellular and Molecular Biology, Tehran, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.,Department of Dentistry, Kut University College, Kut, Wasit, Iraq
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Nazanin Mehrzad
- Department of Biology, Science and Research Branch Islamic Azad university, Tehran, Iran.
| |
Collapse
|
5
|
Li W, Liu J, Ji L, Tang Y, Qin J, Zhao H, Cheng X, Tian M, Jin G, He H. MiR-674-5p Suppresses the Proliferation and Migration of Glioma Cells by Targeting Cul4b. Neurochem Res 2021; 47:679-691. [PMID: 34779995 DOI: 10.1007/s11064-021-03476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Glioma multiforme (GBM) is the most common malignant primary brain tumors. Despite the considerable advances in GBM treatment, it is still one of the most lethal forms of brain tumor. New clinical biomarkers and therapeutic targets are immediately required. MicroRNAs (miRNAs) are a class of small, evolutionarily conserved noncoding RNAs and have emerged as the key regulators of many cancers. Here in this study, we showed that miR-674-5p was probably an important regulator of glioma cell growth. After the transfection with miR-674-5p mimic or inhibitor, we found that the expression level of miR-674-5p was negatively related with cell proliferation and migration in C6 cells. Based on the prediction of the target genes of miR-674-5p on the website, we chose Cullin 4B (Cul4b), a gene upregulated in GBM, and proved that it was a target of miR-674-5p. In addition, we explored the role of miR-674-5p in glioma growth in vivo. Taken together, the present study indicated that miR-674-5p suppressed glioma cell proliferation and migration by targeting Cul4b.
Collapse
Affiliation(s)
- Wen Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Juan Liu
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Li Ji
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yi Tang
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jianbing Qin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Heyan Zhao
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiang Cheng
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Meiling Tian
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Guohua Jin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China. .,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong, Jiangsu, People's Republic of China. .,Co-Innovation Center of Neuroregeneration, Nantong, Jiangsu, People's Republic of China.
| | - Hui He
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Saral MA, Tuncer SB, Odemis DA, Erdogan OS, Erciyas SK, Saip P, Ozel S, Yazici H. New biomarkers in peripheral blood of patients with ovarian cancer: high expression levels of miR-16-5p, miR-17-5p, and miR-638. Arch Gynecol Obstet 2021; 305:193-201. [PMID: 34370073 DOI: 10.1007/s00404-021-06138-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Ovarian cancer is one of the most fatal gynecologic malignities. miR-16-5p, miR-17-5p, and miR-638 genes were found to have been associated with ovarian cancer in accordance with the data obtained from the previous microarray research performed by Tuncer et al. (J Ovarian Res 13(1):99, 2020). The expression levels of these miRNAs in the peripheral blood samples of 142 ovarian cancer patients, and 97 healthy controls were investigated for performing the validation, and to identify whether these genes were the possible biomarkers to be used in the early diagnosis of high-risk ovarian cancer patients, and in the prognosis of patients. METHODS The miRNA expression analysis was performed using the miRNA-specific cDNA synthesis, and real-time PCR methods following the RNA isolation from the peripheral blood lymphocytes. RESULTS miR-16-5p, miR-17-5p, and miR-638 miRNA gene expression levels were found to have twofold higher expression levels in patient groups compared with the gene expression levels in healthy controls, and were statistically significant (p < 0.05). In addition, the comparison of the miRNA expression levels with the clinical data of patients showed that there was a significant difference with smoking history and the increased expression level of miR-17-5 (p: 0.007). There was a significant difference between the increased expression level of miR-638 with the locally advanced stage, and abdominal/pelvic metastatic patients (p: 0.03). CONCLUSIONS The obtained data suggest that miR-16-5p, miR-17-5p, and miR-638 molecules might be the noninvasive biomarkers in identifying the ovarian cancer. However, the investigation and monitoring of the changeability of these biomarkers in benign ovarian diseases, and during the treatment must be performed in future studies for identifying the accurate diagnostic, and prognostic features of miRNAs.
Collapse
Affiliation(s)
- Mukaddes Avsar Saral
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey.,Health Sciences Institute, Istanbul University, Beyazıt/Fatih, 34452, Istanbul, Turkey.,Health Services Vocational School of Higher Education, T.C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Seref Bugra Tuncer
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Demet Akdeniz Odemis
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Ozge Sukruoglu Erdogan
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Seda Kilic Erciyas
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Pınar Saip
- Department of Medical Oncology in Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Sevda Ozel
- Department of Biostatistics, Istanbul Faculty of Medicine, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Hulya Yazici
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey.
| |
Collapse
|
7
|
Shekhawat RS, Mandal CC. Anti-obesity Medications in Cancer Therapy: A Comprehensive Insight. Curr Cancer Drug Targets 2021; 21:476-494. [PMID: 34225630 DOI: 10.2174/1568009621666210322122829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
The interplay between cancer and obesity is multifactorial and complex with the increased risk of cancer development in obese individuals posing a significant threat. Obesity leads to the upregulation or hyperactivation of several oncogenic pathways in cancer cells, which drives them towards a deleterious phenotype. The cross-talk between cancer and obesity is considered a large contributing factor in the development of chemotherapeutic drug resistance and the resistance to radiotherapy. The link between obesity and the development of cancer is so strong that a medication that demonstrates effectiveness against both conditions would serve as an essential step. In this context, anti-obesity medications provide a worthy list of candidates based on their chemo-preventive potential and chemotherapeutic properties. The current study focuses on exploring the potential of anti-obesity medicines as dual anticancer drugs. These medications target several key signaling pathways (e.g., AMPK, PI3K/Akt/mTOR, MAPK, NF-κB, JNK/ERK), which prove to be crucial for both cancer growth and metastases. Some of these drugs also play an important role in attenuating the signaling and cellular events which incite cancer-obesity cross-talk and demonstrate efficient counteraction of neoplastic transformation. Thus, this review highlights a comprehensive view of the potential use of anti-obesity medicines to treat both cancer and obesity for patients exhibiting both comorbities.
Collapse
Affiliation(s)
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, India
| |
Collapse
|
8
|
Ma Y, Zhou A, Song J. Upregulation of miR-1307-3p and its function in the clinical prognosis and progression of gastric cancer. Oncol Lett 2020; 21:91. [PMID: 33376524 PMCID: PMC7751337 DOI: 10.3892/ol.2020.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is one of the major causes of cancer-associated mortality worldwide. miR-1307-3p has been demonstrated to serve multiple roles in the development of various types of cancer. The present study aimed to evaluate the expression and functional role of miR-1307-3p in the progression of gastric cancer. The expression of miR-1307-3p in gastric cancer tissues and cell lines was detected by reverse transcription quantitative PCR. Furthermore, the correlation between miR-1307-3p expression and the clinicopathological characteristics and prognosis of patients was evaluated. Cell Counting Kit-8 and Transwell assays were performed to analyze the effects of miR-1307-3p on the proliferation and the migratory and invasive abilities of gastric cancer cells, respectively. Dual-luciferase reporter assay was conducted to reveal the potential underlying mechanism of miR-1307-3p. In gastric cancer tissues and cells, miR-1307-3p expression was significantly upregulated compared with the normal tissues and cell lines. In addition, the expression of miR-1307-3p was associated with the Tumor-Node Metastasis stage of patients. The results from Cox regression analysis demonstrated that miR-1307-3p may serve as an independent predictor for the prognosis of patients with gastric cancer. Furthermore, the upregulation of miR-1307-3p in gastric cancer cell lines significantly promoted the cell proliferation and migratory and invasive abilities by targeting DAB2 interacting protein. In conclusion, the findings from the present study suggested that miR-1307-3p may serve as a tumor promoter of gastric cancer and that miR-1307-3p expression in tumor tissues may be used as a prognostic indicator for patients with gastric cancer.
Collapse
Affiliation(s)
- Yanhui Ma
- Department of Laboratory, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Aifeng Zhou
- Department of Laboratory, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Juan Song
- Department of Laboratory, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| |
Collapse
|
9
|
Cirillo PDR, Margiotti K, Mesoraca A, Giorlandino C. Quantification of circulating microRNAs by droplet digital PCR for cancer detection. BMC Res Notes 2020; 13:351. [PMID: 32703272 PMCID: PMC7379807 DOI: 10.1186/s13104-020-05190-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 01/20/2023] Open
Abstract
Objective Circulating cell-free microRNAs (miRNAs) which consist of short-sequence RNAs are released from cells into the blood stream and has emerged as new biomarkers in the clinical cancer diagnosis and treatment. For instance, ovarian cancer comprises one of the three major malignant tumor types in the female reproductive system. The mortality rate of this cancer is the highest among all gynecological tumors, with ovarian cancer metastasis constituting an important cause of death. Therefore, development of a diagnostic tool that enables the ovarian cancer diagnosis in earlier stages is urgent. Results We have described an efficient protocol for an accurate absolute quantification of circulating miRNAs in healthy and ovarian cancer serum samples. Our data showed that ddPCR methodology can accurately measure circulating miRNAs levels and that can be a useful tool in biomarkers discovery for ovarian cancer detection.
Collapse
Affiliation(s)
- Priscila D R Cirillo
- Human Genetics Laboratories, ALTAMEDICA, Altamedica Main Centre, Viale Liegi 45, 00198, Rome, Italy
| | - Katia Margiotti
- Human Genetics Laboratories, ALTAMEDICA, Altamedica Main Centre, Viale Liegi 45, 00198, Rome, Italy.
| | - Alvaro Mesoraca
- Human Genetics Laboratories, ALTAMEDICA, Altamedica Main Centre, Viale Liegi 45, 00198, Rome, Italy
| | - Claudio Giorlandino
- Department of Prenatal Diagnosis, ALTAMEDICA, Fetal-Maternal Medical Centre, Viale Liegi 45, 00198, Rome, Italy
| |
Collapse
|
10
|
Han JB, Huang ML, Li F, Yang R, Chen SM, Tao ZZ. MiR-214 Mediates Cell Proliferation and Apoptosis of Nasopharyngeal Carcinoma Through Targeting Both WWOX and PTEN. Cancer Biother Radiopharm 2020; 35:615-625. [PMID: 32101017 PMCID: PMC7578184 DOI: 10.1089/cbr.2019.2978] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: This study aimed to investigate interactions between miR-214, PTEN, and WWOX and their effect on AKT signaling during the NPC progression. Nasopharyngeal carcinoma (NPC) was highly prevalent with poor prognosis among the patients. MiR-214 reported as an important NPC biomarker was associated with regulation of biological functions. Methods: 5–8F and 6–10B NPC cells were transfected with miR-214 inhibitor. MTT and colony formation assays were performed to assess cell proliferation. PI staining assay was performed to determine distribution of cell cycle. Annexin-V/PI staining assay was used to evaluate cell apoptosis in NPC. The effects of miR-214 inhibitor on the expression levels of PTEN, WWOX, AKT signaling pathway, cell-cycle-, and apoptosis-associated proteins were assessed by Western blotting or qRT-PCR assay. PTEN and WWOX were knocked down using the corresponding shRNA to investigate their effects on miR-214 inhibitor involved in proapoptosis and antiproliferation mechanisms in NPC. Results: Inhibition of miR-214 suppressed cell growth and induced apoptosis of 5–8F and 6–10B cells. MiR-214 regulated the expression of both PTEN and WWOX through targeting the 3′-UTR. Inhibition of miR-214 promoted WWOX and PTEN expression, inactivated AKT signaling pathway, and regulated cell-cycle- and apoptosis-associated proteins. Knockdown of PTEN or WWOX reversed effects of miR-214 inhibitor on AKT signaling, cell proliferation, and apoptosis. Conclusion: MiR-214 was suggested to induce cell proliferation and inhibit cell apoptosis of NPC through directly targeting both PTEN and WWOX, which provided a novel therapeutic target for clinical treatment of NPC.
Collapse
Affiliation(s)
- Ji-Bo Han
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Mao-Ling Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Fen Li
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
11
|
Deng T, Zhang H, Yang H, Wang H, Bai M, Sun W, Wang X, Si Y, Ning T, Zhang L, Li H, Ge S, Liu R, Lin D, Li S, Ying G, Ba Y. Exosome miR-155 Derived from Gastric Carcinoma Promotes Angiogenesis by Targeting the c-MYB/VEGF Axis of Endothelial Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1449-1459. [PMID: 32160713 PMCID: PMC7056628 DOI: 10.1016/j.omtn.2020.01.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Exosomes, membranous nanovesicles, naturally carry proteins, mRNAs, and microRNAs (miRNAs) and play important roles in tumor pathogenesis. Here we showed that gastric cancer (GC) cell-derived exosomes can function as vehicles to deliver miR-155 to promote angiogenesis in GC. In this study, we first detected that the expression of miR-155 and c-MYB was negatively correlated in GC and that c-MYB was a direct target of miR-155. We next characterized the promotional effect of exosome-delivered miR-155 on angiogenesis and tumor growth in GC. We found that miR-155 could inhibit c-MYB but increase vascular endothelial growth factor (VEGF) expression and promote growth, metastasis, and tube formation of vascular cells, causing the occurrence and development of tumors. We also used a tumor implantation mouse model to show that exosomes containing miR-155 significantly augment the growth rate of the vasculature and tumors in vivo. Our results illustrate the potential mechanism between miR-155 and angiogenesis in GC. These findings contribute to our understanding of the function of miR-155 and exosomes for GC therapy.
Collapse
Affiliation(s)
- Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Haiou Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Huiya Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Wu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xinyi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yiran Si
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Le Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Hongli Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dan Lin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shuang Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
12
|
Peng H, Wang L, Su Q, Yi K, Du J, Wang Z. MiR-31-5p promotes the cell growth, migration and invasion of colorectal cancer cells by targeting NUMB. Biomed Pharmacother 2019; 109:208-216. [PMID: 30396078 DOI: 10.1016/j.biopha.2018.10.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the role and specific molecular mechanism of miR-31-5 in colorectal cancer. The relative expression of miR-31-5p and NUMB in colorectal cancer tissues was analyzed by qRT-PCR. To knock down the expression of miR-31-5p, the transfection of miR-31-5p inhibitor was performed. The transfection with miR-31-5p mimic was used for miR-31-5p overexpression and pcDNA3.0-NUMB plasmid was used for NUMB overexpression. CCK-8 assay was used to analyze the cell proliferation. Flow cytometry was used to evaluate the cell apoptosis and cell cycle. Matrigel invasion assay was performed to assess the invasion potency and migration assay was performed to assess the migration potency. Hoechst 33258 staining assay was performed to analyze the cell apoptosis of HT29 cells after the indicated transfection. Luciferase activity assays were performed to confirmed the potential binding site for miR-31-5p in 3'-UTR region of NUMB. MiR-31-5p is highly expressed in colorectal cancer and is critical for the cell proliferation, cell cycle, migration, invasion and apoptosis. NUMB is target of miR-31-5p and NUMB overexpression inhibited the cell proliferation, migration, invasion and induced cell cycle arrest and apoptosis in HT29 colorectal cancer cells. In conclusion, miR-31-5p promoted the cell growth, migration and invasion by targeting NUMB in colorectal cancer cells.
Collapse
Affiliation(s)
- Hong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Anorectal Surgery, Nanchong Central Hospital, Nanchong, Sichuan 637000, PR China
| | - Longfei Wang
- Department of Pharmacy, Nanchong Central Hospital, Nanchong, Sichuan 637000, PR China
| | - Qiang Su
- Department of Clinical Pharmacy, Nanchong Central Hospital, Nanchong, Sichuan 637000, PR China
| | - Kun Yi
- Department of Image Diagnoses, Nanchong Central Hospital, Nanchong, Sichuan 637000, PR China
| | - Jingwei Du
- Department of Otolaryngology, Nanchong Central Hospital, Nanchong, Sichuan 637000, PR China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
13
|
Kim K, Shin EA, Jung JH, Park JE, Kim DS, Shim BS, Kim SH. Ursolic Acid Induces Apoptosis in Colorectal Cancer Cells Partially via Upregulation of MicroRNA-4500 and Inhibition of JAK2/STAT3 Phosphorylation. Int J Mol Sci 2018; 20:E114. [PMID: 30597956 PMCID: PMC6337206 DOI: 10.3390/ijms20010114] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 12/23/2022] Open
Abstract
Though ursolic acid (UA) isolated from Oldenlandia diffusa was known to exhibit anti-cancer, anti-inflammatory, and anti-obesity effects, the underlying antitumor mechanism of ursolic acid was not fully understood to date. Thus, in the present study, the apoptotic mechanism of ursolic acid was elucidated in HCT116 and HT29 colorectal cancer cells in association with STAT3 and microRNA-4500 (miR-4500) by MTT assay, Terminal deoxynucleotidyl transferase-dT-mediated dUTP nick end labelling (TUNEL) assay, cell cycle analysis, immunofluorescence, and Western blotting. Ursolic acid significantly exerted cytotoxicity, increased TUNEL positive cells and sub-G1 apoptotic portion, induced cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP) and caspase 3 in HCT116 and HT29 cells. Of note, ursolic acid attenuated the expression of anti-apoptotic proteins such as Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) and also blocked nuclear translocation of STAT3 in colorectal cancer cells. Notably, ursolic acid increased the expression level of miR-4500 in HCT116 cells by qRT-PCR analysis and conversely miR-4500 inhibitor reversed cytotoxic, anti-proliferative, and apoptotic effects by increasing TUNEL positive cells, PARP cleavage and inhibiting p-STAT3 in ursolic acid treated colorectal cancer cells. Overall, our findings provide evidence that usolic acid induces apoptosis in colorectal cancer cells partially via upregulation of miR-4500 and inhibition of STAT3 phosphorylation as a potent anti-cancer agent for colorectal cancer therapy.
Collapse
Affiliation(s)
- Karam Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Eun Ah Shin
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Dong Soub Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
14
|
Jiang Y, Zhang M, Guo T, Yang C, Zhang C, Hao J. MicroRNA-21-5p promotes proliferation of gastric cancer cells through targeting SMAD7. Onco Targets Ther 2018; 11:4901-4911. [PMID: 30147341 PMCID: PMC6101024 DOI: 10.2147/ott.s163771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background MicroRNAs could target multiple genes by regulating the translation or degradation of mRNAs, and are involved in functions such as signal transduction pathways affecting the physiological functions of normal or tumor cells. Methods In this study, the expressions of miRNA-21-5p in gastric cancer tissues and SGC-7901 cells were analyzed, and the effects of miRNA-21-5p on cell proliferation, migration, invasion, and apoptosis and the expressions of target proteins SMADs in SGC-7901 cells were evaluated. Inflammatory factors interleukin 1β and tumor necrosis factor α in siRNA-transfected SGC-7901 cells were determined by enzyme-linked immunosorbent assay. Results MiRNA-21-5p was consistently upregulated in gastric cancer tissues and SGC-7901 cells compared to normal tissues or cells. The knockdown of miRNA-21-5p with antisense oligonucleotides suppressed cell proliferation, migration, and invasion as well as inflammatory response, and promoted cell apoptosis and SMAD7 expression. Conclusion These results indicate SMAD7 may mediate the oncogenic properties of miRNA-21-5p in gastric cancer, and miRNA-21-5p would be a promising strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yinan Jiang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China,
| | - Meiling Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,
| | - Tangxi Guo
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China,
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China,
| | - Chunxiao Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China,
| | - Jinjin Hao
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,
| |
Collapse
|
15
|
Liu K, Yao H, Lei S, Xiong L, Qi H, Qian K, Liu J, Wang P, Zhao H. The miR-124-p63 feedback loop modulates colorectal cancer growth. Oncotarget 2018; 8:29101-29115. [PMID: 28418858 PMCID: PMC5438716 DOI: 10.18632/oncotarget.16248] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
Among the diverse co-regulatory relationships between transcription factors (TFs) and microRNAs (miRNAs), feedback loops have received the most extensive research attention. The co-regulation of TFs and miRNAs plays an important role in colorectal cancer (CRC) growth. Here, we show that miR-124 can regulate two isoforms of p63, TAp63 and ΔNp63, via iASPP, while p63 modulates signal transducers and activators of transcription 1 (STAT1) expression by targeting miR-155. Moreover, STAT1 acts as a regulator of CRC growth by targeting miR-124. Taken together, these results reveal a feedback loop between miRNAs and TFs. This feedback loop comprises miR-124, iASPP, STAT1, miR-155, TAp63 and ΔNp63, which are essential for CRC growth. Moreover, this feedback loop is perturbed in human colon carcinomas, which suggests that the manipulation of this microRNA-TF feedback loop has therapeutic potential for CRC.
Collapse
Affiliation(s)
- Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hongliang Yao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Sanlin Lei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haizhi Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ke Qian
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jiqiang Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Peng Wang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hua Zhao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
16
|
Cui L, Markou A, Stratton CW, Lianidou E. Diagnosis and Assessment of Microbial Infections with Host and Microbial MicroRNA Profiles. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7119978 DOI: 10.1007/978-3-319-95111-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) encoded by viral genome or host have been found participating in host-microbe interactions. Differential expression profiles of miRNAs were shown linking to specific disease pathologies which indicated its potency as diagnostic/prognostic biomarkers of infectious disease. This was emphasized by the discovery of circulating miRNAs which were found to be remarkably stable in mammalian biofluids. Standardized methods of miRNA quantification including RNA isolation should be established before they will be ready for use in clinical practice.
Collapse
|
17
|
Ahmed FE, Ahmed NC, Gouda MM, Vos PW, Bonnerup C. RT-qPCR for Fecal Mature MicroRNA Quantification and Validation. Methods Mol Biol 2018; 1765:203-215. [PMID: 29589310 DOI: 10.1007/978-1-4939-7765-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
By routinely and systematically being able to perform quantitative stem-loop reverse transcriptase (RT) followed by TaqMan® minor-groove binding (MGB) probe, real-time quantitative PCR analysis on exfoliated enriched colonocytes in stool, using human (Homo sapiens, hsa) micro(mi)RNAs to monitor changes of their expression at various stages of colorectal (CRC) progression, this method allows for the reliable and quantitative diagnostic screening of colon cancer (CC). Although the expression of some miRNA genes tested in tissue shows less variability in normal or cancerous patients than in stool, the noninvasive stool by itself is well suited for CC screening. An miRNA approach using stool promises to offer more sensitivity and specificity than currently used genomic, methylomic, or proteomic methods for CC screening.To present an application of employing miRNAs as diagnostic markers for CC screening, we carried out global microarray expression studies on stool colonocytes isolated by paramagnetic beads, using Affymetrix GeneChip miRNA 3.0 Array, to select a panel of miRNAs for subsequent focused semiquantitative PCR analysis studies. We then conducted a stem-loop RT-TaqMan® MGB probes, followed by a modified real-time qPCR expression study on 20 selected miRNAs for subsequent validation of the extracted immunocaptured total small RNA isolated from stool colonocytes. Results showed 12 miRNAs (miR-7, miR-17, miR-20a, miR-21, miR-92a, miR-96, miR-106a, miR-134, miR-183, miR-196a, miR-199a-3p, and miR214) to have an increased expression in stool of CC patients, and that later TNM stages exhibited more increased expressions than adenomas, while 8 miRNAs (miR-9, miR-29b, miR-127-5p, miR-138, miR-143, miR-146a, miR-222, and miR-938) showed decreased expressions in stool of CC patients, which becomes more pronounced as the cancer progresses from early to late TNM stages (0-IV).
Collapse
Affiliation(s)
- Farid E Ahmed
- GEM Tox Labs, Institute for Research in Biotechnology, Greenville, NC, USA.
| | - Nancy C Ahmed
- GEM Tox Labs, Institute for Research in Biotechnology, Greenville, NC, USA
| | - Mostafa M Gouda
- Department of Nutrition & Food Science, National Research Center, Cairo, Egypt
| | - Paul W Vos
- Department of Biostatistics, East Carolina University, Greenville, NC, USA
| | - Chris Bonnerup
- Department of Physics, East Carolina University, Greenville, NC, USA
| |
Collapse
|
18
|
Yadav S, Shekhawat M, Jahagirdar D, Kumar Sharma N. Natural and artificial small RNAs: a promising avenue of nucleic acid therapeutics for cancer. Cancer Biol Med 2017; 14:242-253. [PMID: 28884041 PMCID: PMC5570601 DOI: 10.20892/j.issn.2095-3941.2017.0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/22/2017] [Indexed: 01/02/2023] Open
Abstract
Since the failure of traditional therapy, gene therapy using functional DNA sequence and small RNA/DNA molecules (oligonucleotide) has become a promising avenue for cancer treatment. The discovery of RNA molecules has impelled researchers to investigate small regulatory RNA from various natural and artificial sources and determine a cogent target for controlling tumor progression. Small regulatory RNAs are used for therapeutic silencing of oncogenes and aberrant DNA repair response genes. Despite their advantages, therapies based on small RNAs exhibit limitations in terms of stability of therapeutic drugs, precision-based delivery in tissues, precision-based intercellular and intracellular targeting, and tumor heterogeneity-based responses. In this study, we summarize the potential and drawbacks of small RNAs in nucleic acid therapeutics for cancer.
Collapse
Affiliation(s)
- Sunny Yadav
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Mamta Shekhawat
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| |
Collapse
|
19
|
Current Concepts of Epigenetics in Testicular Cancer. Indian J Surg Oncol 2017; 8:169-174. [PMID: 28546713 DOI: 10.1007/s13193-016-0593-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Testicular germ cell tumors (GCTs) are characterized into seminomas (SGCTs) and non-seminomatous testicular germ cell tumors (NSGCTs). Serum tumor markers (STMs) play an important role in testicular cancer as they provide useful information for diagnosis, staging, and detection of recurrence. Nonetheless, additional tumor markers for early diagnosis and therapeutic options are required to enhance specificity of serological diagnosis of testes cancers. Epigenetics is defined as inherited changes in gene expression that are not encoded in the DNA structure. Epigenetic changes include DNA methylation, histone modifications, and microRNA (miRNA) regulation. It is through the study of epigenetics that diagnostic methods for early detection and novel therapeutic strategies may be established for testicular cancer. We performed a comprehensive review of the English medical literature in PubMed by combining search terms including DNA methylation, histone modifications, microRNA (miRNA) regulation, epigenetics, and testicular cancer. DNA methylation is the most extensively studied epigenetic modification. It consists of the addition of a methyl group to nucleotide bases. It has been reported that SGCT contain reduced levels of DNA methylation compared to NSGCT. MiRNAs are small non-coding RNAs that regulate posttranscriptional gene expression. It has been suggested that miRNAs may play a role in the pathogenesis of GCT. Specific expression patterns have been displayed by various miRNAs in patients with GCT. Histones are proteins intertwined with coiled, double-stranded genomic DNA that form a structure known as a nucleosome. The most widely studied histone modifications include acetylation, methylation, and phosphorylation. Methylation of histone proteins has been found in all types of NSGCT. Epigenetics may offer an additional and effective tool in establishing a diagnosis of GCT of the testes, including prognostic information and perhaps enabling targeted treatment in patients with testicular GCT.
Collapse
|
20
|
A microRNA-mediated decrease in eukaryotic initiation factor 2α promotes cell survival during PS-341 treatment. Sci Rep 2016; 6:21565. [PMID: 26898246 PMCID: PMC4761930 DOI: 10.1038/srep21565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) play pivotal roles in carcinogenesis and endoplasmic reticulum (ER) that performs the folding, modification and trafficking of proteins targeted to the secretory pathway. Cancer cells often endure ER stress during tumor progression but use the adaptive ER stress response to gain survival advantage. Here we report: (i) A group of miRs, including miR-30b-5p and miR-30c-5p, are upregulated by proteasome inhibitor PS-341 treatment, in HepG2 and MDA-MB-453 cells. (ii) Two representative PS-341-induced miRs: miR-30b-5p and miR-30c-5p are found to promote cell proliferation and anti-apoptosis in both tumor cells. (iii) eIF2α is confirmed as the congenerous target of miR-30b-5p and miR-30c-5p, essential to the anti-apoptotic function of these miRs. (iv) Upregulation of miR-30b-5p or miR-30c-5p, which occurs latter than the increase of phosphorylated eIF2α (p-eIF2α) in the cell under ER stress, suppresses the p-eIF2α/ATF4/CHOP pro-apoptotic pathway. (v) Inhibition of the miR-30b-5p or miR-30c-5p sensitizes the cancer cells to the cytotoxicity of proteasome inhibition. In conclusion, we unravels a new miRs-based mechanism that helps maintain intracellular proteostasis and promote cell survival during ER stress through upregulation of miR-30b-5p and miR-30c-5p which target eIF2α and thereby inhibit the p-eIF2α/ATF4/CHOP pro-apoptotic pathway, identifying miR-30b-5p and miR-30c-5p as potentially new targets for anti-cancer therapies.
Collapse
|
21
|
Xu G, Li JY. Differential expression of PDGFRB and EGFR in microvascular proliferation in glioblastoma. Tumour Biol 2016; 37:10577-86. [PMID: 26857280 DOI: 10.1007/s13277-016-4968-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the highly malignant glioma and exhibits microvascular proliferation. PCR mRNA arrays and immunohistochemical stains on tissue microarray demonstrated that the expression level of PDGFRB in GBM microvascular proliferation was significantly higher than that in GBM tumor cells while the expression level of EGFR was lower in microvascular proliferation than in GBM tumor cells. PDGFRB protein was selectively expressed in pericytes in GBM microvascular proliferation. By analyzing The Cancer Genome Atlas (TCGA) datasets for GBM, it was found that genomic DNA alterations were the main reason for the high expression of EGFR in GBM tumor cells. Our miRNA microarray data showed that microRNAs (miRNAs) (miR-193b-3p, miR-518b, miR-520f-3p, and miR-506-5p) targeting PDGFRB were downregulated in microvascular proliferation, which might be the most likely reason for the high expression of PDGFRB in GBM microvascular proliferation. The increase of several miRNAs (miR-133b, miR-30b-3p, miR-145-5p, and miR-146a-5p) targeting EGFR in GBM microvascular proliferation was one of the reasons for the lack of expression of EGFR in GBM microvascular proliferation. These findings implicated that miRNAs, such as miR-506, miR-133b, miR-145, and miR-146a, that target PDGFRB or EGFR, might be potential therapeutic agents for GBM. A new generation of targeted therapeutic agents against both EGFR and PDGFRB might be developed in the future.
Collapse
Affiliation(s)
- Guiyan Xu
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Hofstra Northwell School of Medicine, Northwell Health, Lake Success, NY, USA
| | - Jian Yi Li
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Hofstra Northwell School of Medicine, Northwell Health, Lake Success, NY, USA. .,Cancer Institute, Northwell Health, Lake Success, NY, USA.
| |
Collapse
|
22
|
Tanoglu A, Balta AZ, Berber U, Ozdemir Y, Emirzeoglu L, Sayilir A, Sucullu I. MicroRNA expression profile in patients with stage II colorectal cancer: a Turkish referral center study. Asian Pac J Cancer Prev 2016; 16:1851-5. [PMID: 25773836 DOI: 10.7314/apjcp.2015.16.5.1851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are increasing data about microRNAs (miRNA) in the literature, providing abundant evidence that they play important roles in pathogenesis and development of colorectal cancer. In this study, we aimed to investigate the miRNA expression profiles in surgically resected specimens of patients with recurrent and non-recurrent colorectal cancer. MATERIALS AND METHODS The study population included 40 patients with stage II colorectal cancer (20 patients with recurrent tumors, and 20 sex and age matched patients without recurrence), who underwent curative colectomy between 2004 and 2011 without adjuvant therapy. Expression of 16 miRNAs (miRNA-9, 21, 30d, 31, 106a, 127, 133a, 133b, 135b, 143, 145, 155, 182, 200a, 200c, 362) was verified by quantitative real-time polymerase chain reaction (qRT-PCR) in all resected colon cancer tissue samples and in corresponding normal colonic tissues. Data analyses were carried out using SPSS 15 software. Values were statistically significantly changed in 40 cancer tissues when compared to the corresponding 40 normal colonic tissues (p<0.001). MiR-30d, miR-133a, miR-143, miR-145 and miR-362 expression was statistically significantly downregulated in 40 resected colorectal cancer tissue samples (p<0.001). When we compared subgroups, miRNA expression profiles of 20 recurrent cancer tissues were similar to all 40 cancer tissues. However in 20 non-recurrent cancer tissues, miR-133a expression was not significantly downregulated, moreover miR-133b expression was significantly upregulated (p<0.05). CONCLUSIONS Our study revealed dysregulation of expression of ten miRNAs in Turkish colon cancer patients. These miRNAs may be used as potential biomarkers for early detection, screening and surveillance of colorectal cancer, with functional effects on tumor cell behavior.
Collapse
Affiliation(s)
- Alpaslan Tanoglu
- Gastroenterology Department, GATA Haydarpasa Training Hospital, Uskudar-Istanbul, Turkey E-mail :
| | | | | | | | | | | | | |
Collapse
|
23
|
ATP5A1 and ATP5B are highly expressed in glioblastoma tumor cells and endothelial cells of microvascular proliferation. J Neurooncol 2015; 126:405-13. [PMID: 26526033 DOI: 10.1007/s11060-015-1984-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/25/2015] [Indexed: 10/22/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor. Microvascular proliferation is one of the characteristic pathologic features of GBM. Mitochondrial dysfunction plays an important role in the pathogenesis of GBM. In this study, microvascular proliferation from GBM and normal brain blood vessels were laser microdissected and total RNA was isolated from these microvasculatures. The difference of mRNA expression profiles among GBM microvasculature, normal brain blood vessels and GBM tumor cells was evaluated by mitochondria and metabolism PCR gene arrays. It was found that the mRNA levels of ATP5A1 and ATP5B in GBM tumor cells as well as microvascular proliferation were significantly higher compared with normal brain blood vessels. Immunohistochemical stains with anti-ATP5A1 antibody or anti-ATP5B antibody were performed on tissue microarray, which demonstrated strongly positive expression of ATP5A1 and ATP5B in GBM tumor cells and GBM microvascular proliferation while normal blood vessels were negative. By analyzing The Cancer Genome Atlas data sets for GBM and other cancers, genomic DNA alterations (mutation, amplification or deletion) were less likely the reason for the high expression of ATP5A1 and ATP5B in GBM. Our miRNA microarray data showed that miRNAs that target ATP5A1 or ATP5B were down-regulated, which might be the most likely reason for the high expression of ATP5A1 and ATP5B in GBM tumor cells and microvascular proliferation. These findings help us better understand the pathogenesis of GBM, and agents against ATP5A1 and/or ATP5B might effectively kill both tumor cells and microvascular proliferation in GBM. MiRNAs, such as Let-7f, miR-16, miR-23, miR-100 and miR-101, that target ATP5A1 or ATP5B, might be potential therapeutic agents for GBM.
Collapse
|
24
|
Ji Z, Dong F, Wang G, Hou L, Liu Z, Chao T, Wang J. miR-135a Targets and Regulates Prolactin Receptor Gene in Goat Mammary Epithelial Cells. DNA Cell Biol 2015; 34:534-40. [PMID: 26102062 DOI: 10.1089/dna.2015.2904] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammary gland development and lactation are typical traits controlled by multiple genes, hormones, and regulatory factors. Prolactin receptor (PRLR), a specific receptor of prolactin, has been reported to have important physiological functions in regulating mammogenesis and lactogenesis. However, the post-transcriptional regulation mechanisms of PRLR expression have not yet been shown in detail. In this study, the expression of miR-135a and PRLR at different development stages of Laoshan dairy goat mammary gland tissues was investigated. After overexpression and silencing expression of miR-135a in cultured primary mammary epithelial cells, the regulatory relationship between miR-135a and PRLR was examined through dual-luciferase reporter assay, and the expression of PRLR at both mRNA and protein levels was examined by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. Collectively, our results suggested that PRLR is a direct target gene of miR-135a, miR-135a is a novel regulator of PRLR, and it might play an essential role in the regulation of animal mammary gland development and lactation.
Collapse
Affiliation(s)
- Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Fei Dong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Zhaohua Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, China
| |
Collapse
|
25
|
la Rosa AHD, Acker M, Swain S, Manoharan M. The role of epigenetics in kidney malignancies. Cent European J Urol 2015; 68:157-64. [PMID: 26251734 PMCID: PMC4526599 DOI: 10.5173/ceju.2015.453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/03/2015] [Accepted: 02/20/2015] [Indexed: 01/18/2023] Open
Abstract
Introduction Renal cell carcinomas (RCC) are collectively the third most common type of genitourinary neoplasms, surpassed only by prostate and bladder cancer. Cure rates for renal cell carcinoma are related to tumor grade and stage; therefore, diagnostic methods for early detection and new therapeutic modalities are of paramount importance. Epigenetics can be defined as inherited modifications in gene expression that are not encoded in the DNA sequence itself. Epigenetics may play an important role in the pursuit of early diagnosis, accurate prognostication and identification of new therapeutic targets. Material and methods We used PubMed to conduct a comprehensive search of the English medical literature using search terms including epigenetics, DNA methylation, histone modification, microRNA regulation (miRNA) and RCC. In this review, we discuss the potential application of epigenetics in the diagnosis, prognosis and treatment of kidney cancer. Results During the last decade, many different types of epigenetic alterations of DNA have been found to be associated with malignant renal tumors. This has led to the research of the diagnostic and prognostic implications of these changes in renal malignancies as well as to the development of novel drugs to target these changes, with the aim of achieving a survival benefit. Conclusions Epigenetics has become a promising field in cancer research. The potential to achieve early detection and accurate prognostication in kidney cancer might be feasible through the application of epigenetics. The possibility to reverse these epigenetic changes with new therapeutic agents motivates researchers to continue pursuing better treatment options for kidney cancer and other malignancies.
Collapse
Affiliation(s)
| | - Matthew Acker
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sanjaya Swain
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Murugesan Manoharan
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
26
|
Wu J, Li G, Yao Y, Wang Z, Sun W, Wang J. MicroRNA-421 is a new potential diagnosis biomarker with higher sensitivity and specificity than carcinoembryonic antigen and cancer antigen 125 in gastric cancer. Biomarkers 2014; 20:58-63. [PMID: 25510566 DOI: 10.3109/1354750x.2014.992812] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT The sensitivity and specificity of blood microRNA-421 (miR-421) as a gastric cancer (GC) biomarker has not been determined. OBJECTIVE To investigate the diagnostic value of blood miR-421 as GC biomarker. MATERIALS AND METHODS miR-421 in serum and peripheral blood mononuclear cells (PBMCs) of 90 GC patients and 90 controls was detected by quantitative real-time PCR. The correlation of miR-421 to GC clinicopathological features as well as the diagnostic value of miR-421 comparing to carcinoembryonic antigen (CEA) and cancer antigen 125 (CA-125) were analyzed. RESULTS miR-421 increased significantly in GC patients than in controls. miR-421 in either serum or PBMCs had higher sensitivity and specificity than CEA and CA-125 in GC diagnosis. The GC positive prediction rates of miR-421 were also significantly higher than those of CEA and CA-125. DISCUSSION AND CONCLUSIONS miR-421 in serum or PBMCs may be a new potential diagnostic biomarker for GC.
Collapse
Affiliation(s)
- Jianhong Wu
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated Hospital of Jiangsu University , Kunshan , China
| | | | | | | | | | | |
Collapse
|
27
|
Yuan J, Lang J, Liu C, Zhou K, Chen L, Liu Y. The expression and function of miRNA-451 in osteosarcoma. Med Oncol 2014; 32:324. [PMID: 25471786 DOI: 10.1007/s12032-014-0324-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/03/2014] [Indexed: 12/30/2022]
Abstract
MicroRNA-451 has been proven down-regulated in many human malignancies and correlated with tumor progression. However, its expression and clinical significance in osteosarcoma is still unclear. Thus, the aim of this study was to explore the effects of miR-451 in osteosarcoma tumorigenesis and development. The expression level of miR-451 was quantified by quantitative real-time reverse-transcriptase-polymerase chain reaction in primary osteosarcoma tissues and osteosarcoma cell lines. MTT, flow cytometric, and scratch migration assay were used to test the proliferation, apoptosis, and migration of miR-451 transfection osteosarcoma cells, and a mouse model was used to investigate tumorigenesis. The expression levels of miR-451 in osteosarcoma tissues were significantly lower than those in corresponding noncancerous bone tissues (P < 0.001). In addition, miR-451 down-regulation more frequently occurred in osteosarcoma specimens with advanced clinical stage (P < 0.001), positive distant metastasis (P = 0.015), and poor response to neoadjuvant chemotherapy (P < 0.001). Univariate and multivariate analysis identified low miR-451 expression as an unfavorable prognostic factor for both overall and disease-free survival. After miR-451 transfection, cell proliferation, migration, and tumorigenesis in the osteosarcoma cells were significantly inhibited and cell apoptosis was increased. These findings indicate that miR-451 may act not only as a novel diagnostic and prognostic marker, but also as a potential target for molecular therapy of osteosarcoma.
Collapse
Affiliation(s)
- Jiandong Yuan
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, China
| | | | | | | | | | | |
Collapse
|
28
|
Mortensen MM, Høyer S, Orntoft TF, Sørensen KD, Dyrskjøt L, Borre M. High miR-449b expression in prostate cancer is associated with biochemical recurrence after radical prostatectomy. BMC Cancer 2014; 14:859. [PMID: 25416653 PMCID: PMC4247690 DOI: 10.1186/1471-2407-14-859] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 10/30/2014] [Indexed: 11/23/2022] Open
Abstract
Background Prostate cancer is one of the leading causes of cancer death amongst men in economically advanced countries. The disease is characterized by a greatly varying clinical course, where some patients harbor non- or slowly-progressive disease, others highly aggressive disease. There is a great lack of markers to differentiate between aggressive and indolent disease. Markers that could help to identify patients needing curative treatment while sparing those who do not. Methods MicroRNA profiling of 672 microRNAs using multiplex RT-qPCR was performed using 36 prostate cancer samples to evaluate the association of microRNAs and biochemical recurrence after radical prostatectomy. Results Among 31 microRNAs associated with recurrence, we identified miR-449b, which was further validated in an independent cohort of 163 radical prostatectomy patients. Patients expressing miR-449b had a significantly higher risk of recurrence (HR = 1.57; p = 0.028), and miR-449b was shown to be an independent predictor of recurrence after prostatectomy (HR = 1.9; p = 0.003) when modeled with known risk factors of recurrent disease in multivariate analysis. Conclusion High miR-449b expression was shown to be an independent predictor of biochemical recurrence after radical prostatectomy.
Collapse
Affiliation(s)
| | | | | | | | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark.
| | | |
Collapse
|
29
|
MA JI, WU QI, ZHANG YUE, LI JINGHUA, YU YONGCHUN, PAN QIUHUI, SUN FENYONG. microRNA sponge blocks the tumor-suppressing functions of microRNA-122 in human hepatoma and osteosarcoma cells. Oncol Rep 2014; 32:2744-52. [DOI: 10.3892/or.2014.3517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/09/2014] [Indexed: 11/06/2022] Open
|
30
|
Depletion of intermediate filament protein Nestin, a target of microRNA-940, suppresses tumorigenesis by inducing spontaneous DNA damage accumulation in human nasopharyngeal carcinoma. Cell Death Dis 2014; 5:e1377. [PMID: 25118937 PMCID: PMC4454294 DOI: 10.1038/cddis.2014.293] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/26/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a major malignant tumor of the head and neck region in southern China. The understanding of its underlying etiology is essential for the development of novel effective therapies. We report for the first time that microRNA-940 (miR-940) significantly suppresses the proliferation of a variety of cancer cell lines, arrests cells cycle, induces caspase-3/7-dependent apoptosis and inhibits the formation of NPC xenograft tumors in mice. We further show that miR-940 directly binds to the 3′-untranslated regions of Nestin mRNA and promotes its degradation. Likewise, depletion of Nestin inhibits tumor cell proliferation, arrest cells at G2/M, induces apoptosis and suppresses xenograft tumor formation in vivo. These functions of miR-940 can be reversed by ectopic expression of Nestin, suggesting that miR-940 regulates cell proliferation and survival through Nestin. Notably, we observed reduced miR-940 and increased Nestin levels in NPC patient samples. Protein microarray revealed that knockdown of Nestin in 5-8F NPC cells alters the phosphorylation of proteins involved in the DNA damage response, suggesting a mechanism for the miR-940/Nestin axis. Consistently, depletion of Nestin induced spontaneous DNA damage accumulation, delayed the DNA damage repair process and increased the sensitivity to irradiation and the chemotherapeutic agent doxorubicin. Collectively, our findings indicate that Nestin, which is downregulated by miR-940, can promote tumorigenesis in NPC cells through involvement in the DNA damage response. The levels of microRNA-940 and Nestin may serve as indicators of cancer status and prognosis.
Collapse
|
31
|
Liu Z, Liu Y, Li L, Xu Z, Bi B, Wang Y, Li JY. MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1. Tumour Biol 2014; 35:10177-84. [PMID: 25027403 DOI: 10.1007/s13277-014-2318-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/04/2014] [Indexed: 01/15/2023] Open
Abstract
The aberrant expression of microRNAs (miRNAs) is always associated with tumor development and progression. Microvascular proliferation is one of the unique pathologic features of glioblastoma (GBM) . In this study, the microvasculature from GBM or normal brain tissue derived from neurosurgeries was purified and total RNA was isolated from purified microvasculature. The difference of miRNA expression profiles between glioblastoma microvasculature and normal brain capillaries was investigated. It was found that miR-7-5p in GBM microvessels was significantly reduced compared with that in normal brain capillaries. In the in vitro experiments, overexpression of miR-7-5p significantly inhibited human umbilical vein endothelial cell proliferation. Forced expression of miR-7-5p in human umbilical vein endothelial cells in vitro significantly reduced the protein level of RAF1 and repressed the activity of the luciferase, a reporter vector carrying the 3'-untranslated region of RAF1. These findings indicate that RAF1 is one of the miR-7-5p target genes. Furthermore, a significant inverse correlation between miR-7-5p expression and RAF1 protein level in GBM microvasculature was found. These data suggest that miR-7-5p functions as a tumor suppressor gene to regulate GBM microvascular endothelial cell proliferation potentially by targeting the RAF1 oncogene, implicating an important role for miR-7-5p in the pathogenesis of GBM. It may serve as a guide for the antitumor angiogenesis drug development.
Collapse
Affiliation(s)
- Zhiguo Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute of Shandong University, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Early screening for colon cancer (CC) allows for early stage diagnosis of the malignancy and potentially reduces disease mortality as the cancer is most likely curable at its earliest stages. Early detection would be desirable if accurate, practical and cost-effective diagnostic measures for this cancer were available. Mortality and morbidity from CC represent a major health problem involving a malignant disease that is theoretically preventable through screening. Current screening methods (e.g., the convenient and inexpensive immunological fecal occult blood test, FOBTi, obtained from patients' medical records) either lack sensitivity and require dietary restriction, which impedes compliance and use; are costly (e.g., colonoscopy), which decreases compliance; or could result in mortality. In comparison with the FOBT test, a non-invasive sensitive screen for which there is no requirement for dietary restriction would be a more convenient test. Colorectal cancer is the only cancer for which colonoscopy is recommended as a screening method. Although colonoscopy is a reliable screening tool, the invasive nature, abdominal pain, potential complications and high cost have hampered the application of this procedure worldwide. A screening approach using the stable miRNA molecules, which are relatively non-degradable when extracted from non-invasive stool and semi-invasive blood samples by commercially available kits and manipulated thereafter, would be preferable to a transcriptomic mRNA-, a mutation DNA-, an epigenetic- or a proteomic-based test. The approach uses reverse transcriptase, modified real-time quantitative PCR. Although exosomal RNA would be missed, using a restricted extraction of total RNA from stool or blood, a parallel test could also be carried out on RNA obtained from stool or plasma samples, and appropriate corrections for exsosomal loss can be made for accurate and quantitative test result. Eventually, a chip can be developed to facilitate diagnosis, as has been done for the quantification of genetically modified organisms in foods. The gold standard to which the molecular miRNA test is compared is colonoscopy, which can be obtained from patients' medical records. If performance criteria are met, as detailed herein, a miRNA test in human stool or blood samples based on high-throughput automated technologies and quantitative expression measurements commonly used in the diagnostic clinical laboratory should be advanced to the clinical setting, which will make a significant impact on CC prevention.
Collapse
Affiliation(s)
- Farid E Ahmed
- Institute for Research in Biotechnology, GEM Tox Labs, 2607 Calvin Way, Greenville, NC 27834, USA
| |
Collapse
|
33
|
Zhang J, Zhao CY, Zhang SH, Yu DH, Chen Y, Liu QH, Shi M, Ni CR, Zhu MH. Upregulation of miR-194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncol Rep 2013; 31:1157-64. [PMID: 24398877 DOI: 10.3892/or.2013.2960] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/05/2013] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of human cancer worldwide. In the present study, we investigated the diagnostic and biological significance of microRNA-194 (miR-194) in PDAC. miRNA expression profiling of human PDACs and adjacent normal pancreatic tissues identified a total of 16 genes including miR-194 with >1.15-fold expression changes (8 overexpressed and 8 underexpressed). Quantitative real-time polymerase chain reaction (PCR) revealed elevation of serum miR-194 levels were significantly greater in PDAC patients than in duodenal adenocarcinoma patients and healthy controls. Receiver operating characteristic analysis demonstrated that serum miR-194 had a sensitivity of 54.3% and a specificity of 57.5% for discriminating PDAC patients from healthy controls. Combined analysis of the 3 groups yielded a sensitivity of 84.0 and a specificity of 75.0% for the combined detection of miR-192 and miR-194 in the diagnosis of PDAC. Ectopic expression of miR-194 in PANC-1 pancreatic cancer cells enhanced cell proliferation, migration and colony formation, which was coupled with decreased expression of the tumor suppressor DACH1. miR-194 overexpression increased tumor growth and local invasion and suppressed the expression of DACH1 in an orthotopic pancreatic cancer mouse model. In conclusion, upregulation of miR-194 contributes to tumor growth and progression in PDAC, possibly through suppression of DACH1. However, serum miR-194 has a low capacity for detection of PDAC. Combined detection of serum miR-192 and miR-194 levels may serve as a sensitive diagnostic biomarker for PDAC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chen-Yan Zhao
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Shu-Hui Zhang
- Department of Pathology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Dang-Hui Yu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Ying Chen
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Qing-Hua Liu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Min Shi
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Can-Rong Ni
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Ming-Hua Zhu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
34
|
Wang M, Li C, Yu B, Su L, Li J, Ju J, Yu Y, Gu Q, Zhu Z, Liu B. Overexpressed miR-301a promotes cell proliferation and invasion by targeting RUNX3 in gastric cancer. J Gastroenterol 2013; 48:1023-33. [PMID: 23338485 DOI: 10.1007/s00535-012-0733-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 11/23/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND MicroRNAs can promote or suppress the evolution of malignant behaviors by regulating multiple targets. We aimed to determine the expression of miR-301a recently screened in gastric cancer, to investigate the biological effects of miR-301a and to identify the specific miR-301a target gene. METHODS Quantitative real-time RT-PCR was used to test miR-301a expression. Functional effects were explored by a water-soluble tetrazolium salt assay, a colony formation assay in soft agar, a migration assay, an invasion assay and cytometry used to determine apoptosis and cell cycle. Nude mice were inoculated subcutaneously by retrovirus-mediated stably expressed SGC-7901 cells. The target gene was determined by bioinformatic algorithms, dual luciferase reporter assay and Western blot. RESULTS Firstly, we found that miR-301a was significantly upregulated both in cells and tissues of gastric cancer. The expression level of miR-301a was inversely correlated with tumor differentiation of gastric cancer tissues. Secondly, miR-301a promoted cell growth, soft agar clonogenicity, migration, invasion, and decreased cell apoptosis induced by cisplatin in vitro, while blockage of miR-301a reduced the percentage of G2/M phase cells via flow cytometry in gastric cancer cells. Ectopic expression of miR-301a enhanced the subcutaneous tumorigenesis in vivo. Finally, miR-301a directly downregulated RUNX3 expression post-transcriptionally in gastric cancer. CONCLUSION Our results demonstrate that miR-301a plays important roles in the development of gastric cancer.
Collapse
Affiliation(s)
- Ming Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197# Ruijin Er Road, Shanghai, 200025, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
MiR-214 regulate gastric cancer cell proliferation, migration and invasion by targeting PTEN. Cancer Cell Int 2013; 13:68. [PMID: 23834902 PMCID: PMC3716801 DOI: 10.1186/1475-2867-13-68] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022] Open
Abstract
Background MicroRNAs are a class of small non-coding RNAs that play an important role in various human tumor initiation and progression by regulating gene expression negatively. The aim of this study was to investigate the effect of miR-214 on cell proliferation, migration and invasion, as well as the functional connection between miR-214 and PTEN in gastric cancer. Methods miR-214 and PTEN expression was determined in gastric cancer and matched normal tissues, and human gastric cancer cell lines by quantitative real-time PCR. The roles of miR-214 in cell proliferation, migration and invasion were analyzed with anti-miR-214 transfected cells. In addition, the regulation of PTEN by miR-214 was evaluated by Western blotting and luciferase reporter assays. Results miR-214 was noted to be highly overexpressed in gastric cancer tissues and cell lines using qRT-PCR. The expression level of miR-214 is significantly associated with clinical progression and poor prognosis according to the analysis of the clinicopathologic data. We also found that the miR-214 levels are inversely correlated with PTEN in tumor tissues. And PTEN expression level is also associated with metastasis and invasion of gastric cancer. In addition, knockdown of miR-214 could significantly inhibit proliferation, migration and invasion of gastric cancer cells. Moreover, we demonstrate that PTEN is regulated negatively by miR-214 through a miR-214 binding site within the 3’-UTR of PTEN at the posttranscriptional level in gastric cancer cells. Conclusions These findings indicated that miR-214 regulated the proliferation, migration and invasion by targeting PTEN post-transcriptionally in gastric cancer. It may be a novel potential therapeutic agent for gastric cancer.
Collapse
|
36
|
Gao J, Li L, Wu M, Liu M, Xie X, Guo J, Tang H, Xie X. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS One 2013; 8:e65138. [PMID: 23750239 PMCID: PMC3672200 DOI: 10.1371/journal.pone.0065138] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/22/2013] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is the most commonly malignancies in women. MicroRNAs are a family of small non-coding RNAs 18-25 nucleotides in length that post-transcriptionally modulate gene expression. MiR-26a has been reported as a tumor suppressor microRNA in breast cancer, which is attributed mainly to targeting of MTDH and EZH2, however, the expression profile and therapeutic potential of miR-26a is still unclear. Here we demonstrate that miR-26a is down-regulated in breast cancer cells and clinical specimens and its modulation in breast cancer cells regulates cell proliferation, colony formation, migration and apoptosis. MCL-1, an anti-apoptotic member of the Bcl-2 family, as novel targets of miR-26a was found to be in reverse correlation with ectopic expression of miR-26a and knockdown of MCL-1 phenocopied the effect of miR-26a in breast cancer cell lines. It was further explored that miR-26a increased sensitivity of breast cancer cells to paclitaxel in which MCL-1 was involved. Thus, miR-26a impacts on cell proliferation and migration of breast cancer by regulating several carcinogenesis-related processes, including a novel mechanism involving the targeting of MCL-1.
Collapse
Affiliation(s)
- Jie Gao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Laisheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Minqing Wu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Min Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Jiaoli Guo
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
37
|
Li M, Yu M, Liu C, Zhu H, He X, Peng S, Hua J. miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs) apoptosis. Cell Prolif 2013; 46:223-31. [PMID: 23510477 DOI: 10.1111/cpr.12013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 10/21/2012] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Recent lines of evidence have indicated that miR-34c can play important roles in regulation of the cell cycle, cell senescence and apoptosis of mouse and human tumour cells, spermatogenesis, and male germ-cell apoptosis. However, there is little information on the effects of miR-34c on proliferation and apoptosis of livestock male germ cells. The dairy goat is a convenient domestic species for biological investigation and application. The purpose of this study was to investigate the effects of miR-34c on apoptosis and proliferation of dairy goat male germline stem cells (mGSCs), as well as to determine the relationship between p53 and miR-34c in this species. MATERIALS AND METHODS Morphological observation, miRNA in situ hybridisation (ISH), bromodeoxyuridine staining, flow cytometry, quantitative-RT-PCR (Q-RT-PCR) and western blotting were utilized to ascertain apoptosis and proliferation of mGSCs, through transfection of miR-34c mimics (miR-34c), miR-34c inhibitor (anti-miR-34c), miR-34c mimics and inhibitors co-transfected (mixture) compared to control groups. RESULTS Results manifested that miR-34c over-expression promoted mGSCs apoptosis and suppressed their proliferation. Simultaneously, a variety of apoptosis-related gene expression was increased while some proliferation-related genes were downregulated. Accordingly, miR-34c promoted apoptosis in mGSCs and reduced their proliferation; moreover, expression of miR-34c was p53-dependent. CONCLUSIONS This study is the first to provide a model for study of miRNAs and mechanisms of proliferation and apoptosis in male dairy goat germ cells.
Collapse
Affiliation(s)
- M Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Activin and TGFβ regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal 2013; 25:1556-66. [PMID: 23524334 DOI: 10.1016/j.cellsig.2013.03.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/06/2013] [Accepted: 03/16/2013] [Indexed: 12/26/2022]
Abstract
MicroRNA-181 (miR-181) is a multifaceted miRNA that has been implicated in many cellular processes such as cell fate determination and cellular invasion. While miR-181 is often overexpressed in human tumors, a direct role for this miRNA in breast cancer progression has not yet been characterized. In this study, we found this miRNA to be regulated by both activin and TGFβ. While we found no effect of miR-181 modulation on activin/TGFβ-mediated tumor suppression, our data clearly indicate that miR-181 plays a critical and prominent role downstream of two growth factors, in mediating their pro-migratory and pro-invasive effects in breast cancer cells miR-181 acts as a metastamir in breast cancer. Thus, our findings define a novel role for miR-181 downstream of activin/TGFβ in regulating their tumor promoting functions. Having defined miR-181 as a critical regulator of tumor progression in vitro, our results thus, highlight miR-181 as an important potential therapeutic target in breast cancer.
Collapse
|
39
|
Wang P, Ning S, Wang Q, Li R, Ye J, Zhao Z, Li Y, Huang T, Li X. mirTarPri: improved prioritization of microRNA targets through incorporation of functional genomics data. PLoS One 2013; 8:e53685. [PMID: 23326485 PMCID: PMC3541237 DOI: 10.1371/journal.pone.0053685] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small (19-25 nt) non-coding RNAs. This important class of gene regulator downregulates gene expression through sequence-specific binding to the 3'untranslated regions (3'UTRs) of target mRNAs. Several computational target prediction approaches have been developed for predicting miRNA targets. However, the predicted target lists often have high false positive rates. To construct a workable target list for subsequent experimental studies, we need novel approaches to properly rank the candidate targets from traditional methods. We performed a systematic analysis of experimentally validated miRNA targets using functional genomics data, and found significant functional associations between genes that were targeted by the same miRNA. Based on this finding, we developed a miRNA target prioritization method named mirTarPri to rank the predicted target lists from commonly used target prediction methods. Leave-one-out cross validation has proved to be successful in identifying known targets, achieving an AUC score up to 0. 84. Validation in high-throughput data proved that mirTarPri was an unbiased method. Applying mirTarPri to prioritize results of six commonly used target prediction methods allowed us to find more positive targets at the top of the prioritized candidate list. In comparison with other methods, mirTarPri had an outstanding performance in gold standard and CLIP data. mirTarPri was a valuable method to improve the efficacy of current miRNA target prediction methods. We have also developed a web-based server for implementing mirTarPri method, which is freely accessible at http://bioinfo.hrbmu.edu.cn/mirTarPri.
Collapse
Affiliation(s)
- Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qianghu Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ronghong Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingrun Ye
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zuxianglan Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Teng Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
40
|
Wang JW, Li K, Hellermann G, Lockey RF, Mohapatra S, Mohapatra S. Regulating the Regulators: microRNA and Asthma. World Allergy Organ J 2013; 4:94-103. [PMID: 23282474 PMCID: PMC3651079 DOI: 10.1186/1939-4551-4-6-94] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
One obstacle to developing an effective therapeutic strategy to treat or prevent asthma is that the fundamental causes of asthma are not totally understood. Asthma is thought to be a chronic TH2 immune-mediated inflammatory disease. Epigenetic changes are recognized to play a role in the initiation and maintenance of a TH2 response. MicroRNAs (miRNAs) are key epigenetic regulators of gene expression, and their expression is highly regulated, therefore, deregulation of miRNAs may play an important role in the pathogenesis of asthma. Profiling circulating miRNA might provide the highest specificity and sensitivity to diagnose asthma; similarly, correcting potential defects in the miRNA regulation network may lead to new therapeutic modalities to treat this disease.
Collapse
Affiliation(s)
- Jia-Wang Wang
- Department of Internal Medicine Division of Translational Medicine and Nanomedicine Research Center1, and Division of Allergy and Immunology2, Department of Molecular Medicine3, University of South Florida College of Medicine, and James A. Haley VA Hospital and Medical Research Center4, Tampa, FL 33612
| | | | | | | | | | | |
Collapse
|
41
|
Tang YW, Stratton CW. Diagnosis and Assessment of Microbial Infections with Host and Microbial microRNA Profiles. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2013. [PMCID: PMC7120657 DOI: 10.1007/978-1-4614-3970-7_46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biomarkers are continuously being sought in the field of diagnostic microbiology for the laboratory diagnosis and assessment of microbial infections. A set of clinical and laboratory criteria necessary for an ideal diagnostic marker of infection have previously been proposed by Ng and his colleagues [1]. According these criteria, an ideal biomarker should possess at a minimum the following characteristics: (a) biochemically, a biomarker should be stable and remain significantly deregulated in the body fluid compartment for at least 12–24 h even after commencement of appropriate treatment that may allow an adequate time window for specimen collection or storage without significant decomposition of the active compound until laboratory processing; (b) its concentration should be determined quantitatively and the method of measurement should be automatic, rapid, easy, and inexpensive; (c) the collection of a specimen should be minimally invasive and require a small volume (e.g., <0.5 mL blood). Numerous biomarkers have been found and tested in clinical practice. Currently, microRNA (miRNA) molecules are without a doubt the biomarkers with the greatest potential capacities in the diagnostic microbiology field.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, 10065 New York USA
| | - Charles W. Stratton
- Vanderbilt Clinic, Clinical Microbiology Laboratory, Vanderbilt University Medical Center, 22nd Avenue 1301, Nashville, 37232-5310 Tennessee USA
| |
Collapse
|
42
|
Lebrun JJ. The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis. ISRN MOLECULAR BIOLOGY 2012; 2012:381428. [PMID: 27340590 PMCID: PMC4899619 DOI: 10.5402/2012/381428] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/12/2012] [Indexed: 12/31/2022]
Abstract
The transforming growth factor-beta (TGFβ) superfamily encompasses widespread and evolutionarily conserved polypeptide growth factors that regulate and orchestrate growth and differentiation in all cell types and tissues. While they regulate asymmetric cell division and cell fate determination during early development and embryogenesis, TGFβ family members play a major regulatory role in hormonal and immune responses, cell growth, cell death and cell immortalization, bone formation, tissue remodeling and repair, and erythropoiesis throughout adult life. The biological and physiological functions of TGFβ, the founding member of this family, and its receptors are of central importance to human diseases, particularly cancer. By regulating cell growth, death, and immortalization, TGFβ signaling pathways exert tumor suppressor effects in normal cells and early carcinomas. Thus, it is not surprising that a high number of human tumors arise due to mutations or deletions in the genes coding for the various TGFβ signaling components. As tumors develop and progress, these protective and cytostatic effects of TGFβ are often lost. TGFβ signaling then switches to promote cancer progression, invasion, and tumor metastasis. The molecular mechanisms underlying this dual role of TGFβ in human cancer will be discussed in depth in this paper, and it will highlight the challenge and importance of developing novel therapeutic strategies specifically aimed at blocking the prometastatic arm of the TGFβ signaling pathway without affecting its tumor suppressive effects.
Collapse
Affiliation(s)
- Jean-Jacques Lebrun
- Division of Medical Oncology, Department of Medicine, Royal Victoria Hospital, McGill University Health Center, Montreal, QC, Canada H3A 1A1
| |
Collapse
|
43
|
Yang M, Liu R, Sheng J, Liao J, Wang Y, Pan E, Guo W, Pu Y, Yin L. Differential expression profiles of microRNAs as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma. Oncol Rep 2012; 29:169-76. [PMID: 23124769 DOI: 10.3892/or.2012.2105] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/02/2012] [Indexed: 12/23/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies worldwide. To reduce the high morbidity and mortality of the disease, sensitive and specific biomarkers for early detection are urgently needed. Tumor-specific microRNAs (miRNAs) seem to be potential biomarkers for the early diagnosis and treatment of cancer. In this study, differentially expressed miRNAs in tumor tissues and adjacent non-tumor tissues were detected by miRNA microarrays. Stem-loop real-time reverse transcription PCR was conducted to verify the candidate miRNAs discovered by microarray analysis. The data showed that hsa-miR-338-3p, hsa-miR‑218 and hsa-miR-139-5p were downregulated in tumor tissues compared with adjacent non-tumor tissues, while hsa-miR‑183, hsa-miR-574-5p, hsa-miR-21* and hsa-miR‑601 were upregulated in tumor tissues. Multiple regression analysis revealed the aberrant expression of hsa-miR-338-3p, hsa‑miR-139-5p, hsa-miR‑574-5p and hsa-miR-601 increased the risk of esophageal cancer. Furthermore, we found hsa-miR-21* was significantly increased in heavy drinking patients. Therefore, there is a set of differentially expressed miRNAs in esophageal cancer which may be associated with the incidence and development of ESCC. Differential expression profiles of miRNAs in ESCC may be promising biomarkers for the early screening of high-risk populations and early detection.
Collapse
Affiliation(s)
- Miao Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Best practices for companion diagnostic and therapeutic development: translating between the stakeholders. N Biotechnol 2012; 29:689-94. [DOI: 10.1016/j.nbt.2012.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/10/2012] [Accepted: 06/10/2012] [Indexed: 11/21/2022]
|
45
|
Wu H, Huang M, Cao P, Wang T, Shu Y, Liu P. MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther 2012; 13:281-8. [PMID: 22310976 DOI: 10.4161/cbt.18943] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The role of tumor suppressors and cell cycle factors in gastric carcinogenesis are well understood; however, the post-transcriptional changes that affect gene expression in gastric cancer are poorly characterized. MiR-135a has been shown to play a role in Hodgkin lymphoma. The aim of this study was to investigate the expression and role of miR-135a in gastric cancer. Quantitative real-time PCR demonstrated that miR-135a expression is downregulated in the majority of human primary gastric cancer tissues (8/11; 73%), compared with pair-matched adjacent non-tumor tissues. Furthermore, compared with the nonmalignant gastric cell line, GES-1, miR-135a expression was substantially downregulated in gastric cancer cell lines of various degrees of differentiation. Target analysis indicated miR-135a directly regulates Janus kinase 2 (JAK2), a cytoplasmic tyrosine kinase involved in cytokine receptor signaling pathways. Overexpression of miR-135a significantly downregulated the expression of JAK2 protein and also reduced gastric cancer cell proliferation and colony formation in vitro. MiR-135a-mediated JAK2 downregulation also reduced p-STAT3 activation and cyclin D1 and Bcl-xL protein expression. This study suggests that miR-135a may function as a tumor suppressor via targeting JAK to repress p-STAT3 activation, reduce cyclin D1 and Bcl-xL expression and inhibit gastric cancer cell proliferation. These results imply that novel treatment approaches targeting miR-135a may potentially benefit patients with gastric cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Bernardo BC, Charchar FJ, Lin RCY, McMullen JR. A microRNA guide for clinicians and basic scientists: background and experimental techniques. Heart Lung Circ 2011; 21:131-42. [PMID: 22154518 DOI: 10.1016/j.hlc.2011.11.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that are approximately 22 nucleotides in length. In the last 10 years, miRNA research and discovery has advanced at a rapid rate. This review provides a brief overview of the discovery and biology of miRNAs, and summarises some of the experimental techniques used for isolation, detection, target prediction, and regulation of miRNAs. We also outline experimental workflows for investigators new to the field, and discuss the diagnostic and therapeutic application of miRNAs.
Collapse
|
48
|
Brenner B, Hoshen MB, Purim O, David MB, Ashkenazi K, Marshak G, Kundel Y, Brenner R, Morgenstern S, Halpern M, Rosenfeld N, Chajut A, Niv Y, Kushnir M. MicroRNAs as a potential prognostic factor in gastric cancer. World J Gastroenterol 2011; 17:3976-85. [PMID: 22046085 PMCID: PMC3199555 DOI: 10.3748/wjg.v17.i35.3976] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare the microRNA (miR) profiles in the primary tumor of patients with recurrent and non-recurrent gastric cancer.
METHODS: The study group included 45 patients who underwent curative gastrectomies from 1995 to 2005 without adjuvant or neoadjuvant therapy and for whom adequate tumor content was available. Total RNA was extracted from formalin-fixed paraffin-embedded tumor samples, preserving the small RNA fraction. Initial profiling using miR microarrays was performed to identify potential biomarkers of recurrence after resection. The expression of the differential miRs was later verified by quantitative real-time polymerase chain reaction (qRT-PCR). Findings were compared between patients who had a recurrence within 36 mo of surgery (bad-prognosis group, n = 14, 31%) and those who did not (good-prognosis group, n = 31, 69%).
RESULTS: Three miRs, miR-451, miR-199a-3p and miR-195 were found to be differentially expressed in tumors from patients with good prognosis vs patients with bad prognosis (P < 0.0002, 0.0027 and 0.0046 respectively). High expression of each miR was associated with poorer prognosis for both recurrence and survival. Using miR-451, the positive predictive value for non-recurrence was 100% (13/13). The expression of the differential miRs was verified by qRT-PCR, showing high correlation to the microarray data and similar separation into prognosis groups.
CONCLUSION: This study identified three miRs, miR-451, miR-199a-3p and miR-195 to be predictive of recurrence of gastric cancer. Of these, miR-451 had the strongest prognostic impact.
Collapse
|
49
|
Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia. Leukemia 2011; 25:1389-99. [PMID: 21606961 DOI: 10.1038/leu.2011.105] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) relevant to acute lymphoblastic leukemia (ALL) in children are hypothesized to be largely unknown as most miRNAs have been identified in non-leukemic tissues. In order to discover these miRNAs, we applied high-throughput sequencing to pooled fractions of leukemic cells obtained from 89 pediatric cases covering seven well-defined genetic types of ALL and normal hematopoietic cells. This resulted into 78 million small RNA reads representing 554 known, 28 novel and 431 candidate novel miR genes. In all, 153 known, 16 novel and 170 candidate novel mature miRNAs and miRNA-star strands were only expressed in ALL, whereas 140 known, 2 novel and 82 candidate novel mature miRNAs and miRNA-star strands were unique to normal hematopoietic cells. Stem-loop reverse transcriptase (RT)-quantitative PCR analyses confirmed the differential expression of selected mature miRNAs in ALL types and normal cells. Expression of 14 new miRNAs inversely correlated with expression of predicted target genes (-0.49 ≤ Spearman's correlation coefficients (Rs)≤ -0.27, P ≤ 0.05); among others, low levels of novel sol-miR-23 associated with high levels of its predicted (antiapoptotic) target BCL2 (B-cell lymphoma 2) in precursor B-ALL (Rs -0.36, P = 0.007). The identification of >1000 miR genes expressed in different types of ALL forms a comprehensive repository for further functional studies that address the role of miRNAs in the biology of ALL.
Collapse
|
50
|
Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura SI, Yamaguchi K, Mochizuki T. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 2010; 5:e13247. [PMID: 20949044 PMCID: PMC2951912 DOI: 10.1371/journal.pone.0013247] [Citation(s) in RCA: 468] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 09/10/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Exosomes play a major role in cell-to-cell communication, targeting cells to transfer exosomal molecules including proteins, mRNAs, and microRNAs (miRNAs) by an endocytosis-like pathway. miRNAs are small noncoding RNA molecules on average 22 nucleotides in length that regulate numerous biological processes including cancer pathogenesis and mediate gene down-regulation by targeting mRNAs to induce RNA degradation and/or interfering with translation. Recent reports imply that miRNAs can be stably detected in circulating plasma and serum since miRNAs are packaged by exosomes to be protected from RNA degradation. Thus, profiling exosomal miRNAs are in need to clarify intercellular signaling and discover a novel disease marker as well. METHODOLOGY/PRINCIPAL FINDINGS Exosomes were isolated from cultured cancer cell lines and their quality was validated by analyses of transmission electron microscopy and western blotting. One of the cell lines tested, a metastatic gastric cancer cell line, AZ-P7a, showed the highest RNA yield in the released exosomes and distinctive shape in morphology. In addition, RNAs were isolated from cells and culture media, and profiles of these three miRNA fractions were obtained using microarray analysis. By comparing signal intensities of microarray data and the following validation using RT-PCR analysis, we found that let-7 miRNA family was abundant in both the intracellular and extracellular fractions from AZ-P7a cells, while low metastatic AZ-521, the parental cell line of AZ-P7a, as well as other cancer cell lines showed no such propensity. CONCLUSIONS/SIGNIFICANCE The enrichment of let-7 miRNA family in the extracellular fractions, particularly, in the exosomes from AZ-P7a cells may reflect their oncogenic characteristics including tumorigenesis and metastasis. Since let-7 miRNAs generally play a tumor-suppressive role as targeting oncogenes such as RAS and HMGA2, our results suggest that AZ-P7a cells release let-7 miRNAs via exosomes into the extracellular environment to maintain their oncogenesis.
Collapse
Affiliation(s)
- Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|