1
|
Staring WHA, Zandvliet S, de Kam D, Solis-Escalante T, Geurts ACH, Weerdesteyn V. Age-related changes in muscle coordination patterns of stepping responses to recover from loss of balance. Exp Gerontol 2024; 191:112424. [PMID: 38604252 DOI: 10.1016/j.exger.2024.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Reactive stepping capacity to recover from a loss of balance declines with aging, which increases the risk of falling. To gain insight into the underlying mechanisms, we investigated whether muscle coordination patterns of reactive stepping differed between healthy young and older individuals. METHODS We performed a cross-sectional study between 15 healthy young and 14 healthy older adults. They recovered from 200 multidirectional platform translations that evoked reactive stepping responses. We determined spatiotemporal step variables and used muscle synergy analysis to characterize stance- and swing-leg muscle coordination patterns from the start of perturbation until foot landing. RESULTS We observed delayed step onsets in older individuals, without further spatiotemporal differences. Muscle synergy structure was not different between young and older individuals, but age-related differences were observed in the time-varying synergy activation patterns. In anterior-posterior directions, the older individuals demonstrated significantly enhanced early swing-leg synergy activation consistent with non-stepping behavior. In addition, around step onset they demonstrated increased levels of synergy coactivation (mainly around the ankle) in lateral and anterior directions, which did not appear to hamper foot clearance. CONCLUSION Although synergy structure was not affected by age, the delayed step onsets and the enhanced early synergy recruitment point at a relative bias towards non-stepping behavior in older adults. They may need more time for accumulating information on the direction of perturbation and making the corresponding sensorimotor transformations before initiating the step. Future work may investigate whether perturbation-based training improves these age-related deficits.
Collapse
Affiliation(s)
- Wouter H A Staring
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Sarah Zandvliet
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Digna de Kam
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Teodoro Solis-Escalante
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander C H Geurts
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, the Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Santos GV, d'Alencar MS, Helene AF, Roque AC, Miranda JGV, Piemonte MEP. A non-expensive bidimensional kinematic balance assessment can detect early postural instability in people with Parkinson's disease. Front Neurol 2023; 14:1243445. [PMID: 38046589 PMCID: PMC10693416 DOI: 10.3389/fneur.2023.1243445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/04/2023] [Indexed: 12/05/2023] Open
Abstract
BackgroundPostural instability is a debilitating cardinal symptom of Parkinson’s disease (PD). Its onset marks a pivotal milestone in PD when balance impairment results in disability in many activities of daily living. Early detection of postural instability by non-expensive tools that can be widely used in clinical practice is a key factor in the prevention of falls in widespread population and their negative consequences.ObjectiveThis study aimed to investigate the effectiveness of a two-dimensional balance assessment to identify the decline in postural control associated with PD progression.MethodsThis study recruited 55 people with PD, of which 37 were men. Eleven participants were in stage I, twenty-three in stage II, and twenty-one in stage III. According to the Hoehn and Yahr (H&Y) rating scale, three clinical balance tests (Timed Up and Go test, Balance Evaluation Systems Test, and Push and Release test) were carried out in addition to a static stance test recorded by a two-dimensional movement analysis software. Based on kinematic variables generated by the software, a Postural Instability Index (PII) was created, allowing a comparison between its results and those obtained by clinical tests.ResultsThere were differences between sociodemographic variables directly related to PD evolution. Although all tests were correlated with H&Y stages, only the PII was able to differentiate the first three stages of disease evolution (H&Y I and II: p = 0.03; H&Y I and III: p = 0.00001; H&Y II and III: p = 0.02). Other clinical tests were able to differentiate only people in the moderate PD stage (H&Y III).ConclusionBased on the PII index, it was possible to differentiate the postural control decline among the first three stages of PD evolution. This study offers a promising possibility of a low-cost, early identification of subtle changes in postural control in people with PD in clinical practice.
Collapse
Affiliation(s)
- Gabriel Venas Santos
- Department of Physical Therapy, Speech Therapy and Occupational Therapy, Faculty of Medical Science, University of São Paulo, São Paulo, Brazil
| | - Matheus Silva d'Alencar
- Department of Physical Therapy, Speech Therapy and Occupational Therapy, Faculty of Medical Science, University of São Paulo, São Paulo, Brazil
| | - Andre Frazão Helene
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Antonio C. Roque
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Elisa Pimentel Piemonte
- Department of Physical Therapy, Speech Therapy and Occupational Therapy, Faculty of Medical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Stokkermans M, Solis-Escalante T, Cohen MX, Weerdesteyn V. Midfrontal theta dynamics index the monitoring of postural stability. Cereb Cortex 2023; 33:3454-3466. [PMID: 36066445 PMCID: PMC10068289 DOI: 10.1093/cercor/bhac283] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/12/2022] Open
Abstract
Stepping is a common strategy to recover postural stability and maintain upright balance. Postural perturbations have been linked to neuroelectrical markers such as the N1 potential and theta frequency dynamics. Here, we investigated the role of cortical midfrontal theta dynamics of balance monitoring, driven by balance perturbations at different initial standing postures. We recorded electroencephalography, electromyography, and motion tracking of human participants while they stood on a platform that delivered a range of forward and backward whole-body balance perturbations. The participants' postural threat was manipulated prior to the balance perturbation by instructing them to lean forward or backward while keeping their feet-in-place in response to the perturbation. We hypothesized that midfrontal theta dynamics index the engagement of a behavioral monitoring system and, therefore, that perturbation-induced theta power would be modulated by the initial leaning posture and perturbation intensity. Targeted spatial filtering in combination with mixed-effects modeling confirmed our hypothesis and revealed distinct modulations of theta power according to postural threat. Our results provide novel evidence that midfrontal theta dynamics subserve action monitoring of human postural balance. Understanding of cortical mechanisms of balance control is crucial for studying balance impairments related to aging and neurological conditions (e.g. stroke).
Collapse
Affiliation(s)
- Mitchel Stokkermans
- Radboud Universitary Medical centre for Medical Neuroscience, Department of Rehabilitation, Reinier Postlaan 4, 6525 GC Nijmegen, The Netherlands
- Donders Institute for Brain cognition and behavior, Department of synchronisation in neural systems Kappitelweg 29,6525 EN Nijmegen, The Netherlands
| | - Teodoro Solis-Escalante
- Radboud Universitary Medical centre for Medical Neuroscience, Department of Rehabilitation, Reinier Postlaan 4, 6525 GC Nijmegen, The Netherlands
| | - Michael X Cohen
- Donders Institute for Brain cognition and behavior, Department of synchronisation in neural systems Kappitelweg 29,6525 EN Nijmegen, The Netherlands
| | - Vivian Weerdesteyn
- Radboud Universitary Medical centre for Medical Neuroscience, Department of Rehabilitation, Reinier Postlaan 4, 6525 GC Nijmegen, The Netherlands
- Sint-Maartenskliniek Research, Hengstdal 3, Ubbergen, 6574 NA Nijmegen, The Netherlands
| |
Collapse
|
4
|
Stokkermans M, Solis-Escalante T, Cohen MX, Weerdesteyn V. Distinct cortico-muscular coupling between step and stance leg during reactive stepping responses. Front Neurol 2023; 14:1124773. [PMID: 36998772 PMCID: PMC10043329 DOI: 10.3389/fneur.2023.1124773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Balance recovery often relies on successful stepping responses, which presumably require precise and rapid interactions between the cerebral cortex and the leg muscles. Yet, little is known about how cortico-muscular coupling (CMC) supports the execution of reactive stepping. We conducted an exploratory analysis investigating time-dependent CMC with specific leg muscles in a reactive stepping task. We analyzed high density EEG, EMG, and kinematics of 18 healthy young participants while exposing them to balance perturbations at different intensities, in the forward and backward directions. Participants were instructed to maintain their feet in place, unless stepping was unavoidable. Muscle-specific Granger causality analysis was conducted on single step- and stance-leg muscles over 13 EEG electrodes with a midfrontal scalp distribution. Time-frequency Granger causality analysis was used to identify CMC from cortex to muscles around perturbation onset, foot-off and foot strike events. We hypothesized that CMC would increase compared to baseline. In addition, we expected to observe different CMC between step and stance leg because of their functional role during the step response. In particular, we expected that CMC would be most evident for the agonist muscles while stepping, and that CMC would precede upregulation in EMG activity in these muscles. We observed distinct Granger gain dynamics over theta, alpha, beta, and low/high-gamma frequencies during the reactive balance response for all leg muscles in each step direction. Interestingly, between-leg differences in Granger gain were almost exclusively observed following the divergence of EMG activity. Our results demonstrate cortical involvement in the reactive balance response and provide insights into its temporal and spectral characteristics. Overall, our findings suggest that higher levels of CMC do not facilitate leg-specific EMG activity. Our work is relevant for clinical populations with impaired balance control, where CMC analysis may elucidate the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Mitchel Stokkermans
- Department of Rehabilitation, Radboud University Medical Center for Medical Neuroscience, Nijmegen, Netherlands
- Department of Synchronisation in Neural Systems, Donders Institute for Brain Cognition and Behavior, Nijmegen, Netherlands
| | - Teodoro Solis-Escalante
- Department of Rehabilitation, Radboud University Medical Center for Medical Neuroscience, Nijmegen, Netherlands
| | - Michael X. Cohen
- Department of Synchronisation in Neural Systems, Donders Institute for Brain Cognition and Behavior, Nijmegen, Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Radboud University Medical Center for Medical Neuroscience, Nijmegen, Netherlands
- Sint Maartenskliniek Research, Nijmegen, Netherlands
| |
Collapse
|
5
|
Li Y, Zheng JJ, Wu X, Gao W, Liu CJ. Postural control of Parkinson's disease: A visualized analysis based on Citespace knowledge graph. Front Aging Neurosci 2023; 15:1136177. [PMID: 37032828 PMCID: PMC10080997 DOI: 10.3389/fnagi.2023.1136177] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Postural control impairment is one of the primary motor symptoms in patients with Parkinson's disease, leading to an increased risk of falling. Several studies have been conducted on postural control disorders in Parkinson's disease patients, but no relevant bibliometric analysis has been found. In this paper, the Web of Science Core Collection database was searched for 1,295 relevant papers on postural control in Parkinson's disease patients from December 2011 to December 2021. Based on the Citespace knowledge graph, these relevant papers over the last decade were analyzed from the perspectives of annual publication volume, countries and institutes cooperation, authors cooperation, dual-map overlay of journals, co-citation literature, and keywords. The purpose of this study was to explore the current research status, research hotspots, and frontiers in this field, and to provide a reference for further promoting the research on postural control in Parkinson's disease patients.
Collapse
Affiliation(s)
- Yan Li
- Department of Rehabilitation Medicine, Huadong Hospital, Fudan University, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jie-Jiao Zheng
- Department of Rehabilitation Medicine, Huadong Hospital, Fudan University, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Shanghai Clinical Research Center for Rehabilitation Medicine, Shanghai, China
- *Correspondence: Jie-Jiao Zheng,
| | - Xie Wu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Wen Gao
- Department of Rehabilitation Medicine, Huadong Hospital, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Rehabilitation Medicine, Shanghai, China
| | - Chan-Jing Liu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Castelli Gattinara Di Zubiena F, Menna G, Mileti I, Zampogna A, Asci F, Paoloni M, Suppa A, Del Prete Z, Palermo E. Machine Learning and Wearable Sensors for the Early Detection of Balance Disorders in Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:9903. [PMID: 36560278 PMCID: PMC9782434 DOI: 10.3390/s22249903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 05/28/2023]
Abstract
Dynamic posturography combined with wearable sensors has high sensitivity in recognizing subclinical balance abnormalities in patients with Parkinson's disease (PD). However, this approach is burdened by a high analytical load for motion analysis, potentially limiting a routine application in clinical practice. In this study, we used machine learning to distinguish PD patients from controls, as well as patients under and not under dopaminergic therapy (i.e., ON and OFF states), based on kinematic measures recorded during dynamic posturography through portable sensors. We compared 52 different classifiers derived from Decision Tree, K-Nearest Neighbor, Support Vector Machine and Artificial Neural Network with different kernel functions to automatically analyze reactive postural responses to yaw perturbations recorded through IMUs in 20 PD patients and 15 healthy subjects. To identify the most efficient machine learning algorithm, we applied three threshold-based selection criteria (i.e., accuracy, recall and precision) and one evaluation criterion (i.e., goodness index). Twenty-one out of 52 classifiers passed the three selection criteria based on a threshold of 80%. Among these, only nine classifiers were considered "optimum" in distinguishing PD patients from healthy subjects according to a goodness index ≤ 0.25. The Fine K-Nearest Neighbor was the best-performing algorithm in the automatic classification of PD patients and healthy subjects, irrespective of therapeutic condition. By contrast, none of the classifiers passed the three threshold-based selection criteria in the comparison of patients in ON and OFF states. Overall, machine learning is a suitable solution for the early identification of balance disorders in PD through the automatic analysis of kinematic data from dynamic posturography.
Collapse
Affiliation(s)
| | - Greta Menna
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Ilaria Mileti
- Mechanical Measurements and Microelectronics (M3Lab) Laboratory, Engineering Department, University Niccolò Cusano, 00166 Rome, Italy
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed Institute, 86077 Pozzilli, Italy
| | - Marco Paoloni
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed Institute, 86077 Pozzilli, Italy
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Eduardo Palermo
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy
| |
Collapse
|
7
|
Staring WHA, van Duijnhoven HJR, Roelofs JMB, Zandvliet S, den Boer J, Lem FC, Geurts ACH, Weerdesteyn V. Improvements in spatiotemporal outcomes, but not in recruitment of automatic postural responses, are correlated with improved step quality following perturbation-based balance training in chronic stroke. Front Sports Act Living 2022; 4:1008236. [DOI: 10.3389/fspor.2022.1008236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
IntroductionPeople with stroke often exhibit balance impairments, even in the chronic phase. Perturbation-based balance training (PBT) is a therapy that has yielded promising results in healthy elderly and several patient populations. Here, we present a threefold approach showing changes in people with chronic stroke after PBT on the level of recruitment of automatic postural responses (APR), step parameters and step quality. In addition, we provide insight into possible correlations across these outcomes and their changes after PBT.MethodsWe performed a complementary analysis of a recent PBT study. Participants received a 5-week PBT on the Radboud Fall simulator. During pre- and post-intervention assessments participants were exposed to platform translations in forward and backward directions. We performed electromyography of lower leg muscles to identify changes in APR recruitment. In addition, 3D kinematic data of stepping behavior was collected. We determined pre-post changes in muscle onset, magnitude and modulation of recruitment, step characteristics, and step quality. Subsequently, we determined whether improvements in step or muscle characteristics were correlated with improved step quality.ResultsWe observed a faster gastrocnemius muscle onset in the stance and stepping leg during backward stepping. During forward stepping we found a trend toward a faster tibialis anterior muscle onset in the stepping leg. We observed no changes in modulation or magnitude of muscle recruitment. Leg angles improved by 2.3° in forward stepping and 2.5° in backward stepping. The improvement in leg angle during forward stepping was accompanied by a −4.1°change in trunk angle, indicating a more upright position. Step length, duration and velocity improved in both directions. Changes in spatiotemporal characteristics were strongly correlated with improvements in leg angle, but no significant correlations were observed of muscle onset or recruitment with leg or trunk angle.ConclusionPBT leads to a multi-factorial improvement in onset of APR, spatiotemporal characteristics of stepping, and reactive step quality in people with chronic stroke. However, current changes in APR onset were not correlated with improvement in step quality. Therefore, we suggest that, in addition to spatiotemporal outcomes, other characteristics of muscle recruitment or behavioral substitution may induce step quality improvement after PBT.
Collapse
|
8
|
Chen R, Berardelli A, Bhattacharya A, Bologna M, Chen KHS, Fasano A, Helmich RC, Hutchison WD, Kamble N, Kühn AA, Macerollo A, Neumann WJ, Pal PK, Paparella G, Suppa A, Udupa K. Clinical neurophysiology of Parkinson's disease and parkinsonism. Clin Neurophysiol Pract 2022; 7:201-227. [PMID: 35899019 PMCID: PMC9309229 DOI: 10.1016/j.cnp.2022.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
This review is part of the series on the clinical neurophysiology of movement disorders and focuses on Parkinson’s disease and parkinsonism. The pathophysiology of cardinal parkinsonian motor symptoms and myoclonus are reviewed. The recordings from microelectrode and deep brain stimulation electrodes are reported in detail.
This review is part of the series on the clinical neurophysiology of movement disorders. It focuses on Parkinson’s disease and parkinsonism. The topics covered include the pathophysiology of tremor, rigidity and bradykinesia, balance and gait disturbance and myoclonus in Parkinson’s disease. The use of electroencephalography, electromyography, long latency reflexes, cutaneous silent period, studies of cortical excitability with single and paired transcranial magnetic stimulation, studies of plasticity, intraoperative microelectrode recordings and recording of local field potentials from deep brain stimulation, and electrocorticography are also reviewed. In addition to advancing knowledge of pathophysiology, neurophysiological studies can be useful in refining the diagnosis, localization of surgical targets, and help to develop novel therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Antonella Macerollo
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kaviraja Udupa
- Department of Neurophysiology National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
9
|
Akhila RM, Karthikbabu S, Mohan D, Prem V, Roy AK. Task-related trunk training on balance, trunk control, pulmonary function and quality of life in patients with Parkinson's disease. A randomised controlled trial. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2022. [DOI: 10.12968/ijtr.2020.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background/Aims Stooped posture and ‘en-bloc’ movement of the trunk in people with Parkinson's disease are related to balance issues, pulmonary dysfunction and difficulty in daily tasks. The primary objective of this study was to examine the effects of task-related trunk training on balance in people with Parkinson's disease. The secondary objective was to observe whether trunk control, thoracic rotation range, pulmonary function and quality of life would change for patients with Parkinson's disease after trunk training. Methods A total of 32 individuals participated in this randomised controlled trial. They had a mean age of 70.8 years, with a modified Hoehn and Yahr Scale grade of 1.5–3, could take more than six steps in the 360° turn test, were scored as grade I or II on the retropulsion test and had an absence of severe cognitive deficits. Task-related trunk training emphasised the thoracic spine's extension and rotation in prone position on elbows, hands and knees and in kneeling, sitting and standing positions. Standard physiotherapy included breathing exercises, stretching of shoulder and neck muscles, balance and walking training. Both groups practised for 1 hour a day, 3 days a week over 6 weeks. The primary outcome measure was the Mini-Balance Evaluation Systems Test. The secondary outcome measures were the Trunk Control Test, thoracic rotation range of movement, Pulmonary Function Test and Parkinson's Disease Questionnaire-39. Results Repeated measure analysis of variance revealed significant group by time interaction for the Mini-Balance Evaluation Systems Test and thoracic rotation range (P<0.05), but not for the pulmonary function test and quality of life measures. Conclusions Task-related trunk training appears to be more beneficial in the balance capacity of individuals with Parkinson's disease than standard physiotherapy, but does not have any significant effects for pulmonary function and health-related quality of life.
Collapse
Affiliation(s)
- RM Akhila
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Suruliraj Karthikbabu
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Hospital, Manipal Academy of Higher Education, Manipal, India
- KMCH College of Physiotherapy, Kovai Medical Center Research & Educational Trust, Coimbatore, India
| | - Divya Mohan
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Venkatesan Prem
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Hospital, Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
10
|
Coelho DB, de Oliveira CEN, Guimarães MVC, Ribeiro de Souza C, dos Santos ML, de Lima-Pardini AC. A systematic review on the effectiveness of perturbation-based balance training in postural control and gait in Parkinson’s disease. Physiotherapy 2022; 116:58-71. [DOI: 10.1016/j.physio.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/29/2021] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
|
11
|
Romanato M, Guiotto A, Spolaor F, Bakdounes L, Baldassarre G, Cucca A, Peppe A, Volpe D, Sawacha Z. Changes of biomechanics induced by Equistasi® in Parkinson's disease: coupling between balance and lower limb joints kinematics. Med Biol Eng Comput 2021; 59:1403-1415. [PMID: 34085136 DOI: 10.1007/s11517-021-02373-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/28/2021] [Indexed: 12/01/2022]
Abstract
Axial disorders, including postural deformities, postural instability, and gait disturbances, are among the most disabling symptoms of Parkinson's disease (PD). Equistasi®, a wearable proprioceptive stabilizer device, has been proposed as neurological rehabilitative device for this set of symptoms. To investigate the effects of the device on gait and balance, 24 participants affected by PD were enrolled in this crossover double-dummy, randomized, controlled study. Subjects were assessed four times before and after 8 weeks treatment with either active or placebo device; one-month wash-out was taken between treatments, in a 20-week timeframe. Gait analysis and instrumented Romberg test were performed with the aid of a sterofotogrammetric system and two force plates. Joint kinematics, spatiotemporal parameters of gait and center of pressure parameters were extracted. Paired T-test (p < 0.05) was adopted after evidence of normality to compare the variables across different acquisition sessions; Wilcoxon was adopted for non-normal distributions. Before and after the treatment with the active device, statistically significant improvements were observed in trunk flexion extension and in the ankle dorsi-plantarflexion. Regarding balance assessment, significant improvements were reported at the frequencies corresponding to vestibular system. These findings may open new possibilities on PD's rehabilitative interventions. Research question, tailored design of the study, experimental acquisition overview, main findings, and conclusions.
Collapse
Affiliation(s)
- Marco Romanato
- Department of Information Engineering, University of Padua, Via Gradenigo 6B, 35131, Padua, Italy
| | - Annamaria Guiotto
- Department of Information Engineering, University of Padua, Via Gradenigo 6B, 35131, Padua, Italy
| | - Fabiola Spolaor
- Department of Information Engineering, University of Padua, Via Gradenigo 6B, 35131, Padua, Italy
| | - Leila Bakdounes
- Fresco Parkinson Center, Villa Margherita, S. Stefano, Vicenza, Italy
| | | | - Alberto Cucca
- Fresco Parkinson Center, Villa Margherita, S. Stefano, Vicenza, Italy.,The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU School of Medicine, New York, NY, USA
| | - Antonella Peppe
- Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Daniele Volpe
- Fresco Parkinson Center, Villa Margherita, S. Stefano, Vicenza, Italy
| | - Zimi Sawacha
- Department of Information Engineering, University of Padua, Via Gradenigo 6B, 35131, Padua, Italy. .,Department of Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
12
|
de Carvalho KS, Coelho DB, de Souza CR, Silva-Batista C, Shida TKF, Teixeira LA, de Lima-Pardini AC. Preserved flexibility of dynamic postural control in individuals with Parkinson's disease. Gait Posture 2021; 86:240-244. [PMID: 33774585 DOI: 10.1016/j.gaitpost.2021.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Continuous oscillation of the support base requires anticipatory and reactive postural adjustments to maintain a stable balance. In this context, postural control flexibility or the ability to adjust balance mechanisms following the requirements of the environment is needed to counterbalance the predictable, continuous perturbation of body balance. Considering the inflexibility of postural responses in individuals with Parkinson's disease (PD), maintaining stability in the support base's continuous oscillations may be challenging. Varying the frequency of platform oscillation is an exciting approach to assess the interactions between reactive and anticipatory adjustments. RESEARCH QUESTION This study aimed to analyze postural responses of individuals with PD on an oscillatory support base across different frequencies. METHODS Thirty participants with moderate PD diagnosis (M = 64.47 years, SD = 8.59; Hoehn and Yahr scale 3) and fifteen healthy age-matched controls (M = 65.8 years, SD = 4.2) were tested. Subjects maintained a dynamic balance on a platform oscillating in sinusoidal translations. Four oscillation frequencies were evaluated in different trials that ranged from 0.2 to 0.8 Hz in steps of 0.2 Hz. RESULTS Analysis showed similar performance between PD and healthy participants, with modulation of amplitudes of head displacement, center of pressure, center of mass and feet-head coordination to platform oscillation frequency. DISCUSSION Our findings suggest a preserved ability of individuals with PD to dynamically control body balance on a support base with predictable oscillatory translations.
Collapse
Affiliation(s)
- Kárin Santana de Carvalho
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Daniel Boari Coelho
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil.
| | - Caroline Ribeiro de Souza
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Carla Silva-Batista
- Exercise Neuroscience Research Group, School of Arts, Sciences, and Humanities, University of São Paulo, São Paulo, Brazil
| | | | - Luis Augusto Teixeira
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Moraca GAG, Beretta VS, Dos Santos PCR, Nóbrega-Sousa P, Orcioli-Silva D, Vitório R, Gobbi LTB. Center of pressure responses to unpredictable external perturbations indicate low accuracy in predicting fall risk in people with Parkinson's disease. Eur J Neurosci 2021; 53:2901-2911. [PMID: 33561905 DOI: 10.1111/ejn.15143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Abstract
Falls are associated with impairment in postural control in people with Parkinson's disease (PwPD). We aimed to predict the fall risk through models combining postural responses with clinical and cognitive measures. Also, we compared the center of pressure (CoP) between PwPD fallers and non-fallers after unpredictable external perturbations. We expected that CoP parameters combined with clinical and cognitive measures would predict fall risk. Seventy-five individuals participated in the study. CoP parameters were measured during postural responses through five trials with unpredictable translations of the support-surface in posterior direction. Range and peak of CoP were analyzed in two periods: early and late responses. Time to peak (negative peak) and recovery time were analyzed regardless of the periods. Models included the CoP parameters in early (model 1), late responses (model 2), and temporal parameters (model 3). Clinical and cognitive measures were entered into all models. Twenty-nine participants fell at least once, and 46 PwPD did not fall during 12 months following the postural assessment. Range of CoP in late responses was associated with fall risk (p = .046). However, although statistically non-significant, this parameter indicated low accuracy in predicting fall risk (area under the curve = 0.58). Fallers presented a higher range of CoP in early responses than non-fallers (p = .033). In conclusion, although an association was observed between fall risk and range of CoP in late responses, this parameter indicated low accuracy in predicting fall risk in PwPD. Also, fallers demonstrate worse postural control during early responses after external perturbations than non-fallers, measured by CoP parameters.
Collapse
Affiliation(s)
- Gabriel Antonio Gazziero Moraca
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Rio Claro, Brazil
| | - Victor Spiandor Beretta
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Rio Claro, Brazil.,Graduate Program in Movement Sciences, São Paulo State University (Unesp), Rio Claro, Brazil
| | - Paulo Cezar Rocha Dos Santos
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Rio Claro, Brazil.,Graduate Program in Movement Sciences, São Paulo State University (Unesp), Rio Claro, Brazil.,Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Priscila Nóbrega-Sousa
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Rio Claro, Brazil.,Graduate Program in Movement Sciences, São Paulo State University (Unesp), Rio Claro, Brazil
| | - Diego Orcioli-Silva
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Rio Claro, Brazil.,Graduate Program in Movement Sciences, São Paulo State University (Unesp), Rio Claro, Brazil
| | - Rodrigo Vitório
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Rio Claro, Brazil.,Graduate Program in Movement Sciences, São Paulo State University (Unesp), Rio Claro, Brazil.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Lilian Teresa Bucken Gobbi
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Rio Claro, Brazil.,Graduate Program in Movement Sciences, São Paulo State University (Unesp), Rio Claro, Brazil
| |
Collapse
|
14
|
Postural instability in Parkinson’s disease: Review and bottom-up rehabilitative approaches. Neurophysiol Clin 2020; 50:479-487. [DOI: 10.1016/j.neucli.2020.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
|
15
|
Solis-Escalante T, De Kam D, Weerdesteyn V. Classification of Rhythmic Cortical Activity Elicited by Whole-Body Balance Perturbations Suggests the Cortical Representation of Direction-Specific Changes in Postural Stability. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2566-2574. [PMID: 33021931 DOI: 10.1109/tnsre.2020.3028966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Postural responses that effectively recover balance following unexpected postural changes need to be tailored to the characteristics of the postural change. We hypothesized that cortical dynamics involved in top-down regulation of postural responses carry information about directional postural changes (i.e., sway) imposed by sudden perturbations to standing balance (i.e., support surface translations). To test our hypothesis, we evaluated the single-trial classification of perturbation-induced directional changes in postural stability from high-density EEG. We analyzed EEG recordings from six young able-bodied individuals and three older individuals with chronic hemiparetic stroke, which were acquired while individuals reacted to low-intensity balance perturbations. Using common spatial patterns for feature extraction and linear discriminant analysis or support vector machines for classification, we achieved classification accuracies above random level (p < 0.05; cross-validated) for the classification of four different sway directions (one vs. the rest scheme). Screening of spectral features (3-50 Hz) revealed that the highest classification performance occurred when low-frequency (3-10 Hz) spectral features were used. Strikingly, the participant-specific classification results were qualitatively similar between young able-bodied individuals and older individuals with chronic hemiparetic stroke. Our findings demonstrate that low-frequency spectral components, corresponding to the cortical theta rhythm, carry direction-specific information about changes in postural stability. Our work presents a new perspective on the cortical representation of postural stability and the possible role of the theta rhythm in the modulation of (directional) reactive balance responses. Importantly, our work provides preliminary evidence that the cortical encoding of direction-specific changes in postural stability is present in chronic hemiparetic stroke.
Collapse
|
16
|
Solis-Escalante T, Stokkermans M, Cohen MX, Weerdesteyn V. Cortical responses to whole-body balance perturbations index perturbation magnitude and predict reactive stepping behavior. Eur J Neurosci 2020; 54:8120-8138. [PMID: 32931066 PMCID: PMC9290492 DOI: 10.1111/ejn.14972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/30/2022]
Abstract
The goal of this study was to determine whether the cortical responses elicited by whole‐body balance perturbations were similar to established cortical markers of action monitoring. Postural changes imposed by balance perturbations elicit a robust negative potential (N1) and a brisk increase of theta activity in the electroencephalogram recorded over midfrontal scalp areas. Because action monitoring is a cognitive function proposed to detect errors and initiate corrective adjustments, we hypothesized that the possible cortical markers of action monitoring during balance control (N1 potential and theta rhythm) scale with perturbation intensity and the eventual execution of reactive stepping responses (as opposed to feet‐in‐place responses). We recorded high‐density electroencephalogram from eleven young individuals, who participated in an experimental balance assessment. The participants were asked to recover balance following anteroposterior translations of the support surface at various intensities, while attempting to maintain both feet in place. We estimated source‐resolved cortical activity using independent component analysis. Combining time‐frequency decomposition and group‐level general linear modeling of single‐trial responses, we found a significant relation of the interaction between perturbation intensity and stepping responses with multiple cortical features from the midfrontal cortex, including the N1 potential, and theta, alpha, and beta rhythms. Our findings suggest that the cortical responses to balance perturbations index the magnitude of a deviation from a stable postural state to predict the need for reactive stepping responses. We propose that the cortical control of balance may involve cognitive control mechanisms (i.e., action monitoring) that facilitate postural adjustments to maintain postural stability.
Collapse
Affiliation(s)
- Teodoro Solis-Escalante
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mitchel Stokkermans
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Michael X Cohen
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Sint Maartenskliniek Research, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Peterson DS, Barajas JS, Denney L, Mehta SH. Backward Protective Stepping During Dual-Task Scenarios in People With Parkinson's Disease: A Pilot Study. Neurorehabil Neural Repair 2020; 34:702-710. [PMID: 32633614 DOI: 10.1177/1545968320935814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction. Reactive movements in response to a loss of balance are altered in people with Parkinson's disease (PD) and are critical for fall prevention. Further, falls are more common while attention is divided. Although divided attention has been shown to impact postural responses in healthy older adults, the impact of dividing attention on reactive balance, and the natural prioritization across postural and cognitive tasks in people with PD is largely unknown. Objectives. To characterize (1) the impact of a secondary cognitive task on reactive postural control and (2) the prioritization across stepping and cognitive tasks in people with PD. Methods. Sixteen people with PD and 14 age-matched controls underwent step-inducing, support-surface perturbations from stance, with and without an auditory Stroop secondary cognitive task. Cognitive, neuromuscular, and protective stepping performance were calculated for single and dual task scenarios. Results. In PD and control participants, cognitive reaction times (P = .001) and muscle onset latency (P = .007), but not protective step outcomes (P > .12 for all) were worse during dual tasking compared with single-task scenarios. Both PD and control groups prioritized the protective stepping task over the cognitive task. Overall, people with PD exhibited worse first-step margin of stability (a measure of protective step performance) than controls (P = .044). Conclusion. This study provides preliminary evidence that people with PD, like age-matched controls, exhibit cognitive and neuromuscular, but not protective step, dual-task interference. The lack of dual-task interference on step performance indicates a postural prioritization for PD and healthy older adults during dual-task protective stepping.
Collapse
Affiliation(s)
- Daniel S Peterson
- Arizona State University, Phoenix, AZ, USA.,Phoenix VA Health Care Center, Phoenix, AZ, USA
| | | | | | | |
Collapse
|
18
|
Coppens MJM, Staring WHA, Nonnekes J, Geurts ACH, Weerdesteyn V. Offline effects of transcranial direct current stimulation on reaction times of lower extremity movements in people after stroke: a pilot cross-over study. J Neuroeng Rehabil 2019; 16:136. [PMID: 31699109 PMCID: PMC6839051 DOI: 10.1186/s12984-019-0604-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has shown promise for rehabilitation after stroke. Ipsilesional anodal tDCS (a-tDCS) over the motor cortex increases corticospinal excitability, while contralesional cathodal tDCS (c-tDCS) restores interhemispheric balance, both resulting in offline improved reaction times of delayed voluntary upper-extremity movements. We aimed to investigate whether tDCS would also have a beneficial effect on delayed leg motor responses after stroke. In addition, we identified whether variability in tDCS effects was associated with the level of leg motor function. METHODS In a cross-over design, 13 people with chronic stroke completed three 15-min sessions of anodal, cathodal and sham stimulation over the primary motor cortex on separate days in an order balanced across participants. Directly after stimulation, participants performed a comprehensive set of lower-extremity tasks involving the paretic tibialis anterior (TA): voluntary ankle-dorsiflexion, gait initiation, and backward balance perturbation. For all tasks, TA onset latencies were determined. In addition, leg motor function was determined by the Fugl-Meyer Assessment - leg score (FMA-L). Repeated measures ANOVA was used to reveal tDCS effects on reaction times. Pearson correlation coefficients were used to establish the relation between tDCS effects and leg motor function. RESULTS For all tasks, TA reaction times did not differ across tDCS sessions. For gait initiation and backward balance perturbation, differences between sham and active stimulation (a-tDCS or c-tDCS) did not correlate with leg motor function. Yet, for ankle dorsiflexion, individual reaction time differences between c-tDCS and sham were strongly associated with FMA-L, with more severely impaired patients exhibiting slower paretic reaction times following c-tDCS. CONCLUSION We found no evidence for offline tDCS-induced benefits. Interestingly, we found that c-tDCS may have unfavorable effects on voluntary control of the paretic leg in severely impaired patients with chronic stroke. This finding points at potential vicarious control from the unaffected hemisphere to the paretic leg. The absence of tDCS-induced effects on gait and balance, two functionally relevant tasks, shows that such motor behavior is inadequately stimulated by currently used tDCS applications. TRIAL REGISTRATION The study is registered in the Netherlands Trial Register (NL5684; April 13th, 2016).
Collapse
Affiliation(s)
- Milou J M Coppens
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands.
| | - Wouter H A Staring
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Jorik Nonnekes
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Alexander C H Geurts
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Favier CD, Deane JA, McGregor AH, Phillips ATM. Design and preliminary testing of a low-cost balance perturbation system for the evaluation of real life postural adjustment on public transport. J Med Eng Technol 2019; 43:356-362. [DOI: 10.1080/03091902.2019.1673845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Clément D. Favier
- Structural Biomechanics in the Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Janet A. Deane
- Musculoskeletal Lab in the Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Alison H. McGregor
- Musculoskeletal Lab in the Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Andrew T. M. Phillips
- Structural Biomechanics in the Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Abstract
This review elaborates on multidisciplinary care for persons living with Parkinson disease by using gait and balance impairments as an example of a treatable target that typically necessitates an integrated approach by a range of different and complementary professional disciplines. Using the International Classification of Functioning, Disability, and Health model as a framework, the authors discuss the assessment and multidisciplinary management of reduced functional mobility due to gait and balance impairments. By doing so, they highlight the complex interplay between motor and nonmotor symptoms, and their influence on rehabilitation. They outline how multidisciplinary care for Parkinson disease can be organized.
Collapse
|
21
|
Halmi Z, Dinya E, Málly J. Destroyed non-dopaminergic pathways in the early stage of Parkinson's disease assessed by posturography. Brain Res Bull 2019; 152:45-51. [PMID: 31295517 DOI: 10.1016/j.brainresbull.2019.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The early stage of Parkinson's disease (PD) (Hoehn-Yahr (HY) I-II stages) is characterized by a negative pull test, which clinically excludes postural instability. Previous studies with dynamic posturography detected balance disturbances even at the onset of the disease but the age dependency or prediction of dyskinesia with dynamic posturography are not known. OBJECTIVE/HYPOTHESIS We hypothesized that the postural instability evoked by dynamic posturography was part of the early stage of PD. Furthermore, we studied how we can provoke dyskinesia. METHODS Postural instability with static and dynamic posturography (passing balls with different weights around the body) was studied in 45 patients with PD in their HY I, II stages. They were compared with 35 age-matched healthy controls. Eighteen patients with dyskinesia were involved in the study. Fourteen patients were followed for two years. RESULTS The pathway and velocity of the movement assessed by static and the dynamic posturography were significantly higher in the group >65 years than that of age-matched healthy controls, while the group ≤65 years showed a significant increment only in the antero-posterior sway during dynamic posturography. The imbalance of patients with dyskinesia was significantly (p < 0.05) provoked by dynamic posturography compared to patients with PD without dyskinesia. The results were independent of age. CONCLUSION Postural instability is part of the early symptoms of PD. Non-dopaminergic pathways may be involved in the early stage of PD.
Collapse
Affiliation(s)
- Zsófia Halmi
- Dept. Developmental Neurology, Saint Margaret Hospital, Budapest, Hungary
| | - Elek Dinya
- Semmelweis Univ. Digital Health Dept., Budapest, Hungary
| | - Judit Málly
- Inst. of Neurorehabilitation, Sopron, Hungary.
| |
Collapse
|
22
|
Solis-Escalante T, van der Cruijsen J, de Kam D, van Kordelaar J, Weerdesteyn V, Schouten AC. Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands. Neuroimage 2018; 188:557-571. [PMID: 30590120 DOI: 10.1016/j.neuroimage.2018.12.045] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022] Open
Abstract
The contributions of the cerebral cortex to human balance control are clearly demonstrated by the profound impact of cortical lesions on the ability to maintain standing balance. The cerebral cortex is thought to regulate subcortical postural centers to maintain upright balance and posture under varying environmental conditions and task demands. However, the cortical mechanisms that support standing balance remain elusive. Here, we present an EEG-based analysis of cortical oscillatory dynamics during the preparation and execution of balance responses with distinct postural demands. In our experiment, participants responded to backward movements of the support surface either with one forward step or by keeping their feet in place. To challenge the postural control system, we applied participant-specific high accelerations of the support surface such that the postural demand was low for stepping responses and high for feet-in-place responses. We expected that postural demand modulated the power of intrinsic cortical oscillations. Independent component analysis and time-frequency domain statistics revealed stronger suppression of alpha (9-13 Hz) and low-gamma (31-34 Hz) rhythms in the supplementary motor area (SMA) when preparing for feet-in-place responses (i.e., high postural demand). Irrespective of the response condition, support-surface movements elicited broadband (3-17 Hz) power increase in the SMA and enhancement of the theta (3-7 Hz) rhythm in the anterior prefrontal cortex (PFC), anterior cingulate cortex (ACC), and bilateral sensorimotor cortices (M1/S1). Although the execution of reactive responses resulted in largely similar cortical dynamics, comparison between the bilateral M1/S1 showed that stepping responses corresponded with stronger suppression of the beta (13-17 Hz) rhythm in the M1/S1 contralateral to the support leg. Comparison between response conditions showed that feet-in-place responses corresponded with stronger enhancement of the theta (3-7 Hz) rhythm in the PFC. Our results provide novel insights into the cortical dynamics of SMA, PFC, and M1/S1 during the control of human balance.
Collapse
Affiliation(s)
- Teodoro Solis-Escalante
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Joris van der Cruijsen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Digna de Kam
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joost van Kordelaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Sint Maartenskliniek Research, Nijmegen, the Netherlands
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| |
Collapse
|
23
|
Nonnekes J, Giladi N, Guha A, Fietzek UM, Bloem BR, Růžička E. Gait festination in parkinsonism: introduction of two phenotypes. J Neurol 2018; 266:426-430. [PMID: 30536108 PMCID: PMC6373367 DOI: 10.1007/s00415-018-9146-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 02/02/2023]
Abstract
Gait festination is one of the most characteristic gait disturbances in patients with Parkinson’s disease or atypical parkinsonism. Although festination is common and disabling, it has received little attention in the literature, and different definitions exist. Here, we argue that there are actually two phenotypes of festination. The first phenotype entails a primary locomotion disturbance, due to the so-called sequence effect: a progressive shortening of step length, accompanied by a compensatory increase in cadence. This phenotype strongly relates to freezing of gait with alternating trembling of the leg. The second phenotype results from a postural control problem (forward leaning of the trunk) combined with a balance control deficit (inappropriately small balance-correcting steps). In this viewpoint, we elaborate on the possible pathophysiological substrate of these two phenotypes of festination and discuss their management in daily clinical practice.
Collapse
Affiliation(s)
- Jorik Nonnekes
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.
| | - Nir Giladi
- Movement Disorders Unit, Sackler School of Medicine, Sagol School for Neuroscience, Tel-Aviv Medical Centre, Neurological Institute, Tel-Aviv University, Tel Aviv, Israel
| | - Anasuya Guha
- Department of Otorhinolaryngology and Head and Neck Surgery, 3rd Faculty of Medicine, University Hospital Kralovske Vinohrady, Charles University, Prague, Czech Republic.,Department of Neurology, Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Urban M Fietzek
- Department of Neurology and Clinical Neurophysiology, Schön Klinik München Schwabing, Munich, Germany
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evžen Růžička
- Department of Neurology, Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| |
Collapse
|
24
|
Harro CC, Kelch A, Hargis C, DeWitt A. Comparing Balance Performance on Force Platform Measures in Individuals with Parkinson's Disease and Healthy Adults. PARKINSON'S DISEASE 2018; 2018:6142579. [PMID: 30687494 PMCID: PMC6304814 DOI: 10.1155/2018/6142579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Postural instability is a known contributing factor to balance dysfunction and increased fall risk in those with Parkinson's disease (PD). Computerized posturography employing a force platform system provides objective, quantitative assessments of postural control impairments. This study examines balance performance as measured by force platform (FP) tests in persons with PD compared to age-matched healthy adults. Secondarily, we examine if these FP measures provide diagnostic and clinically meaningful information about the underlying balance impairments in the PD population. METHODS Participants-42 individuals with PD (Hoehn and Yahr stage = 2.33 ± 0.77) and 55 age-matched healthy adults-were assessed on three standardized balance measures on a computerized force platform system. Between groups, comparisons of FP performance were analyzed using independent t-test. Within the group, comparisons for the PD cohort were analyzed using ANOVA for comparing disease stage and Mann-Whitney U test for PD subtypes. RESULTS The PD cohort demonstrated significantly greater postural instability on the sensory organization test (SOT) measures (P=0.013, CI-95% = 1.286 to 10.37) and slower movement velocity on the limits of stability (LOS) test (P=0.001, CI-95% = 0.597 to 1.595) than the healthy cohort, suggesting that these tests were sensitive to detect sensory integration and voluntary postural control deficits in the PD cohort. Within the PD group, the SOT differentiated between H&Y stages 1-3. The motor control test (MCT) detected changes in reactive postural control mainly in later disease stages. All three FP tests distinguished between PD subtypes, with the Posture Gait Instability subtype demonstrating poorer balance performance than Tremor Dominant subtype. CONCLUSION These findings suggest FP measures provide clinically meaningful, diagnostic information in the examination of balance impairments in individuals with PD. FP measures may inform clinicians regarding intrinsic balance deficits and guide them in designing targeted balance interventions to reduce fall risk in persons with PD.
Collapse
Affiliation(s)
- Cathy C. Harro
- Assistance Professor, Physical Therapy, College of Health Professions, Grand Valley State University, Cook DeVos Center for Health Sciences, 301 Michigan Street NE, Suite 268, Grand Rapids, MI 49503, USA
| | - Amanda Kelch
- Mary Free Bed Rehabilitation Hospital, 235 Wealthy Street SE, Grand Rapids, MI 49503, USA
| | - Cora Hargis
- Mary Free Bed Rehabilitation Hospital, 235 Wealthy Street SE, Grand Rapids, MI 49503, USA
| | - Abigail DeWitt
- PT Solutions, 1321 Tusculum Blvd., Greeneville, TN 37743, USA
| |
Collapse
|
25
|
van Duijnhoven HJR, Roelofs JMB, den Boer JJ, Lem FC, Hofman R, van Bon GEA, Geurts ACH, Weerdesteyn V. Perturbation-Based Balance Training to Improve Step Quality in the Chronic Phase After Stroke: A Proof-of-Concept Study. Front Neurol 2018; 9:980. [PMID: 30524360 PMCID: PMC6261972 DOI: 10.3389/fneur.2018.00980] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/30/2018] [Indexed: 01/11/2023] Open
Abstract
Introduction: People with stroke often have impaired stepping responses following balance perturbations, which increases their risk of falling. Computer-controlled movable platforms are promising tools for delivering perturbation-based balance training under safe and standardized circumstances. Purpose: This proof-of-concept study aimed to identify whether a 5-week perturbation-based balance training program on a movable platform improves reactive step quality in people with chronic stroke. Materials and Methods: Twenty people with chronic stroke received a 5-week perturbation-based balance training (10 sessions, 45 min) on a movable platform. As the primary outcome, backward, and forward reactive step quality (i.e., leg angle at stepping-foot contact) was assessed with a lean-and-release (i.e., non-trained) task at pre-intervention, immediately post-intervention, and 6 weeks after intervention (follow-up). Additionally, reactive step quality was assessed on the movable platform in multiple directions, as well as, the percentage side steps upon sideward perturbations. To ensure that changes in the primary outcome could not solely be attributed to learning effects on the task due to repeated testing, 10 randomly selected participants received an additional pre-intervention assessment, 6 weeks prior to training. Clinical assesments included the 6-item Activity-specific Balance Confidence (6-ABC) scale, Berg Balance Scale (BBS), Trunk Impairment Scale (TIS), 10-Meter Walking Test (10-MWT), and Timed Up and Go-test (TUG). Results: After lean-and-release, we observed 4.3° and 2.8° greater leg angles at post compared to pre-intervention in the backward and forward direction, respectively. Leg angles also significantly improved in all perturbation directions on the movable platform. In addition, participants took 39% more paretic and 46% more non-paretic side steps. These effects were retained at follow-up. Post-intervention, BBS and TIS scores had improved. At follow-up, TIS and 6-ABC scores had significantly improved compared to pre-intervention. No significant changes were observed between the two pre-intervention assessments (n=10). Conclusion: A 5-week perturbation-based balance training on a movable platform appears to improve reactive step quality in people with chronic stroke. Importantly, improvements were retained after 6 weeks. Further controlled studies in larger patient samples are needed to verify these results and to establish whether this translates to fewer falls in daily life. Trial registration: The Netherlands National Trial Register (NTR3804). http://www.trialregister.nl/trialreg/admin/rctview.aspTC=3804.
Collapse
Affiliation(s)
- Hanneke J R van Duijnhoven
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jolanda M B Roelofs
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jasper J den Boer
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frits C Lem
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, Netherlands
| | - Rifka Hofman
- Rehabilitation Medical Centre Klimmendaal, Arnhem, Netherlands
| | - Geert E A van Bon
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander C H Geurts
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,Research, Sint Maartenskliniek, Nijmegen, Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,Research, Sint Maartenskliniek, Nijmegen, Netherlands
| |
Collapse
|
26
|
Coppens MJM, Roelofs JMB, Donkers NAJ, Nonnekes J, Geurts ACH, Weerdesteyn V. A startling acoustic stimulus facilitates voluntary lower extremity movements and automatic postural responses in people with chronic stroke. J Neurol 2018; 265:1625-1635. [PMID: 29761295 PMCID: PMC6022528 DOI: 10.1007/s00415-018-8889-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
A startling acoustic stimulus (SAS) involuntary releases prepared movements at accelerated latencies, known as the StartReact effect. Previous work has demonstrated intact StartReact in paretic upper extremity movements in people after stroke, suggesting preserved motor preparation. The question remains whether motor preparation of lower extremity movements is also unaffected after stroke. Here, we investigated StartReact effects on ballistic lower extremity movements and on automatic postural responses (APRs) following perturbations to standing balance. These APRs are particularly interesting as they are critical to prevent a fall following balance perturbations, but show substantial delays and poor muscle coordination after stroke. Twelve chronic stroke patients and 12 healthy controls performed voluntary ankle dorsiflexion movements in response to a visual stimulus, and responded to backward balance perturbations evoking APRs. Twenty-five percent of all trials contained a SAS (120 dB) simultaneously with the visual stimulus or balance perturbation. As expected, in the absence of a SAS muscle and movement onset latencies at the paretic side were delayed compared to the non-paretic leg and to controls. The SAS accelerated ankle dorsiflexion onsets in both the legs of the stroke subjects and in controls. Following perturbations, the SAS accelerated bilateral APR onsets not only in controls, but for the first time, we also demonstrated this effect in people after stroke. Moreover, APR inter- and intra-limb muscle coordination was rather weak in our stroke subjects, but substantially improved when the SAS was applied. These findings show preserved movement preparation, suggesting that there is residual (subcortical) capacity for motor recovery.
Collapse
Affiliation(s)
- Milou J M Coppens
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Jolanda M B Roelofs
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Nicole A J Donkers
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jorik Nonnekes
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Alexander C H Geurts
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
27
|
de Kam D, Roelofs JMB, Geurts ACH, Weerdesteyn V. Body configuration at first stepping-foot contact predicts backward balance recovery capacity in people with chronic stroke. PLoS One 2018; 13:e0192961. [PMID: 29470535 PMCID: PMC5823379 DOI: 10.1371/journal.pone.0192961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/01/2018] [Indexed: 11/19/2022] Open
Abstract
Objective To determine the predictive value of leg and trunk inclination angles at stepping-foot contact for the capacity to recover from a backward balance perturbation with a single step in people after stroke. Methods Twenty-four chronic stroke survivors and 21 healthy controls were included in a cross-sectional study. We studied reactive stepping responses by subjecting participants to multidirectional stance perturbations at different intensities on a translating platform. In this paper we focus on backward perturbations. Participants were instructed to recover from the perturbations with maximally one step. A trial was classified as ‘success’ if balance was restored according to this instruction. We recorded full-body kinematics and computed: 1) body configuration parameters at first stepping-foot contact (leg and trunk inclination angles) and 2) spatiotemporal step parameters (step onset, step length, step duration and step velocity). We identified predictors of balance recovery capacity using a stepwise logistic regression. Perturbation intensity was also included as a predictor. Results The model with spatiotemporal parameters (perturbation intensity, step length and step duration) could correctly classify 85% of the trials as success or fail (Nagelkerke R2 = 0.61). In the body configuration model (Nagelkerke R2 = 0.71), perturbation intensity and leg and trunk angles correctly classified the outcome of 86% of the recovery attempts. The goodness of fit was significantly higher for the body configuration model compared to the model with spatiotemporal variables (p<0.01). Participant group and stepping leg (paretic or non-paretic) did not significantly improve the explained variance of the final body configuration model. Conclusions Body configuration at stepping-foot contact is a valid and clinically feasible indicator of backward fall risk in stroke survivors, given its potential to be derived from a single sagittal screenshot.
Collapse
Affiliation(s)
- Digna de Kam
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jolanda M. B. Roelofs
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| | - Alexander C. H. Geurts
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Sint Maartenskliniek Research, Nijmegen, The Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Sint Maartenskliniek Research, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Pasma JH, van Kordelaar J, de Kam D, Weerdesteyn V, Schouten AC, van der Kooij H. Assessment of the underlying systems involved in standing balance: the additional value of electromyography in system identification and parameter estimation. J Neuroeng Rehabil 2017; 14:97. [PMID: 28915821 PMCID: PMC5603100 DOI: 10.1186/s12984-017-0299-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/30/2017] [Indexed: 11/29/2022] Open
Abstract
Background Closed loop system identification (CLSIT) is a method to disentangle the contribution of underlying systems in standing balance. We investigated whether taking into account lower leg muscle activation in CLSIT could improve the reliability and accuracy of estimated parameters identifying the underlying systems. Methods Standing balance behaviour of 20 healthy young participants was measured using continuous rotations of the support surface (SS). The dynamic balance behaviour obtained with CLSIT was expressed by sensitivity functions of the ankle torque, body sway and muscle activation of the lower legs to the SS rotation. Balance control models, 1) without activation dynamics, 2) with activation dynamics and 3) with activation dynamics and acceleration feedback, were fitted on the data of all possible combinations of the 3 sensitivity functions. The reliability of the estimated model parameters was represented by the mean relative standard errors of the mean (mSEM) of the estimated parameters, expressed for the basic parameters, the activation dynamics parameters and the acceleration feedback parameter. To investigate the accuracy, a model validation study was performed using simulated data obtained with a comprehensive balance control model. The accuracy of the estimated model parameters was described by the mean relative difference (mDIFF) between the estimated parameters and original parameters. Results The experimental data showed a low mSEM of the basic parameters, activation dynamics parameters and acceleration feedback parameter by adding muscle activation in combination with activation dynamics and acceleration feedback to the fitted model. From the simulated data, the mDIFF of the basic parameters varied from 22.2–22.4% when estimated using the torque and body sway sensitivity functions. Adding the activation dynamics, acceleration feedback and muscle activation improved mDIFF to 13.1–15.1%. Conclusions Adding the muscle activation in combination with the activation dynamics and acceleration feedback to CLSIT improves the accuracy and reliability of the estimated parameters and gives the possibility to separate the neural time delay, electromechanical delay and the intrinsic and reflexive dynamics. To diagnose impaired balance more specifically, it is recommended to add electromyography (EMG) to body sway (with or without torque) measurements in the assessment of the underlying systems. Electronic supplementary material The online version of this article (10.1186/s12984-017-0299-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J H Pasma
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - J van Kordelaar
- Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| | - D de Kam
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - V Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Sint Maartenskliniek Research, Nijmegen, The Netherlands
| | - A C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.,Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| | - H van der Kooij
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.,Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| |
Collapse
|
29
|
Volpe D, Pelosin E, Bakdounes L, Masiero S, Bertagnoni G, Sorbera C, Giantin MG. Effects of a sensory-motor orthotic on postural instability rehabilitation in Parkinson's disease: a pilot study. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2017; 4:11. [PMID: 28694983 PMCID: PMC5498915 DOI: 10.1186/s40734-017-0058-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/11/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Proprioceptive deficits have been largely documented in PD patients, thus external sensory signals (peripheral sensory feedback) are often used to compensate the abnormalities of proprioceptive integration. This pilot study aims to evaluate the feasibility and the effectiveness of a rehabilitation-training program, combined with the use of a sensory-motor orthotic in improving balance in a small sample of PD patients. METHODS Twenty PD patients were randomly allocated into two groups: (i) the Experimental group, where participants were asked to wear a sensory-motor orthotic during the balance training program and (ii) the Control group, where subjects performed an identical training program without wearing any kind of orthotics. In all, the training program lasted 10 sessions (5 days a week for 2 weeks) and the clinical and instrumental assessments were performed at baseline, immediately after the end of the training and 4 weeks after the rehabilitative program was stopped. RESULTS All clinical outcome measures tested improved significantly at post and follow-up evaluations in both groups. Interestingly, at the end of the training, only the experimental group obtained a significant improvement in the functional reaching test (sway area - eyes closed) measured by means of stabilometric platform and this result was maintained in the follow-up evaluation. CONCLUSIONS Our preliminary results suggested that the use of a sensory-motor orthotic, in combination with a tailored balance training, is feasible and it seems to positively impact on balance performance in Parkinson's disease. TRIAL REGISTRATION EudraCT N. 003020-36 - 2013.
Collapse
Affiliation(s)
- Daniele Volpe
- Department of Physical Medicine and Rehabilitation, Neurorehabilitation Unit "Villa Margherita,", Via Costacolonna n.6 Arcugnano, Vicenza, Italy
| | - Elisa Pelosin
- Department of Neuroscience, University of Genoa, Genoa, Italy
| | - Leila Bakdounes
- Department of Physical Medicine and Rehabilitation, Neurorehabilitation Unit "Villa Margherita,", Via Costacolonna n.6 Arcugnano, Vicenza, Italy
| | - Stefano Masiero
- School of Physical Medicine and Rehabilitation, University of Padua, Padua, Italy
| | | | - Chiara Sorbera
- Department of Physical Medicine and Rehabilitation, Neurorehabilitation Unit "Villa Margherita,", Via Costacolonna n.6 Arcugnano, Vicenza, Italy
| | - Maria Giulia Giantin
- Department of Physical Medicine and Rehabilitation, Neurorehabilitation Unit "Villa Margherita,", Via Costacolonna n.6 Arcugnano, Vicenza, Italy
| |
Collapse
|
30
|
Shahmohammadi R, Sharifi GR, Melvin JMA, Sadeghi-Demneh E. A comparison between aquatic and land-based physical exercise on postural sway and quality of life in people with Parkinson’s disease: a randomized controlled pilot study. SPORT SCIENCES FOR HEALTH 2017. [DOI: 10.1007/s11332-017-0363-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
de Kam D, Kamphuis JF, Weerdesteyn V, Geurts ACH. The effect of weight-bearing asymmetry on dynamic postural stability in people with chronic stroke. Gait Posture 2017; 53:5-10. [PMID: 28061401 DOI: 10.1016/j.gaitpost.2016.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/12/2016] [Accepted: 12/18/2016] [Indexed: 02/02/2023]
Abstract
After stroke, weight-bearing asymmetry (WBA) towards the non-paretic side is associated with postural instability. It remains unknown whether WBA is a cause or consequence of postural instability, as both phenomena depend on stroke severity. We investigated the effect of WBA on the ability to recover from balance perturbations in people with stroke. Fourteen people in the chronic phase of stroke underwent multidirectional translational perturbations at three levels of initial WBA (0, 10 and 20% of body weight unloading of the paretic leg). We iteratively determined the highest perturbation intensity that could be sustained with a feet-in-place response (i.e. stepping threshold) for each WBA condition and in four perturbation directions (forward, backward, towards paretic and towards non-paretic side). For perturbations above the stepping threshold we determined the choice of stepping leg. WBA increased the stepping threshold for perturbations towards the paretic side, whereas it decreased the stepping threshold for perturbations towards the non-paretic side (p<0.05). No effects of WBA were found on forward or backward stepping thresholds. Yet, the frequency of stepping with the paretic leg in the anteroposterior directions increased with greater WBA. Similarly, greater initial WBA resulted in a larger number of side steps towards the paretic side. In conclusion, the results suggest that people with stroke can benefit from some paretic leg unloading when perturbed towards the paretic side. It remains to be investigated, however, to what extent these benefits outweigh the potentially detrimental effects of WBA that were observed when recovering from perturbations in the other directions.
Collapse
Affiliation(s)
- Digna de Kam
- Radboud University Medical Center, Donders Centre for Neuroscience, Department of Rehabilitation, Nijmegen, The Netherlands.
| | | | - Vivian Weerdesteyn
- Radboud University Medical Center, Donders Centre for Neuroscience, Department of Rehabilitation, Nijmegen, The Netherlands; Sint Maartenskliniek Research, Nijmegen, The Netherlands
| | - Alexander C H Geurts
- Radboud University Medical Center, Donders Centre for Neuroscience, Department of Rehabilitation, Nijmegen, The Netherlands; Sint Maartenskliniek Research, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Dockx K, Bekkers EMJ, Van den Bergh V, Ginis P, Rochester L, Hausdorff JM, Mirelman A, Nieuwboer A. Virtual reality for rehabilitation in Parkinson's disease. Cochrane Database Syst Rev 2016; 12:CD010760. [PMID: 28000926 PMCID: PMC6463967 DOI: 10.1002/14651858.cd010760.pub2] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder that is best managed by a combination of medication and regular physiotherapy. In this context, virtual reality (VR) technology is proposed as a new rehabilitation tool with a possible added value over traditional physiotherapy approaches. It potentially optimises motor learning in a safe environment, and by replicating real-life scenarios could help improve functional activities of daily living. OBJECTIVES The objective of this review was to summarise the current best evidence for the effectiveness of VR interventions for the rehabilitation of people with PD in comparison with 1) active interventions, and 2) passive interventions. Our primary goal was to determine the effect of VR training on gait and balance. Secondary goals included examining the effects of VR on global motor function, activities of daily living, quality of life, cognitive function, exercise adherence, and the occurrence of adverse events. SEARCH METHODS We identified relevant articles through electronic searches of the Cochrane Movement Disorders Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library), MEDLINE, Embase, CINAHL, the Physiotherapy Evidence Database (PEDro), online trials registers, and by handsearching reference lists. We carried out all searches up until 26 November 2016. SELECTION CRITERIA We searched for randomised and quasi-randomised controlled trials of VR exercise interventions in people with PD. We included only trials where motor rehabilitation was the primary goal. DATA COLLECTION AND ANALYSIS Two review authors independently searched for trials that corresponded to the predefined inclusion criteria. We independently extracted and assessed all data for methodological quality. A third review author was responsible for conflict resolution when required. MAIN RESULTS We included 8 trials involving 263 people with PD in the review. Risk of bias was unclear or high for all but one of the included studies. Study sample sizes were small, and there was a large amount of heterogeneity between trials with regard to study design and the outcome measures used. As a result, we graded the quality of the evidence as low or very low. Most of the studies intended to improve motor function using commercially available devices, which were compared with physiotherapy. The interventions lasted for between 4 and 12 weeks.In comparison to physiotherapy, VR may lead to a moderate improvement in step and stride length (standardised mean difference (SMD) 0.69, 95% confidence interval (CI) 0.30 to 1.08; 3 studies; 106 participants; low-quality evidence). VR and physiotherapy interventions may have similar effects on gait (SMD 0.20, 95% CI -0.14 to 0.55; 4 studies; 129 participants; low-quality evidence), balance (SMD 0.34, 95% CI -0.04 to 0.71; 5 studies; 155 participants; low-quality evidence), and quality of life (mean difference 3.73 units, 95% CI -2.16 to 9.61; 4 studies; 106 participants). VR interventions did not lead to any reported adverse events, and exercise adherence did not differ between VR and other intervention arms.The evidence available comparing VR exercise with a passive control was more limited. The evidence for the main outcomes of interest was of very low quality due to the very small sample sizes of the two studies available for this comparison. AUTHORS' CONCLUSIONS We found low-quality evidence of a positive effect of short-term VR exercise on step and stride length. VR and physiotherapy may have similar effects on gait, balance, and quality of life. The evidence available comparing VR with passive control interventions was more limited. Additional high-quality, large-scale studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Kim Dockx
- KU LeuvenDepartment of Rehabilitation SciencesTervuursevest 101, Postbus 1501LeuvenBelgium3001
| | - Esther MJ Bekkers
- KU LeuvenDepartment of Rehabilitation SciencesTervuursevest 101, Postbus 1501LeuvenBelgium3001
| | - Veerle Van den Bergh
- KU LeuvenDepartment of Rehabilitation SciencesTervuursevest 101, Postbus 1501LeuvenBelgium3001
| | - Pieter Ginis
- KU LeuvenDepartment of Rehabilitation SciencesTervuursevest 101, Postbus 1501LeuvenBelgium3001
| | - Lynn Rochester
- Newcastle UniversityInstitute for Ageing and HealthClinical Ageing Research UnitCampus for Ageing and VitalityNewcastle upon TyneUKNE4 5PL
| | - Jeffrey M Hausdorff
- Tel Aviv Sourasky Medical CenterCenter for the Study of Movement, Cognition and Morbility, Neurological InstituteTel Aviv UniversityTel AvivIsrael64239
| | - Anat Mirelman
- Tel‐Aviv Sourasky Medical CenterDepartment of Neurology6 Weizmann StreetTel AvivIsrael64239
| | - Alice Nieuwboer
- KU LeuvenDepartment of Rehabilitation SciencesTervuursevest 101, Postbus 1501LeuvenBelgium3001
| | | |
Collapse
|
33
|
Evaluation of Knee Proprioception and Factors Related to Parkinson's Disease. NEUROSCIENCE JOURNAL 2016; 2016:6746010. [PMID: 27672650 PMCID: PMC5031852 DOI: 10.1155/2016/6746010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/21/2016] [Indexed: 11/17/2022]
Abstract
Background. Changes in proprioception may contribute to postural instability in individuals with neurological disorders. Objectives. Evaluate proprioception in the lower limbs of patients with Parkinson's disease (PD) and the association between proprioception and cognitive ability, motor symptoms, postural instability, and disease severity. Methods. This is a cross-sectional, controlled study that evaluated proprioception in PD patients and healthy age- and sex-matched individuals. Kinetic postural proprioception of the knee was evaluated using an isokinetic dynamometer (Biodex® Multi-Joint System 4 Pro). Participants were evaluated using the Montreal Cognitive Assessment (MoCA), the Hoehn and Yahr rating scale and postural instability (pull test and stabilometric analysis), and motor function (UPDRS-III) tests. Results. A total of 40 individuals were enrolled in the study: 20 PD patients and 20 healthy controls (CG). The PD patients had higher angular errors on the proprioceptive ratings than the CG participants (p = 0.002). Oscillations of the center of pressure (p = 0.002) were higher in individuals with PD than in the controls. Proprioceptive errors in the PD patients were associated with the presence of tremors as the dominant symptom and more impaired motor performance. Conclusion. These findings show that individuals with PD have proprioceptive deficits, which are related to decreased cognitive ability and impaired motor symptoms.
Collapse
|
34
|
Nonnekes J, Timmer MHM, de Vries NM, Rascol O, Helmich RC, Bloem BR. Unmasking levodopa resistance in Parkinson's disease. Mov Disord 2016; 31:1602-1609. [PMID: 27430479 DOI: 10.1002/mds.26712] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
Some motor and nonmotor features associated with Parkinson's disease (PD) do not seem to respond well to levodopa (or other forms of dopaminergic medication) or appear to become resistant to levodopa treatment with disease progression and longer disease duration. In this narrative review, we elaborate on this issue of levodopa resistance in PD. First, we discuss the possibility of pseudoresistance, which refers to dopamine-sensitive symptoms or signs that falsely appear to be (or have become) resistant to levodopa, when in fact other mechanisms are at play, resulting in suboptimal dopaminergic efficacy. Examples include interindividual differences in pharmacodynamics and pharmacokinetics and underdosing because of dose-limiting side effects or because of levodopa phobia. Moreover, pseudoresistance can emerge as not all features of PD respond adequately to the same dosage of levodopa. Second, we address that for several motor features (eg, freezing of gait or tremor) and several nonmotor features (eg, specific cognitive functions), the response to levodopa is fairly complex, with a combination of levodopa-responsive, levodopa-resistant, and even levodopa-induced characteristics. A possible explanation relates to the mixed presence of underlying dopaminergic and nondopaminergic brain lesions. We suggest that clinicians take these possibilities into account before concluding that symptoms or signs of PD are totally levodopa resistant. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jorik Nonnekes
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Nijmegen, The Netherlands
| | - Monique H M Timmer
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Nienke M de Vries
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neurosciences, NeuroToul Center of Excellence in Neurodegeneration (COEN), University Hospital and University of Toulouse, Toulouse, France.,INSERM CIC1436, UMR1214, and NS-Park/FCRIN Clinical Research Network Toulouse, Toulouse, France
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| |
Collapse
|
35
|
de Kam D, Kamphuis JF, Weerdesteyn V, Geurts ACH. The effect of weight-bearing asymmetry on dynamic postural stability in healthy young individuals. Gait Posture 2016; 45:56-61. [PMID: 26979884 DOI: 10.1016/j.gaitpost.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 12/15/2015] [Accepted: 01/05/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND In people with lateralized disorders, such as stroke, Weight-Bearing Asymmetry (WBA) is common. It is associated with postural instability, however, WBA is one of several abnormalities that may affect postural stability in these disorders. Therefore, we investigated the isolated effects of WBA on dynamic postural stability in healthy individuals. METHODS Ten young participants were subjected to multidirectional stance perturbations by support surface translations at three levels of WBA (0, 10 and 20% of body weight unloading of one leg). The stepping threshold was determined iteratively for each condition and in four perturbation directions (forward, backward, leftward and rightward). The stepping threshold was defined as the highest perturbation intensity recovered from with a feet-in-place response. The Margin of Stability (MOS) at the stepping threshold was defined as the smallest distance between the vertical projection of the Extrapolated Center of Mass (XCOM) and the edge of the base of support. RESULTS WBA decreased the stepping threshold (stability decreased) for perturbations towards the loaded side (translations towards the unloaded side), whereas it increased stepping thresholds for perturbations towards the unloaded side. No significant effects of WBA were found on the MOS. WBA increased the frequency of stepping with the unloaded leg upon forward and backward perturbations. CONCLUSION WBA increased dynamic stability towards the unloaded leg following external balance perturbations and resulted in a greater probability of stepping with this leg. Future studies are needed to evaluate the functional significance of these WBA-related effects on postural stability in people with lateralized disorders.
Collapse
Affiliation(s)
- Digna de Kam
- Radboud University Medical Centre, Donders Centre for Neuroscience, Department of Rehabilitation, Nijmegen, The Netherlands.
| | - Jip F Kamphuis
- ViaReva, Centre for Rehabilitation, Apeldoorn, The Netherlands
| | - Vivian Weerdesteyn
- Radboud University Medical Centre, Donders Centre for Neuroscience, Department of Rehabilitation, Nijmegen, The Netherlands; Sint Maartenskliniek Research, Nijmegen, The Netherlands
| | - Alexander C H Geurts
- Radboud University Medical Centre, Donders Centre for Neuroscience, Department of Rehabilitation, Nijmegen, The Netherlands; Sint Maartenskliniek Research, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Nonnekes J, Carpenter MG, Inglis JT, Duysens J, Weerdesteyn V. What startles tell us about control of posture and gait. Neurosci Biobehav Rev 2015; 53:131-8. [PMID: 25882206 DOI: 10.1016/j.neubiorev.2015.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 03/12/2015] [Accepted: 04/03/2015] [Indexed: 11/17/2022]
Abstract
Recently, there has been an increase in studies evaluating startle reflexes and StartReact, many in tasks involving postural control and gait. These studies have provided important new insights. First, several experiments indicate a superimposition of startle reflex activity on the postural response during unexpected balance perturbations. Overlap in the expression of startle reflexes and postural responses emphasizes the possibility of, at least partly, a common substrate for these two types of behavior. Second, it is recognized that the range of behaviors, susceptible to StartReact, has expanded considerably. Originally this work was concentrated on simple voluntary ballistic movements, but gait initiation, online step adjustments and postural responses can be initiated earlier by a startling stimulus as well, indicating advanced motor preparation of posture and gait. Third, recent experiments on StartReact using TMS and patients with corticospinal lesions suggest that this motor preparation involves a close interaction between cortical and subcortical structures. In this review, we provide a comprehensive overview on startle reflexes, StartReact, and their interaction with posture and gait.
Collapse
Affiliation(s)
- Jorik Nonnekes
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Nijmegen, The Netherlands.
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Jacques Duysens
- Research Center for Movement Control and Neuroplasticity, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Vivian Weerdesteyn
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Nijmegen, The Netherlands; Sint Maartenskliniek Research, Nijmegen, The Netherlands
| |
Collapse
|
37
|
StartReact effects support different pathophysiological mechanisms underlying freezing of gait and postural instability in Parkinson's disease. PLoS One 2015; 10:e0122064. [PMID: 25803045 PMCID: PMC4372416 DOI: 10.1371/journal.pone.0122064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 02/15/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction The pathophysiology underlying postural instability in Parkinson’s disease is poorly understood. The frequent co-existence with freezing of gait raises the possibility of shared pathophysiology. There is evidence that dysfunction of brainstem structures contribute to freezing of gait. Here, we evaluated whether dysfunction of these structures contributes to postural instability as well. Brainstem function was assessed by studying the StartReact effect (acceleration of latencies by a startling acoustic stimulus (SAS)). Methods We included 25 patients, divided in two different ways: 1) those with postural instability (HY = 3, n = 11) versus those without (HY<3, n = 14); and 2) those with freezing (n = 11) versus those without freezing (n = 14). We also tested 15 matched healthy controls. We tested postural responses by translating a balance platform in the forward direction, resulting in backward balance perturbations. In 25% of trials, the start of the balance perturbation was accompanied by a SAS. Results The amplitude of automatic postural responses and length of the first balance correcting step were smaller in patients with postural instability compared to patients without postural instability, but did not differ between freezers and non-freezers. In contrast, the StartReact effect was intact in patients with postural instability but was attenuated in freezers. Discussion We suggest that the mechanisms underlying freezing of gait and postural instability in Parkinson’s disease are at least partly different. Underscaling of automatic postural responses and balance-correcting steps both contribute to postural instability. The attenuated StartReact effect was seen only in freezers and likely reflects inadequate representation of motor programs at upper brainstem level.
Collapse
|
38
|
Bekkers EMJ, Dockx K, Heremans E, Vercruysse S, Verschueren SMP, Mirelman A, Nieuwboer A. The contribution of proprioceptive information to postural control in elderly and patients with Parkinson's disease with a history of falls. Front Hum Neurosci 2014; 8:939. [PMID: 25505395 PMCID: PMC4241823 DOI: 10.3389/fnhum.2014.00939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022] Open
Abstract
Proprioceptive deficits negatively affect postural control but their precise contribution to postural instability in Parkinson’s disease (PD) is unclear. We investigated if proprioceptive manipulations differentially affect balance, measured by force plates, during quiet standing in 13 PD patients and 13 age-matched controls with a history of falls. Perceived limits of stability (LoS) were derived from the differences between maximal center of pressure (CoP) displacement in anterior–posterior (AP) and medio-lateral (ML) direction during a maximal leaning task. Task conditions comprised standing with eyes open (EO) and eyes closed (EC): (1) on a stable surface; (2) an unstable surface; and (3) with Achilles tendon vibration. CoP displacements were calculated as a percentage of their respective LoS. Perceived LoS did not differ between groups. PD patients showed greater ML CoP displacement than elderly fallers (EF) across all conditions (p = 0.043) and tended to have higher postural sway in relation to the LoS (p = 0.050). Both groups performed worse on an unstable surface and during tendon vibration compared to standing on a stable surface with EO and even more so with EC. Both PD and EF had more AP sway in all conditions with EC compared to EO (p < 0.001) and showed increased CoP displacements when relying on proprioception only compared to standing with normal sensory input. This implies a similar role of the proprioceptive system in postural control in fallers with and without PD. PD fallers showed higher ML sway after sensory manipulations, as a result of which these values approached their perceived LoS more closely than in EF. We conclude that despite a similar fall history, PD patients showed more ML instability than EF, irrespective of sensory manipulation, but had a similar reliance on ankle proprioception. Hence, we recommend that rehabilitation and fall prevention for PD should focus on motor rather than on sensory aspects.
Collapse
Affiliation(s)
- Esther M J Bekkers
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| | - Kim Dockx
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| | - Elke Heremans
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| | - Sarah Vercruysse
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| | - Sabine M P Verschueren
- Musculoskeletal Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| | - Anat Mirelman
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center , Tel-Aviv , Israel
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| |
Collapse
|
39
|
Volpe D, Giantin MG, Fasano A. A wearable proprioceptive stabilizer (Equistasi®) for rehabilitation of postural instability in Parkinson's disease: a phase II randomized double-blind, double-dummy, controlled study. PLoS One 2014; 9:e112065. [PMID: 25401967 PMCID: PMC4234681 DOI: 10.1371/journal.pone.0112065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022] Open
Abstract
Background Muscle spindles endings are extremely sensitive to externally applied vibrations, and under such circumstances they convey proprioceptive inflows to the central nervous system that modulate the spinal reflexes excitability or the muscle responses elicited by postural perturbations. The aim of this pilot study is to test the feasibility and effectiveness of a balance training program in association with a wearable proprioceptive stabilizer (Equistasi) that emits focal mechanical vibrations in patients with PD. Methods Forty patients with PD were randomly divided in two groups wearing an active or inactive device. All the patients received a 2-month intensive program of balance training. Assessments were performed at baseline, after the rehabilitation period (T1), and two more months after (T2). Posturographic measures were used as primary endpoint; secondary measures of outcome included the number of falls and several clinical scales for balance and quality of life. Results Both groups improved at the end of the rehabilitation period and we did not find significant between-group differences in any of the principal posturographic measures with the exception of higher sway area and limit of stability on the instrumental functional reach test during visual deprivation at T1 in the Equistasi group. As for the secondary outcome, we found an overall better outcome in patients enrolled in the Equistasi group: 1) significant improvement at T1 on Berg Balance Scale (+45.0%, p = .026), Activities-specific Balance Confidence (+83.7, p = .004), Falls Efficacy Scale (−33.3%, p = .026) and PDQ-39 (−48.8%, p = .004); 2) sustained improvement at T2 in terms of UPDRS-III, Berg Balance Scales, Time Up and Go and PDQ-39; 3) significant and sustained reduction of the falls rate. Conclusions This pilot trial shows that a physiotherapy program for training balance in association with focal mechanical vibration exerted by a wearable proprioceptive stabilizer might be superior than rehabilitation alone in improving patients’ balance. Trial Registration EudraCT 2013-003020-36 and ClinicalTrials.gov (number not assigned)
Collapse
Affiliation(s)
- Daniele Volpe
- Department of Physical Medicine & Rehabilitation, S. Raffaele Arcangelo Fatebenefratelli Hospital, Venice, Italy
- * E-mail:
| | - Maria Giulia Giantin
- Department of Physical Medicine & Rehabilitation, S. Raffaele Arcangelo Fatebenefratelli Hospital, Venice, Italy
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Nonnekes J, Arrogi A, Munneke MAM, van Asseldonk EHF, Oude Nijhuis LB, Geurts AC, Weerdesteyn V. Subcortical structures in humans can be facilitated by transcranial direct current stimulation. PLoS One 2014; 9:e107731. [PMID: 25233458 PMCID: PMC4169471 DOI: 10.1371/journal.pone.0107731] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/18/2014] [Indexed: 11/25/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability. Interestingly, in recent animal studies facilitatory effects of tDCS have also been observed on subcortical structures. Here, we sought to provide evidence for the potential of tDCS to facilitate subcortical structures in humans as well. Subjects received anodal-tDCS and sham-tDCS on two separate testing days in a counterbalanced order. After stimulation, we assessed the effect of tDCS on two responses that arise from subcortical structures; (1) wrist and ankle responses to an imperative stimulus combined with a startling acoustic stimulus (SAS), and (2) automatic postural responses to external balance perturbations with and without a concurrent SAS. During all tasks, response onsets were significantly faster following anodal-tDCS compared to sham-tDCS, both in trials with and without a SAS. The effect of tDCS was similar for the dominant and non-dominant leg. The SAS accelerated the onsets of ankle and wrist movements and the responses to backward, but not forward perturbations. The faster onsets of SAS-induced wrist and ankle movements and automatic postural responses following stimulation provide strong evidence that, in humans, subcortical structures - in particular the reticular formation - can be facilitated by tDCS. This effect may be explained by two mechanisms that are not mutually exclusive. First, subcortical facilitation may have resulted from enhanced cortico-reticular drive. Second, the applied current may have directly stimulated the reticular formation. Strengthening reticulospinal output by tDCS may be of interest to neurorehabilitation, as there is evidence for reticulospinal compensation after corticospinal lesions.
Collapse
Affiliation(s)
- Jorik Nonnekes
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Nijmegen, The Netherlands
- * E-mail:
| | - Anass Arrogi
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Nijmegen, The Netherlands
| | - Moniek A. M. Munneke
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology/Clinical Neurophysiology, Nijmegen, The Netherlands
| | | | - Lars B. Oude Nijhuis
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology/Clinical Neurophysiology, Nijmegen, The Netherlands
| | - Alexander C. Geurts
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Nijmegen, The Netherlands
- Sint Maartenskliniek Research, Development & Education, Nijmegen, The Netherlands
| | - Vivian Weerdesteyn
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Nijmegen, The Netherlands
- Sint Maartenskliniek Research, Development & Education, Nijmegen, The Netherlands
| |
Collapse
|
41
|
de Kam D, Nonnekes J, Oude Nijhuis LB, Geurts ACH, Bloem BR, Weerdesteyn V. Dopaminergic medication does not improve stepping responses following backward and forward balance perturbations in patients with Parkinson’s disease. J Neurol 2014; 261:2330-7. [DOI: 10.1007/s00415-014-7496-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
42
|
Volpe D, Giantin MG, Maestri R, Frazzitta G. Comparing the effects of hydrotherapy and land-based therapy on balance in patients with Parkinson’s disease: a randomized controlled pilot study. Clin Rehabil 2014; 28:1210-7. [DOI: 10.1177/0269215514536060] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Our aim was to evaluate the feasibility of a hydrotherapy treatment in patients with Parkinson’s disease and the effectiveness of this treatment on balance parameters in comparison to a traditional land-based physical therapy. Design: A randomized single-blind controlled trial. Setting: Outpatients. Subjects: Thirty-four patients with Parkinson’s disease in Hoehn-Yahr stage 2.5–3. Intervention: Group 1 hydrotherapy treatment, group 2 land-based rehabilitation treatment. The two groups underwent the same rehabilitation period (60 minutes of treatment, five days a week for two months). Main measures: The primary outcome measures were the centre of the pressure sway area recorded with open and closed eyes, using a stabilometric platform. Secondary outcome measures were Unified Parkinson’s Disease Rating Scale II and III, Timed Up and Go Test, Berg Balance Scale, Activities-specific Balance Confidence Scale, Falls Efficacy Scale, Falls diary and Parkinson’s Disease Questionnaire-39. Results: Hydrotherapy treatment proved to be feasible and safe. Patients in both groups had a significant improvement in all outcome variables. There was a better improvement in patients who underwent hydrotherapy than in patients treated with land-based therapy in the centre of pressure sway area closed eyes (mean SD change: 45.4 SD64.9 vs. 6.9 SD45.3, p = 0.05), Berg Balance Scale (51.2 SD3.1 vs. 6.0 SD3.1, p = 0.005), Activities-specific Balance Confidence Scale (16.8 SD10.6 vs. 4.1 SD5.4, p = 0.0001), Falls Efficacy Scale (−5.9 SD4.8 vs. −1.9 SD1.4, p = 0.003), Parkinson’s Disease Quetionnaire-39 (−18.4 SD12.9 vs. −8.0 SD7.0, p = 0.006) and falls diary (−2.4 SD2.2 vs. −0.4 SD0.5, p = 0.001). Conclusion: Our study suggests that hydrotherapy may constitute a possible treatment for balance dysfunction in Parkinsonian patients with moderate stage of disease.
Collapse
Affiliation(s)
- Daniele Volpe
- Department of Physical Medicine and Rehabilitation, S. Raffaele Arcangelo Fatebenefratelli Hospital, Venice, Italy
| | - Maria Giulia Giantin
- Department of Physical Medicine and Rehabilitation, S. Raffaele Arcangelo Fatebenefratelli Hospital, Venice, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering, Scientific Institute of Montescano, Montescano, Italy
| | - Giuseppe Frazzitta
- Department of Parkinson Disease Rehabilitation, ‘Moriggia-Pelascini’ Hospital, Gravedona ed Uniti, Italy
| |
Collapse
|