1
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
2
|
Morris HR, Spillantini MG, Sue CM, Williams-Gray CH. The pathogenesis of Parkinson's disease. Lancet 2024; 403:293-304. [PMID: 38245249 DOI: 10.1016/s0140-6736(23)01478-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 07/13/2023] [Indexed: 01/22/2024]
Abstract
Parkinson's disease is a progressive neurodegenerative condition associated with the deposition of aggregated α-synuclein. Insights into the pathogenesis of Parkinson's disease have been derived from genetics and molecular pathology. Biochemical studies, investigation of transplanted neurons in patients with Parkinson's disease, and cell and animal model studies suggest that abnormal aggregation of α-synuclein and spreading of pathology between the gut, brainstem, and higher brain regions probably underlie the development and progression of Parkinson's disease. At a cellular level, abnormal mitochondrial, lysosomal, and endosomal function can be identified in both monogenic and sporadic Parkinson's disease, suggesting multiple potential treatment approaches. Recent work has also highlighted maladaptive immune and inflammatory responses, possibly triggered in the gut, that accelerate the pathogenesis of Parkinson's disease. Although there are currently no disease-modifying treatments for Parkinson's disease, we now have a solid basis for the development of rational neuroprotective therapies that we hope will halt the progression of this disabling neurological condition.
Collapse
Affiliation(s)
- Huw R Morris
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK; University College London Movement Disorders Centre, University College London, London, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Carolyn M Sue
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, South Eastern Sydney Local Health District, Sydney, NSW, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA; Neuroscience Research Australia, Randwick, NSW, Australia.
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Gupta R, Kumari S, Senapati A, Ambasta RK, Kumar P. New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson's disease. Ageing Res Rev 2023; 90:102013. [PMID: 37429545 DOI: 10.1016/j.arr.2023.102013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of neuronal cells, which leads to synaptic dysfunction and cognitive defects. Despite the advancements in treatment strategies, the management of PD is still a challenging event. Early prediction and diagnosis of PD are of utmost importance for effective management of PD. In addition, the classification of patients with PD as compared to normal healthy individuals also imposes drawbacks in the early diagnosis of PD. To address these challenges, artificial intelligence (AI) and machine learning (ML) models have been implicated in the diagnosis, prediction, and treatment of PD. Recent times have also demonstrated the implication of AI and ML models in the classification of PD based on neuroimaging methods, speech recording, gait abnormalities, and others. Herein, we have briefly discussed the role of AI and ML in the diagnosis, treatment, and identification of novel biomarkers in the progression of PD. We have also highlighted the role of AI and ML in PD management through altered lipidomics and gut-brain axis. We briefly explain the role of early PD detection through AI and ML algorithms based on speech recordings, handwriting patterns, gait abnormalities, and neuroimaging techniques. Further, the review discuss the potential role of the metaverse, the Internet of Things, and electronic health records in the effective management of PD to improve the quality of life. Lastly, we also focused on the implementation of AI and ML-algorithms in neurosurgical process and drug discovery.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA
| | | | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.
| |
Collapse
|
4
|
Gu W, He C, Chen J, Li J. Proton Magnetic Resonance Spectroscopy for the Early Diagnosis of Parkinson Disease in the Substantia Nigra and Globus Pallidus: A Meta-Analysis With Trial Sequential Analysis. Front Neurol 2022; 13:838230. [PMID: 35785357 PMCID: PMC9244590 DOI: 10.3389/fneur.2022.838230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the metabolic changes in globus pallidus (GP) and substantia nigra (SN) during the early stage of Parkinson disease (PD) using magnetic resonance spectroscopy (MRS). PubMed, Embase, Web of Science, and Chinese National Knowledge Infrastructure were searched till November 2018. Eligible trials comparing early metabolic changes in GP and SN in patients with PD vs. controls were included. The mean differences with 95% confidence intervals were estimated with either fixed- or random-effects models using Review Manager 5.3 software. Trial sequential analysis was performed using TSA 0.9.5.10 beta software. Finally, 16 studies were selected from the search. Overall, the N-acetyl aspartate-to-creatine ratio showed a significant difference between patients with early-stage PD and healthy controls. The overall heterogeneity was P < 0.00001, I2 = 94% in GP and P = 0.0002, I2 = 74% in SN. The results revealed that MRS could be a more sensitive imaging biomarker in the diagnosis of early-stage PD.
Collapse
Affiliation(s)
- Wenbin Gu
- Department of Radiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Chen He
- Department of Radiology, Nantong Rich Hospital, Nantong, China
| | - Juping Chen
- Department of Radiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Junchen Li
- Department of Radiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- *Correspondence: Junchen Li
| |
Collapse
|
5
|
Juri C, Kramer V, Riss PJ, Soza-Ried C, Haeger A, Pruzzo R, Rösch F, Amaral H, Chana-Cuevas P. [18F]PR04.MZ PET/CT Imaging for Evaluation of Nigrostriatal Neuron Integrity in Patients With Parkinson Disease. Clin Nucl Med 2021; 46:119-124. [PMID: 33323728 PMCID: PMC7774816 DOI: 10.1097/rlu.0000000000003430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/14/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Degeneration of dopaminergic, nigrostriatal neurons is the hallmark of Parkinson disease (PD), and PET quantification of dopamine transporters is a widely accepted method for differential diagnosis between idiopathic PD and essential tremor. [18F]PR04.MZ is a new PET tracer with excellent imaging properties allowing for precise quantification of striatal and extrastriatal dopamine transporter. Here we describe our initial experience with [18F]PR04.MZ PET/CT in a larger cohort of healthy controls and PD patients as a proof-of-concept study for this tracer. METHODS Eighteen healthy subjects, 19 early PD patients (Hoehn-Yahr I-II), and 13 moderate-advanced PD patients (Hoehn-Yahr III-IV) underwent static PET/CT scans 60 to 90 minutes after injection of 5.16 ± 1.03 mCi (191 ± 38 MBq) [18F]PR04.MZ. Specific binding ratios (SBRs) were calculated for caudate nucleus, anterior putamen, posterior putamen, substantia nigra (SNpc), compared between different groups and correlated with clinical ratings. RESULTS [18F]PR04.MZ showed very high and specific uptake in the putamen, caudate, and substantia nigra pars compacta and very low nonspecific binding in other brain regions, and SBR values for the control group were 22.3 ± 4.1, 19.1 ± 3.5, and 5.4 ± 1.2, respectively. A reduction of SBR values was observed in all regions and in both initial and moderate PD, ranging from 35% to 89% (P < 0.001). The observed pattern of reduction was posterior putamen > anterior putamen > substantia nigra pars compacta > caudate, with contralateral posterior putamen being the most affected region. Rostrocaudal depletion gradient was evident in all PD patients and progression correlated with motor manifestations. CONCLUSIONS [18F]PR04.MZ PET/CT is a highly sensitive imaging modality for the detection of dopaminergic deficit in nigrostriatal pathways in PD.
Collapse
Affiliation(s)
- Carlos Juri
- From the Department of Neurology, Facultad de Medicina, Pontificia Universidad Católica de Chile
- Department of Neurology, Hospital Sotero del Río
| | - Vasko Kramer
- Nuclear Medicine and PET/CT Center PositronMed
- Positronpharma SA, Santiago, Chile
| | | | | | | | | | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Horacio Amaral
- Nuclear Medicine and PET/CT Center PositronMed
- Positronpharma SA, Santiago, Chile
| | - Pedro Chana-Cuevas
- Centro de Trastornos del Movimiento
- Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
6
|
Redenšek S, Flisar D, Kojović M, Kramberger MG, Georgiev D, Pirtošek Z, Trošt M, Dolžan V. Genetic variability of inflammation and oxidative stress genes does not play a major role in the occurrence of adverse events of dopaminergic treatment in Parkinson's disease. J Neuroinflammation 2019; 16:50. [PMID: 30813952 PMCID: PMC6393982 DOI: 10.1186/s12974-019-1439-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Inflammation and oxidative stress are recognized as important contributors to Parkinson's disease pathogenesis. As such, genetic variability in these pathways could have a role in susceptibility for the disease as well as in the treatment outcome. Dopaminergic treatment is effective in management of motor symptoms, but poses a risk for motor and non-motor adverse events. Our aim was to evaluate the impact of selected single-nucleotide polymorphisms in genes involved in inflammation and oxidative stress on Parkinson's disease susceptibility and the occurrence of adverse events of dopaminergic treatment. METHODS In total, 224 patients were enrolled, and their demographic and clinical data on the disease course were collected. Furthermore, a control group of 146 healthy Slovenian blood donors were included for Parkinson's disease' risk evaluation. Peripheral blood was obtained for DNA isolation. Genotyping was performed for NLRP3 rs35829419, CARD8 rs2043211, IL1β rs16944, IL1β rs1143623, IL6 rs1800795, CAT rs1001179, CAT rs10836235, SOD2 rs4880, NOS1 rs2293054, NOS1 rs2682826, TNF-α rs1800629, and GPX1 rs1050450. Logistic regression was used for analysis of possible associations. RESULTS We observed a nominally significant association of the IL1β rs1143623 C allele with the risk for Parkinson's disease (OR = 0.59; 95%CI = 0.38-0.92, p = 0.021). CAT rs1001179 A allele was significantly associated with peripheral edema (OR = 0.32; 95%CI = 0.15-0.68; p = 0.003). Other associations observed were only nominally significant after adjustments: NOS1 rs2682826 A allele and excessive daytime sleepiness and sleep attacks (OR = 1.75; 95%CI = 1.00-3.06, p = 0.048), SOD2 rs4880 T allele and nausea/vomiting (OR = 0.49, 95%CI = 0.25-0.94; p = 0.031), IL1β rs1143623 C allele and orthostatic hypotension (OR = 0.57, 95%CI = 0.32-1.00, p = 0.050), and NOS1 rs2682826 A allele and impulse control disorders (OR = 2.59; 95%CI = 1.09-6.19; p = 0.032). We did not find any associations between selected polymorphisms and motor adverse events. CONCLUSIONS Apart from some nominally significant associations, one significant association between CAT genetic variability and peripheral edema was observed as well. Therefore, the results of our study suggest some links between genetic variability in inflammation- and oxidative stress-related pathways and non-motor adverse events of dopaminergic treatment. However, the investigated polymorphisms do not play a major role in the occurrence of the disease and the adverse events of dopaminergic treatment.
Collapse
Affiliation(s)
- Sara Redenšek
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Dušan Flisar
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | | | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
T. dos Santos MC, Scheller D, Schulte C, Mesa IR, Colman P, Bujac SR, Bell R, Berteau C, Perez LT, Lachmann I, Berg D, Maetzler W, Nogueira da Costa A. Evaluation of cerebrospinal fluid proteins as potential biomarkers for early stage Parkinson's disease diagnosis. PLoS One 2018; 13:e0206536. [PMID: 30383831 PMCID: PMC6211693 DOI: 10.1371/journal.pone.0206536] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Cerebrospinal fluid (CSF) has often been used as the source of choice for biomarker discovery with the goal to support the diagnosis of neurodegenerative diseases. For this study, we selected 15 CSF protein markers which were identified in previously published clinical investigations and proposed as potential biomarkers for PD diagnosis. We aimed at investigating and confirming their suitability for early stage diagnosis of the disease. The current study was performed in a two-fold confirmatory approach. Firstly, the CSF protein markers were analysed in confirmatory cohort I comprising 80 controls and 80 early clinical PD patients. Through univariate analysis we found significant changes of six potential biomarkers (α-syn, DJ-1, Aβ42, S100β, p-Tau and t-Tau). In order to increase robustness of the observations for potential patient differentiation, we developed-based on a machine learning approach-an algorithm which enabled identifying a panel of markers which would improve clinical diagnosis. Based on that model, a panel comprised of α-syn, S100β and UCHL1 were suggested as promising candidates. Secondly, we aimed at replicating our observations in an independent cohort (confirmatory cohort II) comprising 30 controls and 30 PD patients. The univariate analysis demonstrated Aβ42 as the only reproducible potential biomarker. Taking into account both technical and clinical aspects, these observations suggest that the large majority of the investigated CSF proteins currently proposed as potential biomarkers lack robustness and reproducibility in supporting diagnosis in the early clinical stages of PD.
Collapse
Affiliation(s)
| | | | - Claudia Schulte
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen and German Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Irene R. Mesa
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Peter Colman
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Sarah R. Bujac
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Rosie Bell
- Translational Medicine, UCB Biopharma SPRL, Braine L’Alleud, Belgium
| | - Caroline Berteau
- Translational Medicine, UCB Biopharma SPRL, Braine L’Alleud, Belgium
| | - Luis Tosar Perez
- Bioanalytical Sciences, Non Clinical Development, UCB Biopharma SPRL, Braine L’Alleud, Belgium
| | | | - Daniela Berg
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen and German Center for Neurodegenerative Diseases, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Walter Maetzler
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen and German Center for Neurodegenerative Diseases, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
8
|
Cedarbaum JM. Elephants, Parkinson's Disease, and Proof-of-Concept Clinical Trials. Mov Disord 2018; 33:697-700. [PMID: 29722454 DOI: 10.1002/mds.27398] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 02/03/2023] Open
|
9
|
Tokic K, Titlic M, Beganovic-Petrovic A, Suljic E, Romac R, Silic S. P300 Wave Changes in Patients with Parkinson's Disease. Med Arch 2018; 70:453-456. [PMID: 28210020 PMCID: PMC5292223 DOI: 10.5455/medarh.2016.70.453-456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Introduction: Parkinson’s disease (PD) is chronic progressive neurodegenerative disease. In patients with Parkinson’s disease among other symptoms occur cognitive dysfunctions, which can be shown by P300 wave changes. Aim: The aim of this study was to demonstrate that patients with Parkinson’s disease have reduced amplitude and prolonged latency, longer than 300 ± 10 ms. Material and Methods: The study included 21 patient suffering from Parkinson’s disease. After reviewing the medical records and analyzes the inclusion and exclusion criteria, patients were subjected to the same procedure examining auditory cognitive potentials (P300 wave) and the results were analyzed and compared to reference value for healthy population. Results: We have shown that patients with Parkinson’s disease have prolonged P300 targeted and frequent stimulus latency compared to reference value for healthy population. From 21 patient 18 had a pathological P300 target stimulus amplitude, and even 20 patients had pathological P300 frequent stimulus amplitude. Conclusion: People with Parkinson’s disease have altered P300 which indicates the presence of cognitive dysfunction in these patients.
Collapse
Affiliation(s)
| | - Marina Titlic
- School of Medicine, University of Split, Split, Croatia; Department of Neurology, University Hospital Split, Split, Croatia
| | - Amira Beganovic-Petrovic
- Department of Neurology, Clinical Center of Sarajevo University, Sarajevo, Bosnia and Herzegovina
| | - Enra Suljic
- Department of Neurology, Clinical Center of Sarajevo University, Sarajevo, Bosnia and Herzegovina
| | - Rinaldo Romac
- Department of Neurology, University Hospital Split, Split, Croatia
| | - Slobodan Silic
- Department of Neurology, University Hospital Split, Split, Croatia
| |
Collapse
|
10
|
Jellinger KA. Potential clinical utility of multiple system atrophy biomarkers. Expert Rev Neurother 2017; 17:1189-1208. [DOI: 10.1080/14737175.2017.1392239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Magnetic resonance imaging and tensor-based morphometry in the MPTP non-human primate model of Parkinson's disease. PLoS One 2017; 12:e0180733. [PMID: 28738061 PMCID: PMC5524324 DOI: 10.1371/journal.pone.0180733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder producing a variety of motor and cognitive deficits with the causes remaining largely unknown. The gradual loss of the nigrostriatal pathway is currently considered the pivotal pathological event. To better understand the progression of PD and improve treatment management, defining the disease on a structural basis and expanding brain analysis to extra-nigral structures is indispensable. The anatomical complexity and the presence of neuromelanin, make the use of non-human primates an essential element in developing putative imaging biomarkers of PD. To this end, ex vivo T2-weighted magnetic resonance images were acquired from control and 1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated marmosets. Volume measurements of the caudate, putamen, and substantia nigra indicated significant atrophy and cortical thinning. Tensor-based morphometry provided a more extensive and hypothesis free assessment of widespread changes caused by the toxin insult to the brain, especially highlighting regional cortical atrophy. The results highlight the importance of developing imaging biomarkers of PD in non-human primate models considering their distinct neuroanatomy. It is essential to further develop these biomarkers in vivo to provide non-invasive tools to detect pre-symptomatic PD and to monitor potential disease altering therapeutics.
Collapse
|
12
|
Plasma and White Blood Cells Show Different miRNA Expression Profiles in Parkinson's Disease. J Mol Neurosci 2017; 62:244-254. [PMID: 28540642 DOI: 10.1007/s12031-017-0926-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) diagnosis is based on the assessment of motor symptoms, which manifest when more than 50% of dopaminergic neurons are degenerated. To date, no validated biomarkers are available for the diagnosis of PD. The aims of the present study are to evaluate whether plasma and white blood cells (WBCs) are interchangeable biomarker sources and to identify circulating plasma-based microRNA (miRNA) biomarkers for an early detection of PD. We profiled plasma miRNA levels in 99 L-dopa-treated PD patients from two independent data collections, in ten drug-naïve PD patients, and in unaffected controls matched by sex and age. We evaluated expression levels by reverse transcription and quantitative real-time PCR (RT-qPCR) and combined the results from treated PD patients using a fixed effect inverse-variance weighted meta-analysis. We revealed different expression profiles comparing plasma and WBCs and drug-naïve and L-dopa-treated PD patients. We observed an upregulation trend for miR-30a-5p in L-dopa-treated PD patients and investigated candidate target genes by integrated in silico analyses. We could not analyse miR-29b-3p, normally expressed in WBCs, due to the very low expression in plasma. We observed different expression profiles in WBCs and plasma, suggesting that they are both suitable but not interchangeable peripheral sources for biomarkers. We revealed miR-30a-5p as a potential biomarker for PD in plasma. In silico analyses suggest that miR-30a-5p might have a regulatory role in mitochondrial dynamics and autophagy. Further investigations are needed to confirm miR-30a-5p deregulation and targets and to investigate the influence of L-dopa treatment on miRNA expression levels.
Collapse
|
13
|
Jellinger KA, Wenning GK. Multiple system atrophy: pathogenic mechanisms and biomarkers. J Neural Transm (Vienna) 2016; 123:555-72. [PMID: 27098666 DOI: 10.1007/s00702-016-1545-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
Abstract
Multiple system atrophy (MSA) is a unique proteinopathy that differs from other α-synucleinopathies since the pathological process resulting from accumulation of aberrant α-synuclein (αSyn) involves the oligodendroglia rather than neurons, although both pathologies affect multiple parts of the brain, spinal cord, autonomic and peripheral nervous system. Both the etiology and pathogenesis of MSA are unknown, although animal models have provided insight into the basic molecular changes of this disorder. Accumulation of aberrant αSyn in oligodendroglial cells and preceded by relocation of p25α protein from myelin to oligodendroglia results in the formation of insoluble glial cytoplasmic inclusions that cause cell dysfunction and demise. These changes are associated with proteasomal, mitochondrial and lipid transport dysfunction, oxidative stress, reduced trophic transport, neuroinflammation and other noxious factors. Their complex interaction induces dysfunction of the oligodendroglial-myelin-axon-neuron complex, resulting in the system-specific pattern of neurodegeneration characterizing MSA as a synucleinopathy with oligodendroglio-neuronopathy. Propagation of modified toxic αSyn species from neurons to oligodendroglia by "prion-like" transfer and its spreading associated with neuronal pathways result in a multi-system involvement. No reliable biomarkers are currently available for the clinical diagnosis and prognosis of MSA. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable diagnostic biomarkers and to deliver targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| | - Gregor K Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|