1
|
Gericke C, Mallone A, Engelhardt B, Nitsch RM, Ferretti MT. Oligomeric Forms of Human Amyloid-Beta(1-42) Inhibit Antigen Presentation. Front Immunol 2020; 11:1029. [PMID: 32582162 PMCID: PMC7290131 DOI: 10.3389/fimmu.2020.01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
Genetic, clinical, biochemical and histochemical data indicate a crucial involvement of inflammation in Alzheimer's disease (AD), but harnessing the immune system to cure or prevent AD has so far proven difficult. Clarifying the cellular heterogeneity and signaling pathways associated with the presence of the AD hallmarks beta-amyloid and tau in the brain, would help to identify potential targets for therapy. While much attention has been so far devoted to microglia and their homeostatic phagocytic activity, additional cell types and immune functions might be affected in AD. Beyond microglia localized in the brain parenchyma, additional antigen-presenting cell (APC) types might be affected by beta-amyloid toxicity. Here, we investigated potential immunomodulatory properties of oligomeric species of beta-amyloid-peptide (Aβ) on microglia and putative APCs. We performed a comprehensive characterization of time- and pathology-dependent APC and T-cell alterations in a model of AD-like brain beta-amyloidosis, the APP-PS1-dE9 mouse model. We show that the deposition of first beta-amyloid plaques is accompanied by a significant reduction in MHC class II surface levels on brain APCs. Furthermore, taking advantage of customized in vitro systems and RNAseq, we demonstrate that a preparation containing various forms of oligomeric Aβ1-42 inhibits antigen presentation by altering the transcription of key immune mediators in dendritic cells. These results suggest that, beyond their neurotoxic effects, certain oligomeric Aβ forms can act as immunomodulatory agents on cerebral APCs and interfere with brain antigen presentation. Impaired brain immune surveillance might be one of the factors that facilitate Aβ and tau spreading in AD.
Collapse
Affiliation(s)
- Christoph Gericke
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Anna Mallone
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | | | - Roger M Nitsch
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Neurimmune AG, Schlieren, Switzerland
| | - Maria Teresa Ferretti
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| |
Collapse
|
2
|
Amor M, Moreno Viedma V, Sarabi A, Grün NG, Itariu B, Leitner L, Steiner I, Bilban M, Kodama K, Butte AJ, Staffler G, Zeyda M, Stulnig TM. Identification of matrix metalloproteinase-12 as a candidate molecule for prevention and treatment of cardiometabolic disease. Mol Med 2016; 22:487-496. [PMID: 27385318 DOI: 10.2119/molmed.2016.00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
Obesity is strongly associated with metabolic syndrome, a combination of risk factors that predispose to the development of the cardiometabolic diseases: atherosclerotic cardiovascular disease and type 2 diabetes mellitus. Prevention of metabolic syndrome requires novel interventions to address this health challenge. The objective of this study was the identification of candidate molecules for the prevention and treatment of insulin resistance and atherosclerosis, conditions that underlie type 2 diabetes mellitus and cardiovascular disease, respectively. We used an unbiased bioinformatics approach to identify molecules that are upregulated in both conditions by combining murine and human data from a microarray experiment and meta-analyses. We obtained a pool of eight genes that were upregulated in all the databases analysed. This included well known and novel molecules involved in the pathophysiology of type 2 diabetes mellitus and cardiovascular disease. Notably, matrix metalloproteinase 12 (MMP12) was highly ranked in all analyses and was therefore chosen for further investigation. Analyses of visceral and subcutaneous white adipose tissue from obese compared to lean mice and humans convincingly confirmed the up-regulation of MMP12 in obesity at mRNA, protein and activity levels. In conclusion, using this unbiased approach an interesting pool of candidate molecules was identified, all of which have potential as targets in the treatment and prevention of cardiometabolic diseases.
Collapse
Affiliation(s)
- M Amor
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - V Moreno Viedma
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - A Sarabi
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - N G Grün
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - B Itariu
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - L Leitner
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - I Steiner
- Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Austria
| | - M Bilban
- Core Facility Genomics, Core Facilities, Medical University of Vienna, Vienna, Austria
| | - K Kodama
- Institute for Computational Health Sciences. University of California, San Francisco, EEUU
| | - A J Butte
- Institute for Computational Health Sciences. University of California, San Francisco, EEUU
| | | | - M Zeyda
- Department of Pediatrics and Adolescent Medicine, Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna
| | - T M Stulnig
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer's disease model. ALZHEIMERS RESEARCH & THERAPY 2014; 6:44. [PMID: 25478017 PMCID: PMC4255368 DOI: 10.1186/alzrt278] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/10/2014] [Indexed: 01/25/2023]
Abstract
INTRODUCTION We have identified structural determinants on tau protein that are essential for pathological tau-tau interaction in Alzheimer's disease (AD). These regulatory domains, revealed by monoclonal antibody DC8E8, represent a novel target for tau-directed therapy. In order to validate this target, we have developed an active vaccine, AADvac1. METHODS A tau peptide encompassing the epitope revealed by DC8E8 was selected for the development of an active vaccine targeting structural determinants on mis-disordered tau protein that are essential for pathological tau-tau interaction. The efficacy of the vaccine was tested in a transgenic rat model of human tauopathies. Toxicology and safety pharmacology studies were conducted under good laboratory practice conditions in multiple rodent and nonrodent species. RESULTS We have administered the tau peptide vaccine to a rat model of AD to investigate whether the vaccine can improve its clinical, histopathological and biochemical AD phenotype. Our results show that vaccination induced a robust protective humoral immune response, with antibodies discriminating between pathological and physiological tau. Active immunotherapy reduced the levels of tau oligomers and the extent of neurofibrillary pathology in the brains of transgenic rats. Strikingly, immunotherapy has reduced AD-type hyperphosphorylation of tau by approximately 95%. Also, the tau peptide vaccine improved the clinical phenotype of transgenic animals. Toxicology and safety pharmacology studies showed an excellent safety and tolerability profile of the AADvac1 vaccine. CONCLUSIONS Active immunisation targeting crucial domains of Alzheimer tau eliminated tau aggregation and neurofibrillary pathology. Most importantly, the AD type of tau hyperphosphorylation was abolished by vaccination across a wide range of AD phospho-epitopes. Our results demonstrate that active immunisation led to elimination of all major hallmarks of neurofibrillary pathology, which was reflected by a profound improvement in the clinical presentation of transgenic rats. This makes the investigated tau peptide vaccine a highly promising candidate therapeutic for the disease-modifying treatment of AD. The tested vaccine displayed a highly favourable safety profile in preclinical toxicity studies, which opens up the possibility of using it for AD prophylaxis in the future. The vaccine has already entered phase I clinical trial under the name AADvac1. TRIAL REGISTRATION Current Controlled Trials NCT01850238. Registered 7 May 2013.
Collapse
Affiliation(s)
- Eva Kontsekova
- AXON Neuroscience, Dvorakovo nabrezie 10 811 02, Bratislava, Slovak Republic
| | - Norbert Zilka
- AXON Neuroscience, Dvorakovo nabrezie 10 811 02, Bratislava, Slovak Republic
| | - Branislav Kovacech
- AXON Neuroscience, Dvorakovo nabrezie 10 811 02, Bratislava, Slovak Republic ; Present address: Institute of Neuroimmunology, Dubravska cesta 9, 84510 Bratislava, Slovak Republic
| | - Petr Novak
- AXON Neuroscience, Dvorakovo nabrezie 10 811 02, Bratislava, Slovak Republic
| | - Michal Novak
- AXON Neuroscience, Dvorakovo nabrezie 10 811 02, Bratislava, Slovak Republic
| |
Collapse
|
4
|
Sardi F, Fassina L, Venturini L, Inguscio M, Guerriero F, Rolfo E, Ricevuti G. Alzheimer's disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmun Rev 2011; 11:149-53. [DOI: 10.1016/j.autrev.2011.09.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/19/2011] [Indexed: 11/26/2022]
|
5
|
Xin J, Wainwright DA, Mesnard NA, Serpe CJ, Sanders VM, Jones KJ. IL-10 within the CNS is necessary for CD4+ T cells to mediate neuroprotection. Brain Behav Immun 2011; 25:820-9. [PMID: 20723599 PMCID: PMC3021103 DOI: 10.1016/j.bbi.2010.08.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/26/2010] [Accepted: 08/10/2010] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that immunodeficient mice exhibit significant facial motoneuron (FMN) loss compared to wild-type (WT) mice after a facial nerve axotomy. Interleukin-10 (IL-10) is known as a regulatory cytokine that plays an important role in maintaining the anti-inflammatory environment within the central nervous system (CNS). IL-10 is produced by a number of different cells, including Th2 cells, and may exert an anti-apoptotic action on neurons directly. In the present study, the role of IL-10 in mediating neuroprotection following facial nerve axotomy in Rag-2- and IL-10-deficient mice was investigated. Results indicate that IL-10 is neuroprotective, but CD4+ T cells are not the requisite source of IL-10. In addition, using real-time PCR analysis of laser microdissected brainstem sections, results show that IL-10 mRNA is constitutively expressed in the facial nucleus and that a transient, significant reduction of IL-10 mRNA occurs following axotomy under immunodeficient conditions. Dual labeling immunofluorescence data show, unexpectedly, that the IL-10 receptor (IL-10R) is constitutively expressed by facial motoneurons, but is selectively induced in astrocytes within the facial nucleus after axotomy. Thus, a non-CD4+ T cell source of IL-10 is necessary for modulating both glial and neuronal events that mediate neuroprotection of injured motoneurons, but only with the cooperation of CD4+ T cells, providing an avenue of novel investigation into therapeutic approaches to prevent or reverse motoneuron diseases, such as amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Junping Xin
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA.
| | - Derek A. Wainwright
- Department of Surgery, The Brain Tumor Center, University of Chicago, Chicago, IL 60637
| | - Nichole A. Mesnard
- Dept. of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153,Research and Development Service, Hines VA Hospital, Hines, IL 60141
| | - Craig J. Serpe
- Research and Development Service, Hines VA Hospital, Hines, IL 60141
| | - Virginia M. Sanders
- Department of Molecular Virology, Immunology, & Medical Genetics, College of Medicine & Public Health, The Ohio State University, Columbus, OH 43210
| | - Kathryn J. Jones
- Dept. of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153,Research and Development Service, Hines VA Hospital, Hines, IL 60141
| |
Collapse
|
6
|
Hoogerhout P, Kamphuis W, Brugghe HF, Sluijs JA, Timmermans HAM, Westdijk J, Zomer G, Boog CJP, Hol EM, van den Dobbelsteen GPJM. A cyclic undecamer peptide mimics a turn in folded Alzheimer amyloid β and elicits antibodies against oligomeric and fibrillar amyloid and plaques. PLoS One 2011; 6:e19110. [PMID: 21526148 PMCID: PMC3079747 DOI: 10.1371/journal.pone.0019110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/17/2011] [Indexed: 01/17/2023] Open
Abstract
The 39- to 42-residue amyloid β (Aβ) peptide is deposited in extracellular fibrillar plaques in the brain of patients suffering from Alzheimer's Disease (AD). Vaccination with these peptides seems to be a promising approach to reduce the plaque load but results in a dominant antibody response directed against the N-terminus. Antibodies against the N-terminus will capture Aβ immediately after normal physiological processing of the amyloid precursor protein and therefore will also reduce the levels of non-misfolded Aβ, which might have a physiologically relevant function. Therefore, we have targeted an immune response on a conformational neo-epitope in misfolded amyloid that is formed in advance of Aβ-aggregation. A tetanus toxoid-conjugate of the 11-meric cyclic peptide Aβ(22-28)-YNGK' elicited specific antibodies in Balb/c mice. These antibodies bound strongly to the homologous cyclic peptide-bovine serum albumin conjugate, but not to the homologous linear peptide-conjugate, as detected in vitro by enzyme-linked immunosorbent assay. The antibodies also bound--although more weakly--to Aβ(1-42) oligomers as well as fibrils in this assay. Finally, the antibodies recognized Aβ deposits in AD mouse and human brain tissue as established by immunohistological staining. We propose that the cyclic peptide conjugate might provide a lead towards a vaccine that could be administered before the onset of AD symptoms. Further investigation of this hypothesis requires immunization of transgenic AD model mice.
Collapse
Affiliation(s)
- Peter Hoogerhout
- Department of Vaccinology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Jordão JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J, Hynynen K, Aubert I. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease. PLoS One 2010; 5:e10549. [PMID: 20485502 PMCID: PMC2868024 DOI: 10.1371/journal.pone.0010549] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/11/2010] [Indexed: 01/02/2023] Open
Abstract
Immunotherapy for Alzheimer's disease (AD) relies on antibodies directed against toxic amyloid-beta peptide (Abeta), which circulate in the bloodstream and remove Abeta from the brain. In mouse models of AD, the administration of anti-Abeta antibodies directly into the brain, in comparison to the bloodstream, was shown to be more efficient at reducing Abeta plaque pathology. Therefore, delivering anti-Abeta antibodies to the brain of AD patients may also improve treatment efficiency. Transcranial focused ultrasound (FUS) is known to transiently-enhance the permeability of the blood-brain barrier (BBB), allowing intravenously administered therapeutics to enter the brain. Our goal was to establish that anti-Abeta antibodies delivered to the brain using magnetic resonance imaging-guided FUS (MRIgFUS) can reduce plaque pathology. To test this, TgCRND8 mice received intravenous injections of MRI and FUS contrast agents, as well as anti-Abeta antibody, BAM-10. MRIgFUS was then applied transcranially. Within minutes, the MRI contrast agent entered the brain, and BAM-10 was later found bound to Abeta plaques in targeted cortical areas. Four days post-treatment, Abeta pathology was significantly reduced in TgCRND8 mice. In conclusion, this is the first report to demonstrate that MRIgFUS delivery of anti-Abeta antibodies provides the combined advantages of using a low dose of antibody and rapidly reducing plaque pathology.
Collapse
Affiliation(s)
- Jessica F. Jordão
- Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Imaging, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carlos A. Ayala-Grosso
- Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Unidad de Biología Molecular, Facultad de Farmacia, Universidad Central de Venezuela, Los Chaguaramos, Caracas, Venezuela
| | - Kelly Markham
- Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Yuexi Huang
- Imaging, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rajiv Chopra
- Imaging, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Imaging, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Epis R, Gardoni F, Marcello E, Genazzani A, Canonico PL, Di Luca M. Searching for new animal models of Alzheimer's disease. Eur J Pharmacol 2009; 626:57-63. [PMID: 19836370 DOI: 10.1016/j.ejphar.2009.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
The pathophysiology of chronic neurodegenerative diseases, as Alzheimer's diseases, has remained inaccessible till recently. But this situation is changing quickly. In the past decades, genes causing familiar forms of the disease have been identified and provided the genetic framework for the emerging amyloid hypothesis. On the basis of these findings, engineered mouse models have been developed and have allowed the understanding of crucial information about the pathogenic process. Certain observations obtained by transgenic mice, however, do not easily fit with the simplest version of the amyloid hypothesis. Even if there are transgenic lines that offer robust and relatively faithful reproductions of a subset of Alzheimer's disease's features, a mouse model that recapitulates all aspects of the disease has not yet been produced. Several still not completely known factors combine to produce highly variability across transgenic mouse models. Discrepancies in neuropathology and behaviour between transgenic mouse models and human Alzheimer's disease, and among different transgenic-lines, suggest caution in the interpretation of the results. Here we try to analyze critically some of the information provided by transgenic mice but ascertaining which elements of the neuropathological and behavioural phenotype of these various strains of transgenic mice are relevant to that observed in Alzheimer's disease continues to be a challenge.
Collapse
Affiliation(s)
- Roberta Epis
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases. University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Combs CK. Inflammation and microglia actions in Alzheimer's disease. J Neuroimmune Pharmacol 2009; 4:380-8. [PMID: 19669893 DOI: 10.1007/s11481-009-9165-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 07/22/2009] [Indexed: 12/19/2022]
Abstract
A variety of studies have documented increased presence of reactive microglia in the brains of not only Alzheimer's disease (AD) patients but its transgenic mouse models. Since these cells are often characterized in association with fibrillar Abeta peptide-containing plaques, it has been assumed that plaque interaction provides one stimulus for the phenotype observed. The growing appreciation that microglia phenotype changes with age and that resident immune cells are commingled with blood-derived macrophage has complicated understanding of the behavior of these cells in AD. In addition, comparison of microglia within AD brains and the many rodent models suggests that there are population phenotype differences among these cells within any given brain during disease. Recent immunomodulatory strategies that have been employed, although effective at improving behavioral performance, decreasing Abeta plaque load, and altering immune molecule levels, have not yet resolved the details and dynamics of the microglial and macrophage responses. The heterogeneity of microglial presentation in AD brains and its transgenic mouse models and the outcomes of immunoregulatory efforts will be reviewed below along with the remaining question of how much understanding of microglial behavior is actually required in order to propose a microglia-related therapy for AD.
Collapse
Affiliation(s)
- Colin K Combs
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND 58202, USA.
| |
Collapse
|
11
|
Jakob-Roetne R, Jacobsen H. Alzheimer's disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 2009; 48:3030-59. [PMID: 19330877 DOI: 10.1002/anie.200802808] [Citation(s) in RCA: 494] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mind how you go: The current strategies for the development of therapies for Alzheimer's disease are very diverse. Particular attention is given to the search for inhibitors (see picture for two examples) of the proteolytic enzyme beta- and gamma-secretase, which inhibits the cleavage of the amyloid precursor proteins into amyloid beta peptides, from which the disease-defining deposits of plaque in the brains of Alzheimer's patients originates.Research on senile dementia and Alzheimer's disease covers an extremely broad range of scientific activities. At the recent international meeting of the Alzheimer's Association (ICAD 2008, Chicago) more than 2200 individual scientific contributions were presented. The aim of this Review is to give an overview of the field and to outline its main areas, starting from behavioral abnormalities and visible pathological findings and then focusing on the molecular details of the pathology. The "amyloid hypothesis" of Alzheimer's disease is given particular attention, since the majority of the ongoing therapeutic approaches are based on its theoretical framework.
Collapse
Affiliation(s)
- Roland Jakob-Roetne
- F.Hoffmann-La Roche AG, Medicinal Chemistry, Bldg 92/8.10B, 4070 Basel, Switzerland.
| | | |
Collapse
|
12
|
Jakob-Roetne R, Jacobsen H. Die Alzheimer-Demenz: von der Pathologie zu therapeutischen Ansätzen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Abstract
BACKGROUND Passive immunization strategies are under investigation as potential disease-modifying therapies for Alzheimer's disease (AD). Current approaches, based on data demonstrating behavioral improvement and reduced pathology in transgenic animal models, have focused exclusively on immune targeting of beta-amyloid. OBJECTIVE To examine immunization strategies for AD. METHODS A review of relevant publications. RESULTS/CONCLUSIONS Preliminary results from three Phase II trials suggest both the promise and the need to exercise caution with this method of immunotherapy. The strategies used were distinct, using monoclonal N-terminal, central epitope, and polyclonal antibodies to maximize the efficacy and safety of each approach. The tested compounds are moving into Phase III trials for mild to moderate AD. We await the discoveries that from these studies that may yield the first disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Gregory A Jicha
- University of Kentucky College of Medicine, Sanders-Brown Center on Aging, Alzheimer's Disease Center, Department of Neurology, 800 South Limestone Street, Lexington, KY 40536-0230, USA.
| |
Collapse
|
14
|
Roher AE, Esh CL, Kokjohn TA, Castaño EM, Van Vickle GD, Kalback WM, Patton RL, Luehrs DC, Daugs ID, Kuo YM, Emmerling MR, Soares H, Quinn JF, Kaye J, Connor DJ, Silverberg NB, Adler CH, Seward JD, Beach TG, Sabbagh MN. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer's disease. Alzheimers Dement 2009; 5:18-29. [PMID: 19118806 DOI: 10.1016/j.jalz.2008.10.004] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/27/2008] [Accepted: 10/06/2008] [Indexed: 01/17/2023]
Abstract
BACKGROUND We evaluated the amounts of amyloid beta (Abeta)) peptides in the central nervous system (CNS) and in reservoirs outside the CNS and their potential impact on Abeta plasma levels and Alzheimer's disease (AD) pathology. METHODS Amyloid beta levels were measured in (1) the plasma of AD and nondemented (ND) controls in a longitudinal study, (2) the plasma of a cohort of AD patients receiving a cholinesterase inhibitor, and (3) the skeletal muscle, liver, aorta, platelets, leptomeningeal arteries, and in gray and white matter of AD and ND control subjects. RESULTS Plasma Abeta levels fluctuated over time and among individuals, suggesting continuous contributions from brain and peripheral tissues and associations with reactive circulating proteins. Arteries with atherosclerosis had larger amounts of Abeta40 than disease-free vessels. Inactivated platelets contained more Abeta peptides than activated ones. Substantially more Abeta was present in liver samples from ND patients. Overall, AD brain and skeletal muscle contained increased levels of Abeta. CONCLUSIONS Efforts to use plasma levels of Abeta peptides as AD biomarkers or disease-staging scales have failed. Peripheral tissues might contribute to both the circulating amyloid pool and AD pathology within the brain and its vasculature. The wide spread of plasma Abeta values is also due in part to the ability of Abeta to bind to a variety of plasma and membrane proteins. Sources outside the CNS must be accounted for because pharmacologic interventions to reduce cerebral amyloid are assessed by monitoring Abeta plasma levels. Furthermore, the long-range impact of Abeta immunotherapy on peripheral Abeta sources should also be considered.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
It is lay knowledge now that Alzheimer's dementia (AD) is one of the most devastating diseases afflicting our societies. A major thrust in search for a cure has relied in the development of animal models of the disease. Thanks to progress in the genetics of the rare inherited forms of AD, various transgenic mouse models harboring human mutated proteins were developed, yielding very significant advancements in the understanding of pathological pathways. Although these models led to testing many different new therapies, none of the preclinical successes have translated yet into much needed therapeutic improvements. Further insight into the metabolic disturbances that are probably associated with the onset of the disease may also rely on new animal models of AD involving insulin/IGF-I signaling that could mimic the far most common sporadic forms of AD associated with old age. Combination of models of familial AD that develop severe amyloidosis with those displaying defects in insulin/IGF-I signaling may help clarify the link between putative initial metabolic disturbances and mechanisms of pathological progression.
Collapse
|
16
|
Park JW, Ahn JS, Lee JH, Bhak G, Jung S, Paik SR. Amyloid Fibrillar Meshwork Formation of Iron-Induced Oligomeric Species of Aβ40 with Phthalocyanine Tetrasulfonate and Its Toxic Consequences. Chembiochem 2008; 9:2602-5. [DOI: 10.1002/cbic.200800343] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ. Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models. PLoS One 2008; 3:e2175. [PMID: 18478109 PMCID: PMC2364662 DOI: 10.1371/journal.pone.0002175] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 04/05/2008] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder typified by the accumulation of a small protein, beta-amyloid, which aggregates and is the primary component of amyloid plaques. Many new therapeutic and diagnostic agents for reducing amyloid plaques have limited efficacy in vivo because of poor transport across the blood-brain barrier. Here we demonstrate that low-intensity focused ultrasound with a microbubble contrast agent may be used to transiently disrupt the blood-brain barrier, allowing non-invasive, localized delivery of imaging fluorophores and immunotherapeutics directly to amyloid plaques. We administered intravenous Trypan blue, an amyloid staining red fluorophore, and anti-amyloid antibodies, concurrently with focused ultrasound therapy in plaque-bearing, transgenic mouse models of Alzheimer's disease with amyloid pathology. MRI guidance permitted selective treatment and monitoring of plaque-heavy anatomical regions, such as the hippocampus. Treated brain regions exhibited 16.5±5.4-fold increase in Trypan blue fluorescence and 2.7±1.2-fold increase in anti-amyloid antibodies that localized to amyloid plaques. Ultrasound-enhanced delivery was consistently reproduced in two different transgenic strains (APPswe:PSEN1dE9, PDAPP), across a large age range (9–26 months), with and without MR guidance, and with little or no tissue damage. Ultrasound-mediated, transient blood-brain barrier disruption allows the delivery of both therapeutic and molecular imaging agents in Alzheimer's mouse models, which should aid pre-clinical drug screening and imaging probe development. Furthermore, this technique may be used to deliver a wide variety of small and large molecules to the brain for imaging and therapy in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Scott B. Raymond
- The Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lisa H. Treat
- The Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan D. Dewey
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nathan J. McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kullervo Hynynen
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Brian J. Bacskai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|