1
|
Yang Z, Yu S, Xu Y, Zhao Y, Li L, Sun J, Wang X, Guo Y, Zhang Y. The Screening and Mechanism of Influenza-Virus Sensitive MDCK Cell Lines for Influenza Vaccine Production. Diseases 2024; 12:20. [PMID: 38248371 PMCID: PMC10814076 DOI: 10.3390/diseases12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Influenza is a potentially fatal acute respiratory viral disease caused by the influenza virus. Influenza viruses vary in antigenicity and spread rapidly, resulting in seasonal epidemics. Vaccination is the most effective strategy for lowering the incidence and fatality rates of influenza-related disorders, and it is also an important method for reducing seasonal influenza infections. Mammalian Madin-Darby canine kidney (MDCK) cell lines are recommended for influenza virus growth, and such cell lines have been utilized in several commercial influenza vaccine productions. The limit dilution approach was used to screen ATCC-MDCK cell line subcellular strains that are especially sensitive to H1N1, H3N2, BV, and BY influenza viruses to increase virus production, and research on influenza virus culture media was performed to support influenza virus vaccine development. We also used RNA sequencing to identify differentially expressed genes and a GSEA analysis to determine the biological mechanisms underlying the various levels of susceptibility of cells to influenza viruses. MDCK cell subline 2B6 can be cultured to increase titer and the production of the H1N1, H3N2, BV, and BY influenza viruses. MDCK-2B6 has a significantly enriched and activated in ECM receptor interaction, JAK-STAT signaling, and cytokine receptor interaction signaling pathways, which may result in increased cellular susceptibility and cell proliferation activity to influenza viruses, promote viral adsorption and replication, and elevate viral production, ultimately. The study revealed that MDCK-2B6 can increase the influenza virus titer and yield in vaccine production by increasing cell sensitivity and enhancing proliferative activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Z.Y.); (Y.X.); (Y.Z.); (L.L.); (J.S.); (X.W.); (Y.G.)
| |
Collapse
|
2
|
Al-Qaisi TS, Abumsimir B. Vaccination strategies, the power of the unmatched double hits. Future Sci OA 2023; 9:FSO887. [PMID: 37752921 PMCID: PMC10518827 DOI: 10.2144/fsoa-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Talal S Al-Qaisi
- Department of Medical Laboratory Sciences, Pharmacological & Diagnostic Research Centre (PDRC), Faculty of Allied Medical Sciences, Al-Ahliyya Amman University (AAU), Amman, 19328, Jordan
| | - Berjas Abumsimir
- Department of Medical Laboratory Sciences, Pharmacological & Diagnostic Research Centre (PDRC), Faculty of Allied Medical Sciences, Al-Ahliyya Amman University (AAU), Amman, 19328, Jordan
| |
Collapse
|
3
|
MiRNA Targeted NP Genome of Live Attenuated Influenza Vaccines Provide Cross-Protection against a Lethal Influenza Virus Infection. Vaccines (Basel) 2020; 8:vaccines8010065. [PMID: 32028575 PMCID: PMC7158662 DOI: 10.3390/vaccines8010065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
The miRNA-based strategy has been used to develop live attenuated influenza vaccines. In this study, the nucleoprotein (NP) genome segment of the influenza virus was inserted by different perfect miRNA-192-5p target sites, and the virus was rescued by standard reverse genetics method, so as to verify the virulence and protective efficacy of live attenuated vaccine in cells and mice. The results showed there was no significant attenuation in 192t virus with one perfect miRNA-192-5p target site, and 192t-3 virus with three perfect miRNA target sites. However, 192t-6 virus with 6 perfect miRNA target sites and 192t-9 virus with 9 perfect miRNA target sites were both significantly attenuated after infection, and their virulence were similar to that of temperature-sensitive (TS) influenza A virus (IAV) which is a temperature-sensitive live attenuated influenza vaccine. Mice were immunized with different doses of 192t-6, 192t-9, and TS IAV. Four weeks after immunization, the IgG in serum and IgA in lung homogenate were increased in the 192t-6, 192t-9, and TS IAV groups, and the numbers of IFN-γ secreting splenocytes were also increased in a dose-dependent manner. Finally, 192t-6, and 192t-9 can protect the mice against the challenge of homologous PR8 H1N1 virus and heterosubtypic H3N2 influenza virus. MiRNA targeted viruses 192t-6 and 192t-9 were significantly attenuated and showed the same virulence as TS IAV and played a role in the cross-protection.
Collapse
|
4
|
Sun Y, Shen Z, Zhang C, Yi Y, Zhu K, Xu F, Kong W. Development of a Stable Liquid Formulation for Live Attenuated Influenza Vaccine. J Pharm Sci 2019; 108:2315-2322. [PMID: 30826350 DOI: 10.1016/j.xphs.2019.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/03/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
Live attenuated influenza vaccine (LAIV) is considered one of the most effective vaccines and can be manufactured quickly and inexpensively to counter seasonal or pandemic influenza. Lyophilization is widely used in vaccine production. However, it requires a longer production cycle and large-scale equipment, thus posing a considerable financial burden for developing countries. A potential solution is the development of liquid LAIV, which can increase the yield and reduce the cost of production. In this study, influential factors of LAIV, such as potential stabilizing excipients and pH, were optimized by an orthogonal design. We found that pH is the most critical factor for the stability of LAIV; salt concentration and initial virus titer are also important for LAIV stability. With these data, we developed a liquid formulation consisting of 2.5% sucrose, 0.1% monosodium glutamate, 1% arginine, and 0.5% human serum albumin, with pH ranging from 6.2 to 6.9 (optimum pH 6.5-6.7), for optimal production of monovalent or trivalent LAIVs. This liquid formulation has the potential to considerably improve vaccine production capacity to compensate for the immense shortfall in influenza vaccines globally.
Collapse
Affiliation(s)
- Yao Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Zhenwei Shen
- Institute of Immunology, Academy of Translational Medicine, The First Hospital of Jilin University, Jilin University, Dongminzhu Street, Changchun 130061, PR China
| | - Chun Zhang
- Research and Development Center, Changchun BCHT Biotechnology Co., Changchun 130012, PR China
| | - Yanming Yi
- Research and Development Center, Changchun BCHT Biotechnology Co., Changchun 130012, PR China
| | - Kunying Zhu
- Research and Development Center, Changchun BCHT Biotechnology Co., Changchun 130012, PR China
| | - Fei Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
5
|
Rudenko L, Kiseleva I, Krutikova E, Stepanova E, Rekstin A, Donina S, Pisareva M, Grigorieva E, Kryshen K, Muzhikyan A, Makarova M, Sparrow EG, Torelli G, Kieny MP. Rationale for vaccination with trivalent or quadrivalent live attenuated influenza vaccines: Protective vaccine efficacy in the ferret model. PLoS One 2018; 13:e0208028. [PMID: 30507951 PMCID: PMC6277076 DOI: 10.1371/journal.pone.0208028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIM The majority of seasonal influenza vaccines are trivalent, containing two A virus strains (H1N1 and H3N2) and one B virus strain. The co-circulation of two distinct lineages of B viruses can lead to mismatch between the influenza B virus strain recommended for the trivalent seasonal vaccine and the circulating B virus. This has led some manufacturers to produce quadrivalent influenza vaccines containing one strain from each B lineage in addition to H1N1 and H3N2 strains. However, it is also important to know whether vaccines containing a single influenza B strain can provide cross-protectivity against viruses of the antigenically distinct lineage. The aim of this study was to assess in naïve ferrets the potential cross-protective activity of trivalent live attenuated influenza vaccine (T-LAIV) against challenge with a heterologous wild-type influenza B virus belonging to the genetically different lineage and to compare this activity with effectiveness of quadrivalent LAIV (Q-LAIV) in the ferret model. METHODS AND RESULTS Ferrets were vaccinated with either one dose of trivalent LAIV containing B/Victoria or B/Yamagata lineage virus, or quadrivalent LAIV (containing both B lineages), or placebo. They were then challenged with B/Victoria or B/Yamagata lineage wild-type virus 28 days after vaccination. The ferrets were monitored for clinical signs and morbidity. Nasal swabs and lung tissue samples were analyzed for the presence of challenge virus. Antibody response to vaccination was assessed by routine hemagglutination inhibition assay. All LAIVs tested were found to be safe and effective against wild-type influenza B viruses based on clinical signs, and virological and histological data. The absence of interference between vaccine strains in trivalent and quadrivalent vaccine formulations was confirmed. Trivalent LAIVs were shown to have the potential to be cross-protective against infection with genetically different influenza B/Victoria and B/Yamagata lineages. CONCLUSIONS In this ferret model, quadrivalent vaccine provided higher protection to challenge against both B/Victoria and B/Yamagata lineage viruses. However, T-LAIV provided some cross-protection in the case of a mismatch between circulating and vaccine type B strains. Notably, B/Victoria-based T-LAIV was more protective compared to B/Yamagata-based T-LAIV.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Cross Protection/genetics
- Cross Protection/immunology
- Disease Models, Animal
- Female
- Ferrets
- Humans
- Immunogenicity, Vaccine
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza B virus/genetics
- Influenza B virus/immunology
- Influenza B virus/pathogenicity
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Elena Krutikova
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Ekaterina Stepanova
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Andrey Rekstin
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Svetlana Donina
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Maria Pisareva
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Elena Grigorieva
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Kirill Kryshen
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd, St Petersburg, Russia
| | - Arman Muzhikyan
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd, St Petersburg, Russia
| | - Marina Makarova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd, St Petersburg, Russia
| | - Erin Grace Sparrow
- Universal Health Coverage and Health Systems, World Health Organization, Geneva, Switzerland
| | - Guido Torelli
- Universal Health Coverage and Health Systems, World Health Organization, Geneva, Switzerland
| | - Marie-Paule Kieny
- International Institutional Cooperation, Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| |
Collapse
|
6
|
Shcherbik S, Carney P, Pearce N, Stevens J, Dugan VG, Wentworth DE, Bousse T. Monoclonal antibody against N2 neuraminidase of cold adapted A/Leningrad/134/17/57 (H2N2) enables efficient generation of live attenuated influenza vaccines. Virology 2018; 522:65-72. [PMID: 30014859 DOI: 10.1016/j.virol.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/13/2023]
Abstract
Cold adapted influenza virus A/Leningrad/134/17/57 (H2N2) is a reliable master donor virus (Len/17-MDV) for preparing live attenuated influenza vaccines (LAIV). LAIVs are 6:2 reasortants that contain 6 segments of Len/17-MDV and the hemagglutinin (HA) and neuraminidase (NA) of contemporary circulating influenza A viruses. The problem with the classical reassortment procedure used to generate LAIVs is that there is limited selection pressure against NA of the Len/17-MDV resulting in 7:1 reassortants with desired HA only, which are not suitable LAIVs. The monoclonal antibodies (mAb) directed against the N2 of Len/17-MDV were generated. 10C4-8E7 mAb inhibits cell-to-cell spread of viruses containing the Len/17-MDV N2, but not viruses with the related N2 from contemporary H3N2 viruses. 10C4-8E7 antibody specifically inhibited the Len/17-MDV replication in vitro and in ovo but didn't inhibit replication of H3N2 or H1N1pdm09 reassortants. Our data demonstrate that addition of 10C4-8E7 in the classical reassortment improves efficiency of LAIV production.
Collapse
Affiliation(s)
- Svetlana Shcherbik
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Paul Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | | | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Vivien G Dugan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Tatiana Bousse
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States.
| |
Collapse
|
7
|
Yang F, Ma L, Zhou J, Wu Y, Gao J, Song S, Geng X, Guo Q, Li Z, Li W, Liao G, Li Y. Development and identification of a new Vero cell-based live attenuated influenza B vaccine by a modified classical reassortment method. Expert Rev Vaccines 2017; 16:855-863. [PMID: 28581345 DOI: 10.1080/14760584.2017.1337514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND It was to generate a new Vero and cold-adapted live attenuated influenza B vaccine with enough safety and immunogenicity. METHODS According to modified classical reassortment method, the donor strain was B/Yunnan/2/2005Vca(B), and the parental virus strain was B/Brisbane/60/2008wt. After co-infection in Vero cells, the prepared antibody serum inhibited the donor strain growth, and screening conditions inhibited the parental virus growth, which induced the growth of the new reassortant virus B/Brisbane/60/2008Vca(B) grow. Through intraperitoneal injection (i.j.) and intranasal injection (n.j.) we evaluated the safety and immunogenicity of the vaccine. RESULTS A high-yield of the reassortant virus was produced in Vero cells at 25°C, similar to the donor strains. After sequencing, it was found that B/Brisbane/60/2008Vca(B) Hemagglutinin (HA) and Neuraminidase (NA) gene fragments were from B/Brisbane/60/2008wt, while the other 6 gene fragments were from B/Yunnan/2/2005Vca(B). The n.j. immune pathway experiments showed no significant differences between the treatment and the PBS control group with respect to weight changes (P > 0.5). Furthermore, the new strain had a sufficient geometric mean titter (GMT) against B/Brisbane/60/2008wt. CONCLUSION The new reassortant live attenuated influenza B vaccine was safe and having enough immune stimulating ability.
Collapse
Affiliation(s)
- Fan Yang
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China.,b Medical Faculty , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Lei Ma
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Jian Zhou
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Yinjie Wu
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Jingxia Gao
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Shaohui Song
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Xingliang Geng
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Qi Guo
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Zhuofan Li
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Weidong Li
- c The Department of Production Administration, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Guoyang Liao
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Yufeng Li
- d Department of Cardiology , Chinese PLA General Hospital , Beijing , People's Republic of China
| |
Collapse
|
8
|
Kang K, Han S, Hong T, Jeon S, Paek J, Kang JH, Yim DS. Immunogenicity and Safety of Trivalent Split Influenza Vaccine in Healthy Korean Adults with Low Pre-Existing Antibody Levels: An Open Phase I Trial. Yonsei Med J 2016; 57:1354-60. [PMID: 27593862 PMCID: PMC5011266 DOI: 10.3349/ymj.2016.57.6.1354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 12/02/2022] Open
Abstract
PURPOSE A phase I clinical trial was conducted to evaluate the immunogenicity and safety of newly developed egg-cultivated trivalent inactivated split influenza vaccine (TIV) in Korea. MATERIALS AND METHODS The TIV was administered to 43 healthy male adults. Subjects with high pre-existing titers were excluded in a screening step. Immune response was measured by a hemagglutination inhibition (HI) assay. RESULTS The seroprotection rates against A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2) and B/Brisbane/60/2009 were 74.42% [95% confidence interval (CI): 61.38-87.46], 72.09% (95% CI: 58.69-85.50), and 86.05% (95% CI: 75.69-96.40), respectively. Calculated seroconversion rates were 74.42% (95% CI: 61.38-87.46), 74.42% (95% CI: 61.38-87.46), and 79.07% (95% CI: 66.91-91.23), respectively. There were 25 episodes of solicited local adverse events in 21 subjects (47.73%), 21 episodes of solicited general adverse events in 16 subjects (36.36%) and 5 episodes of unsolicited adverse events in 5 subjects (11.36%). All adverse events were grade 1 or 2 and disappeared within three days. CONCLUSION The immunogenicity and safety of TIV established in this phase I trial are sufficient to plan a larger scale clinical trial.
Collapse
Affiliation(s)
- Kyuri Kang
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seunghoon Han
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Taegon Hong
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sangil Jeon
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeongki Paek
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Han Kang
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Seok Yim
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|