1
|
Lungu C, Overmars RJ, Grundeken E, Boers PHM, van der Ende ME, Mesplède T, Gruters RA. Genotypic and Phenotypic Characterization of Replication-Competent HIV-2 Isolated from Controllers and Progressors. Viruses 2023; 15:2236. [PMID: 38005913 PMCID: PMC10675771 DOI: 10.3390/v15112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although some individuals with HIV-2 develop severe immunodeficiency and AIDS-related complications, most may never progress to AIDS. Replication-competent HIV-2 isolated from asymptomatic long-term non-progressors (controllers) have lower replication rates than viruses from individuals who progress to AIDS (progressors). To investigate potential retroviral factors that correlate with disease progression in HIV-2, we sequenced the near full-length genomes of replication-competent viruses previously outgrown from controllers and progressors and used phylogeny to seek genotypic correlates of disease progression. We validated the integrity of all open reading frames and used cell-based assays to study the retroviral transcriptional activity of the long terminal repeats (LTRs) and Tat proteins of HIV-2 from controllers and progressors. Overall, we did not identify genotypic defects that may contribute to HIV-2 non-progression. Tat-induced, LTR-mediated transcription was comparable between viruses from controllers and progressors. Our results were obtained from a small number of participants and should be interpreted accordingly. Overall, they suggest that progression may be determined before or during integration of HIV-2.
Collapse
Affiliation(s)
- Cynthia Lungu
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Ronald J. Overmars
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Esmée Grundeken
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Patrick H. M. Boers
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Marchina E. van der Ende
- Department of Internal Medicine, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Thibault Mesplède
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Rob A. Gruters
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| |
Collapse
|
2
|
Gao C, Ouyang W, Kutza J, Grimm TA, Fields K, Lankford CSR, Schwartzkopff F, Paciga M, Stantchev T, Tiffany L, Strebel K, Clouse KA. Macrophage-Derived Factors with the Potential to Contribute to Pathogenicity of HIV-1 and HIV-2: Role of CCL-2/MCP-1. Viruses 2023; 15:2160. [PMID: 38005838 PMCID: PMC10674259 DOI: 10.3390/v15112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 11/26/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) is known to be less pathogenic than HIV-1. However, the mechanism(s) underlying the decreased HIV-2 pathogenicity is not fully understood. Herein, we report that β-chemokine CCL2 expression was increased in HIV-1-infected human monocyte-derived macrophages (MDM) but decreased in HIV-2-infected MDM when compared to uninfected MDM. Inhibition of CCL2 expression following HIV-2 infection occurred at both protein and mRNA levels. By microarray analysis, quantitative PCR, and Western blotting, we identified that Signal Transducer and Activator of Transcription 1 (STAT1), a critical transcription factor for inducing CCL2 gene expression, was also reduced in HIV-2-infected MDM. Blockade of STAT1 in HIV-infected MDM using a STAT1 inhibitor significantly reduced the production of CCL2. In contrast, transduction of STAT1-expressing pseudo-retrovirus restored CCL2 production in HIV-2-infected MDM. These findings support the concept that CCL2 inhibition in HIV-2-infected MDM is meditated by reduction of STAT1. Furthermore, we showed that STAT1 reduction in HIV-2-infected MDM was regulated by the CUL2/RBX1 ubiquitin E3 ligase complex-dependent proteasome pathway. Knockdown of CUL2 or RBX1 restored the expression of STAT1 and CCL2 in HIV-2-infected MDM. Taken together, our findings suggest that differential regulation of the STAT1-CCL2 axis may be one of the mechanisms underlying the different pathogenicity observed for HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Chunling Gao
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Weiming Ouyang
- Division of Biotechnology Review and Research 2, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Joseph Kutza
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Tobias A. Grimm
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Karen Fields
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Carla S. R. Lankford
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Franziska Schwartzkopff
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Mark Paciga
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Linda Tiffany
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA;
| | - Kathleen A. Clouse
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| |
Collapse
|
3
|
Le Noury DA, Mosebi S, Papathanasopoulos MA, Hewer R. Functional roles of HIV-1 Vpu and CD74: Details and implications of the Vpu-CD74 interaction. Cell Immunol 2015; 298:25-32. [PMID: 26321123 DOI: 10.1016/j.cellimm.2015.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/22/2015] [Indexed: 01/24/2023]
Abstract
HIV-1 Vpu has a variety of functions, including CD4 degradation and the downregulation of MHCII. Downregulation of the MHCII occurs through Vpu binding to the cytoplasmic domain of CD74, the chaperone for antigen presentation. The CD74 cytoplasmic domain also plays a vital role in cell signaling through the activation of an NF-κB signal cascade for the maturation, proliferation and survival of B cells as well as by binding the macrophage inhibitory factor. In view of these functions, it follows that the Vpu-CD74 interaction has multiple downstream consequences for the immune system as it not only impairs foreign antigen presentation but may also have an effect on signal transduction cascades. It is thought that Vpu specifically targets intracellular CD74 while other HIV-1 proteins cannot. Therefore, this protein-protein interaction would be a potential drug target in order to reduce viral persistence. We review the functional importance and specific binding site of Vpu and CD74.
Collapse
Affiliation(s)
- Denise A Le Noury
- Centre for Metal-based Drug Discovery, Mintek, Private Bag X3015, Randburg 2125, South Africa; Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, Private Bag 3, WITS, 2050, South Africa.
| | - Salerwe Mosebi
- Centre for Metal-based Drug Discovery, Mintek, Private Bag X3015, Randburg 2125, South Africa.
| | - Maria A Papathanasopoulos
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, Private Bag 3, WITS, 2050, South Africa.
| | - Raymond Hewer
- Centre for Metal-based Drug Discovery, Mintek, Private Bag X3015, Randburg 2125, South Africa.
| |
Collapse
|
4
|
Trevino A, Soriano V, Poveda E, Parra P, Cabezas T, Caballero E, Roc L, Rodriguez C, Eiros JM, Lopez M, De Mendoza C, Rodriguez C, del Romero J, Tuset C, Marcaida G, Ocete MD, Tuset T, Caballero E, Molina I, Aguilera A, Rodriguez-Calvino JJ, Navarro D, Regueiro B, Benito R, Gil J, Borras M, Ortiz de Lejarazu R, Eiros JM, Manzardo C, Miro JM, Garcia J, Paz I, Calderon E, Leal M, Vallejo A, Abad M, Dronda F, Moreno S, Escudero D, Trigo M, Diz J, Alvarez P, Cortizo S, Garcia-Campello M, Rodriguez-Iglesias M, Hernandez-Betancor A, Martin AM, Ramos JM, Gutierrez F, Rodriguez JC, Gomez-Hernando C, Guelar A, Cilla G, Perez-Trallero E, Lopez-Aldeguer J, Sola J, Fernandez-Pereira L, Niubo J, Hernandez M, Lopez-Lirola AM, Gomez-Sirvent JL, Force L, Cifuentes C, Perez S, Morano L, Raya C, Gonzalez-Praetorius A, Perez JL, Penaranda M, Mena A, Montejo JM, Roc L, Martinez-Sapina A, Viciana I, Cabezas T, Lozano A, Fernandez JM, Garcia Bermejo I, Gaspar G, Garcia R, Gorgolas M, Miralles P, Aldamiz T, Garcia F, Suarez A, Trevino A, Parra P, de Mendoza C, Soriano V. HIV-2 viral tropism influences CD4+ T cell count regardless of viral load. J Antimicrob Chemother 2014; 69:2191-4. [DOI: 10.1093/jac/dku119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Taylor N, Kern JM, Prammer W, Lang A, Haas B, Gisinger M, Zangerle R, Egle A, Greil R, Oberkofler H, Eberle J. Human immunodeficiency virus type 2 infections in Austria. Wien Klin Wochenschr 2014; 126:212-6. [PMID: 24442861 DOI: 10.1007/s00508-013-0493-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/01/2013] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The first case of human immunodeficiency virus type 2 (HIV-2) seropositivity in Austria was confirmed in 1993 in a dually human immunodeficiency virus type 1 (HIV-1)- and HIV-2-infected patient from Ghana, who died in 2001. Before this investigation, no further HIV-2 infection was published. METHODS The aim of this study was to describe HIV-2 epidemiology in Austria, using serological and molecular techniques, and to perform a sequence analysis of the circulating viral strains. RESULTS Six additional cases of HIV-2 were identified from 2000 to 2009. All patients originated from high-prevalence areas. In one patient, the HIV-2 infection was revealed 11 years after initial HIV-1 diagnosis, and further analysis confirmed a dual infection. CONCLUSION The HIV-2 epidemic has its epicentre in West Africa, but sociocultural issues, especially migration, are contributing to the low but continuous worldwide spread of HIV-2. Diagnosis of HIV-2 implies a different therapeutical management to avoid treatment failure and clinical progression. Differential diagnosis of HIV-1 and HIV-2 is complicated due to antibody cross-reactivity, and paradoxical findings (e.g. declining CD4 cell count despite HIV-1 suppression) may require careful reassessment, especially in patients from endemic countries.
Collapse
Affiliation(s)
- Ninon Taylor
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Hospital Salzburg, Muellner Hauptstrasse 48, 5020, Salzburg, Austria,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Research has undergone considerable development in understanding a small subset of human immunodeficiency virus type 1 (HIV-1)-infected, therapy-naive individuals who maintain a favorable course of infection surviving for longer periods of time. Although, viral, host genetic, and immunological factors have been analyzed in many previous studies in order to delineate mechanisms that contribute to non-progressive HIV disease, there appears to be a no clear cut winner and the non-progressive HIV disease in <1% of HIV-infected individuals appears to be a complex interplay between viral and host factors. Therefore, it is important to review them separately to signify their potential contribution to non-progressive HIV disease. With respect to virological features, genomic sequencing of HIV-1 strains derived from long-term non-progressors has shown that some individuals are infected with attenuated strains of HIV-1 and harbor mutations from single nucleotide polymorphisms to large deletions in HIV-1 structure, regulatory, and accessory genes. The elucidation of functional attributes of defective/attenuated HIV strains may provide better understanding of viral pathogenesis and the discovery of new therapeutic strategies against HIV. This review mainly focuses on the defects in viral genes that possibly guide non-progressive HIV disease.
Collapse
Affiliation(s)
- Bin Wang
- Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| |
Collapse
|
7
|
|
8
|
Resistance to antibody neutralization in HIV-2 infection occurs in late stage disease and is associated with X4 tropism. AIDS 2012; 26:2275-84. [PMID: 23151495 DOI: 10.1097/qad.0b013e328359a89d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To characterize the nature and dynamics of the neutralizing antibody (NAb) response and escape in chronically HIV-2 infected patients. METHODS Twenty-eight chronically infected adults were studied over a period of 1-4 years. The neutralizing activity of plasma immunoglobulin G (IgG) antibodies against autologous and heterologous primary isolates was analyzed using a standard assay in TZM-bl cells. Coreceptor usage was determined in ghost cells. The sequence and predicted three-dimensional structure of the C2V3C3 Env region were determined for all isolates. RESULTS Only 50% of the patients consistently produced IgG NAbs to autologous and contemporaneous virus isolates. In contrast, 96% of the patients produced IgG antibodies that neutralized at least two isolates of a panel of six heterologous R5 isolates. Breadth and potency of the neutralizing antibodies were positively associated with the number of CD4(+) T cells and with the titer and avidity of C2V3C3-specific binding IgG antibodies. X4 isolates were obtained only from late stage disease patients and were fully resistant to neutralization. The V3 loop of X4 viruses was longer, had a higher net charge, and differed markedly in secondary structure compared to R5 viruses. CONCLUSION Most HIV-2 patients infected with R5 isolates produce C2V3C3-specific neutralizing antibodies whose potency and breadth decreases as the disease progresses. Resistance to antibody neutralization occurs in late stage disease and is usually associated with X4 viral tropism and major changes in V3 sequence and conformation. Our studies support a model of HIV-2 pathogenesis in which the neutralizing antibodies play a central role and have clear implications for the vaccine field.
Collapse
|
9
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
10
|
Koup RA, Graham BS, Douek DC. The quest for a T cell-based immune correlate of protection against HIV: a story of trials and errors. Nat Rev Immunol 2010; 11:65-70. [PMID: 21164527 DOI: 10.1038/nri2890] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Even before the partial success of a preventive HIV vaccine in a recent Phase III clinical trial, there had been an active research effort to determine one or more immune correlates of protection for HIV infection. This effort has been hampered by the lack of natural protective immunity against HIV. As a result, most of the studies have focused on long-term non-progressive infection or other clinical situations, none of which fully recapitulates protective immunity against HIV. Although this effort has been successful in defining characteristics of T cells in acute and non-progressive HIV infection, and has therefore greatly expanded our knowledge of the immunopathogenesis of AIDS, its success in defining immune correlates of protection is less clear. In this Opinion article we offer a perspective on how successful this effort has been in defining immune correlates of protection that have been, or will be, of use in the development of an HIV vaccine. Our view is that investing in an iterative approach to human vaccine efficacy trials of sufficient size and sampling frequency will improve the likelihood that an immune correlate of vaccine protection will be defined.
Collapse
Affiliation(s)
- Richard A Koup
- Richard A. Koup, Barney S. Graham and Daniel C. Douek are at the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3017, USA
| | | | | |
Collapse
|
11
|
Poropatich K, Sullivan DJ. Human immunodeficiency virus type 1 long-term non-progressors: the viral, genetic and immunological basis for disease non-progression. J Gen Virol 2010; 92:247-68. [PMID: 21106806 DOI: 10.1099/vir.0.027102-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A small subset of human immunodeficiency virus type 1 (HIV-1)-infected, therapy-naive individuals--referred to as long-term non-progressors (LTNPs)--maintain a favourable course of infection, often being asymptomatic for many years with high CD4(+) and CD8(+) T-cell counts (>500 cells μl(-1)) and low plasma HIV-RNA levels (<10 ,000 copies ml(-1)). Research in the field has undergone considerable development in recent years and LTNPs offer a piece of the puzzle in understanding the ways that persons can naturally control HIV-1 infection. Their method of control is based on viral, genetic and immunological components. With respect to virological features, genomic sequencing has shown that some LTNPs are infected with attenuated strains of HIV-1 and harbour mutant nef, vpr, vif or rev genes that contain single nuclear polymorphisms, or less frequently, large deletions, in conserved domains. Studies have also shown that some LTNPs have unique genetic advantages, including heterozygosity for the CCR5-Δ32 polymorphism, and have been found with excitatory mutations that upregulate the production of the chemokines that competitively inhibit HIV-1 binding to CCR5 or CXCR4. Lastly, immunological factors are crucial for providing LTNPs with a natural form of control, the most important being robust HIV-specific CD4(+) and CD8(+) T-cell responses that correlate with lower viral loads. Many LTNPs carry the HLA class I B57 allele that enhances presentation of antigenic peptides on the surface of infected CD4(+) cells to cytotoxic CD8(+) T cells. For these reasons, LTNPs serve as an ideal model for HIV-1 vaccine development due to their natural control of HIV-1 infection.
Collapse
Affiliation(s)
- Kate Poropatich
- The George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | | |
Collapse
|
12
|
Potent and broadly reactive HIV-2 neutralizing antibodies elicited by a vaccinia virus vector prime-C2V3C3 polypeptide boost immunization strategy. J Virol 2010; 84:12429-36. [PMID: 20844029 DOI: 10.1128/jvi.01102-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism.
Collapse
|
13
|
Inhibition of lipid antigen presentation in dendritic cells by HIV-1 Vpu interference with CD1d recycling from endosomal compartments. Blood 2010; 116:1876-84. [PMID: 20530791 DOI: 10.1182/blood-2009-09-243667] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) play an important role in viral infections both as initiators of immunity and as viral targets. Interaction between DCs and the innate-like CD1d-restricted natural killer T (NKT) cells results in the mutual activation of both cells and the subsequent initiation of cellular immune responses. Here, we show that HIV-1 inhibits the surface expression of CD1d in productively infected DCs and identify this as a novel activity of the HIV-1 vpu gene product. Interestingly, the viral protein U (Vpu) does not enhance constitutive CD1d endocytosis or induce rapid CD1d degradation. Instead, the Vpu protein interacts with CD1d and suppresses its recycling from endosomal compartments to the cell surface by retaining CD1d in early endosomes. This interference with the CD1d antigen presentation pathway strongly inhibits the ability of infected DCs to activate CD1d-restricted NKT cells. Given that the interaction with CD1d-expressing DCs is central to the ability of NKT cells to regulate immunity, these data suggest that interference with the CD1d antigen presentation pathway represents an HIV-1 strategy to evade innate cellular immune responses and imply a role for the innate-like CD1d-restricted NKT cells in the host defense against HIV-1.
Collapse
|
14
|
Armstrong-James D, Stebbing J, Scourfield A, Smit E, Ferns B, Pillay D, Nelson M. Clinical outcome in resistant HIV-2 infection treated with raltegravir and maraviroc. Antiviral Res 2010; 86:224-6. [PMID: 20211653 DOI: 10.1016/j.antiviral.2010.02.324] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/19/2010] [Accepted: 02/26/2010] [Indexed: 11/18/2022]
Abstract
Therapy for infection with HIV-2 remains limited. We report an HIV-2-infected patient in whom genotyping demonstrated PI, NRTI and NNRTI resistance, with a subsequent response to raltegravir- and maraviroc-based therapy. Further studies are required to assess the clinical efficacy of maraviroc in HIV-2 infection.
Collapse
|
15
|
Wang X, Viswanath R, Zhao J, Tang S, Hewlett I. Changes in the level of apoptosis-related proteins in Jurkat cells infected with HIV-1 versus HIV-2. Mol Cell Biochem 2009; 337:175-83. [DOI: 10.1007/s11010-009-0297-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 10/08/2009] [Indexed: 11/30/2022]
|
16
|
Plotkin SA. Sang Froid in a time of trouble: is a vaccine against HIV possible? J Int AIDS Soc 2009; 12:2. [PMID: 19187552 PMCID: PMC2647531 DOI: 10.1186/1758-2652-12-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/02/2009] [Indexed: 12/11/2022] Open
Abstract
Since the announcement of the STEP trial results in the past months, we have heard many sober pronouncements on the possibility of an HIV vaccine. On the other hand, optimistic quotations have been liberally used, from Shakespeare's Henry V's "Once more unto the breach, dear friends" to Winston Churchill's definition of success as "going from one failure to another with no loss of enthusiasm". I will forgo optimistic quotations for the phrase "Sang Froid", which translates literally from the French as "cold blood"; what it really means is to avoid panic when things look bad, to step back and coolly evaluate the situation. This is not to counsel easy optimism or to fly in face of the facts, but I believe that while the situation is serious, it is not desperate.I should stipulate at the outset that I am neither an immunologist nor an expert in HIV, but someone who has spent his life in vaccine development. What I will try to do is to provide a point of view from that experience.There is no doubt that the results of STEP were disappointing: not only did the vaccine fail to control viral load, but may have adversely affected susceptibility to infection. But HIV is not the only vaccine to experience difficulties; what lessons can we glean from prior vaccine development?
Collapse
|
17
|
de Silva TI, Cotten M, Rowland-Jones SL. HIV-2: the forgotten AIDS virus. Trends Microbiol 2008; 16:588-95. [PMID: 18964021 DOI: 10.1016/j.tim.2008.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
HIV type 2 (HIV-2), a closely related retrovirus discovered a few years after HIV type 1, causes AIDS in only a minority of infected individuals. Determining why HIV-2 causes asymptomatic infection in most patients could further our understanding of HIV immunopathogenesis. Studies to date have suggested that both enhanced immune responses and lower viral replication could play a role. We summarize the important findings to date and highlight areas that warrant further exploration.
Collapse
Affiliation(s)
- Thushan I de Silva
- Medical Research Council Laboratories, Atlantic Road, PO Box 273, Fajara, The Gambia, West Africa.
| | | | | |
Collapse
|