1
|
Hboub H, Ben Mrid R, Bouchmaa N, Oukkache N, El Fatimy R. An in-depth exploration of snake venom-derived molecules for drug discovery in advancing antiviral therapeutics. Heliyon 2024; 10:e37321. [PMID: 39323826 PMCID: PMC11422003 DOI: 10.1016/j.heliyon.2024.e37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/20/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Snake venom is a cocktail and rich source of various bioactive compounds that have been extensively studied for their potential as pharmaceutical agents due to their diverse chemical structures and wide range of biological activities. In light of the emergency and the re-emergence of viral infectious diseases that threaten human health and economic systems, exploring new fertile and rich fields such as snake venom is an attractive path for anti-viral drug discovery, especially in the lack of effective vaccines. Although 85 % of reported antiviral molecules belong to the phospholipase A2 (PLA2) family, other protein families including L-amino acid oxidases (LAAO), disintegrins, metalloproteases (SVMPs), and cathelicidins have also shown antiviral activity. Thus, in this review, we have highlighted the antiviral properties of compounds derived from snake venom and their mechanisms of action against virus classes like HIV, Coronaviridae, Flaviviridae, and Paramyxoviridae. Although the initial research emphasis has been on Retroviridae (HIV) and Flaviviridae viruses, it is crucial to extend the exploration of the potential of these compounds to other viruses. The utilization of snake venom-derived compounds as antivirals shows significant promise for the development of novel therapeutics to address viral infections. However, a more in-depth investigation is necessary to fully assess the potential of these compounds against other viruses and unveil the mechanisms underlying their action.
Collapse
Affiliation(s)
- Hicham Hboub
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, 20360, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
2
|
Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020; 5:796-812. [PMID: 32367055 DOI: 10.1038/s41564-020-0714-0] [Citation(s) in RCA: 527] [Impact Index Per Article: 131.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Flaviviruses are vector-borne RNA viruses that can emerge unexpectedly in human populations and cause a spectrum of potentially severe diseases including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, congenital abnormalities and fetal death. This epidemiological pattern has occurred numerous times during the last 70 years, including epidemics of dengue virus and West Nile virus, and the most recent explosive epidemic of Zika virus in the Americas. Flaviviruses are now globally distributed and infect up to 400 million people annually. Of significant concern, outbreaks of other less well-characterized flaviviruses have been reported in humans and animals in different regions of the world. The potential for these viruses to sustain epidemic transmission among humans is poorly understood. In this Review, we discuss the basic biology of flaviviruses, their infectious cycles, the diseases they cause and underlying host immune responses to infection. We describe flaviviruses that represent an established ongoing threat to global health and those that have recently emerged in new populations to cause significant disease. We also provide examples of lesser-known flaviviruses that circulate in restricted areas of the world but have the potential to emerge more broadly in human populations. Finally, we discuss how an understanding of the epidemiology, biology, structure and immunity of flaviviruses can inform the rapid development of countermeasures to treat or prevent human infections as they emerge.
Collapse
Affiliation(s)
- Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA.
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Ellwanger JH, Chies JAB. Host immunogenetics in tick-borne encephalitis virus infection-The CCR5 crossroad. Ticks Tick Borne Dis 2019; 10:729-741. [PMID: 30879988 DOI: 10.1016/j.ttbdis.2019.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/18/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
Abstract
The human Tick-borne encephalitis virus (TBEV) infection is a complex event encompassing factors derived from the virus itself, the vectors, the final host, and the environment as well. Classically, genetic traits stand out among the human factors that modify the susceptibility and progression of infectious diseases. However, and although this is a changing scenario, studies evaluating the genetic factors that affect the susceptibility specifically to TBEV infection and TBEV-related diseases are still scarce. There are already some interesting pieces of evidence showing that some genes and polymorphisms have a real impact on TBEV infection. Also, the inflammatory processes involving tick-human interactions began to be understood in greater detail. This review focuses on the immunogenetic and inflammatory aspects concerning tick-host interactions, TBEV infections, and tick-borne encephalitis. Of note, it has been described that polymorphisms in CD209, GSTM1, IL-10, IL-28B, MMP9, OAS2, OAS3, and TLR3 have a statistically significant impact on TBEV infection. Besides, CCR5, its ligands, and the CCR5Δ32 genetic variant seem to have a very important influence on the infection and its immune responses. Taking this information into consideration, a special discussion regarding the effects of CCR5 on TBEV infection and tick-borne encephalitis will be presented. Emerging topics (such as exosomes, evasins, and CCR5 blockers) involving immunological and inflammatory aspects of TBEV-human interactions will also be addressed. Lastly, the current picture of TBEV infection and the importance to address the TBEV-associated problems through the One Health perspective will be discussed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Beyerlein A, Strobl AN, Winkler C, Carpus M, Knopff A, Donnachie E, Ankerst DP, Ziegler AG. Vaccinations in early life are not associated with development of islet autoimmunity in type 1 diabetes high-risk children: Results from prospective cohort data. Vaccine 2017; 35:1735-1741. [PMID: 28268073 DOI: 10.1016/j.vaccine.2017.02.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Vaccinations in early childhood potentially stimulate the immune system and may thus be relevant for the pathogenesis of autoimmune diseases such as type 1 diabetes (T1D). We determined the association of vaccination burden with T1D-associated islet autoimmunity in children with high familial risk followed prospectively from birth. METHODS A total of 20,570 certified vaccination records from 1918 children were correlated with time to onset of T1D-associated islet autoimmunity using Cox regression, considering multiple time periods up until age two years and vaccination types, and adjusting for HLA genotype, sex, delivery mode, season of birth, preterm delivery and maternal T1D status. Additionally, prospective claims data of 295,420 subjects were used to validate associations for the tick-borne encephalitis (TBE) vaccination. RESULTS Most vaccinations were not associated with a significantly increased hazard ratio (HR) for islet autoimmunity (e.g. HR [95% confidence interval]: 1.08 [0.96-1.21] per additional vaccination against measles, mumps and rubella at age 0-24months). TBE vaccinations within the first two years of life were nominally associated with a significantly increased autoimmunity risk (HR: 1.44 [1.06-1.96] per additional vaccination at age 0-24months), but this could not be confirmed with respect to outcome T1D in the validation cohort (HR: 1.02 [0.90-1.16]). CONCLUSIONS We found no evidence that early vaccinations increase the risk of T1D-associated islet autoimmunity development. The potential association with early TBE vaccinations could not be confirmed in an independent cohort and appears to be a false positive finding.
Collapse
Affiliation(s)
- Andreas Beyerlein
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany; Forschergruppe Diabetes der Technischen Universität München, Munich, Germany
| | - Andreas N Strobl
- Department of Mathematics of the Technische Universität München, Munich, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany; Forschergruppe Diabetes der Technischen Universität München, Munich, Germany
| | - Michaela Carpus
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany; Forschergruppe Diabetes der Technischen Universität München, Munich, Germany
| | - Annette Knopff
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany; Forschergruppe Diabetes der Technischen Universität München, Munich, Germany
| | - Ewan Donnachie
- Kassenärztliche Vereinigung Bayerns (Bavarian Association of Statutory Health Insurance Physicians), Munich, Germany
| | - Donna P Ankerst
- Department of Mathematics of the Technische Universität München, Munich, Germany; Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany; Forschergruppe Diabetes der Technischen Universität München, Munich, Germany.
| |
Collapse
|
5
|
Abstract
INTRODUCTION Flaviviruses are major causes of infectious disease. The vast global, social and economic impact due to morbidity and mortality associated with diseases caused by these viruses urgently demands effective therapeutic interventions. There is currently no specific antiviral therapy available for the effective clinical treatment of infections by any of the flaviviridae. Development of more effective vaccines and antiviral agents for the prevention and treatment of most flavivirus infections remains a clear public health priority in the 21st century. AREAS COVERED This review describes some of the recent discoveries in the field of flavivirus inhibitor development, with a particular focus on targeting viral proteins. Emphasis is placed on the advances published during the 2012-2015 period. EXPERT OPINION The field of drug discovery targeting viral proteins has progressed slowly in recent years. New information, particularly on structures, location and mechanisms of action of established protein targets have been reported. There have also been studies on repurposing known drugs as templates for targeting flavivirus proteins and these hits could be promising templates for developing new more potent inhibitors. Further research should be conducted to improve in vitro assays that better reflect the conditions found in cellular environments.
Collapse
Affiliation(s)
- W Mei Kok
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| |
Collapse
|
6
|
Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res 2015; 118:148-58. [PMID: 25842996 DOI: 10.1016/j.antiviral.2015.03.014] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 11/30/2022]
Abstract
The flavivirus NS3 protein is associated with the endoplasmic reticulum membrane via its close interaction with the central hydrophilic region of the NS2B integral membrane protein. The multiple roles played by the NS2B-NS3 protein in the virus life cycle makes it an attractive target for antiviral drug discovery. The N-terminal region of NS3 and its cofactor NS2B constitute the protease that cleaves the viral polyprotein. The NS3 C-terminal domain possesses RNA helicase, nucleoside and RNA triphosphatase activities and is involved both in viral RNA replication and virus particle formation. In addition, NS2B-NS3 serves as a hub for the assembly of the flavivirus replication complex and also modulates viral pathogenesis and the host immune response. Here, we review biochemical and structural advances on the NS2B-NS3 protein, including the network of interactions it forms with NS5 and NS4B and highlight recent drug development efforts targeting this protein. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery.
Collapse
Affiliation(s)
- Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 61 Biopolis Drive, Proteos Building, #07-03, Singapore 138673, Singapore.
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, DUKE-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; UPMC UMRS CR7 - CNRS ERL 8255-INSERM U1135 Centre d'Immunologie et des Maladies Infectieuses, Centre Hospitalier Universitaire Pitié-Salpêtrière, Faculté de Médecine Pierre et Marie Curie, Paris, France.
| |
Collapse
|
7
|
Abstract
Inactivated vaccines have been used for over a century to induce protection against viral pathogens. This established approach of vaccine production is relatively straightforward to achieve and there is an augmented safety profile as compared to their live counterparts. Today, there are six viral pathogens for which licensed inactivated vaccines are available with many more in development. Here, we describe the principles of viral inactivation and the application of these principles to vaccine development. Specifically emphasized are the manufacturing procedure and the accompanying assays, of which assays used for monitoring the inactivation process and preservation of neutralizing epitopes, are pivotal. Novel inactivated vaccines in development and the hurdles they face for licensure are also discussed as well as the (dis)advantages of inactivation over the other vaccine production methodologies.
Collapse
|
8
|
Shepherd SM, Shoff WH. Vaccination for the expatriate and long-term traveler. Expert Rev Vaccines 2014; 13:775-800. [DOI: 10.1586/14760584.2014.913485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Functional interplay among the flavivirus NS3 protease, helicase, and cofactors. Virol Sin 2014; 29:74-85. [PMID: 24691778 DOI: 10.1007/s12250-014-3438-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/19/2014] [Indexed: 12/22/2022] Open
Abstract
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.
Collapse
|
10
|
Kollaritsch H, Paulke-Korinek M, Holzmann H, Hombach J, Bjorvatn B, Barrett A. Vaccines and vaccination against tick-borne encephalitis. Expert Rev Vaccines 2013; 11:1103-19. [PMID: 23151167 DOI: 10.1586/erv.12.86] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tick-borne encephalitis (TBE) is an emerging viral zoonosis and is endemic from Japan, China, Mongolia and Russia, to Central Europe and France. There is no specific treatment and TBE can be fatal. The four licensed prophylactic vaccines are produced according to WHO manufacturing requirements. Large clinical trials and postmarketing surveillance demonstrated safety and efficacy of the two European vaccines. The two Russian vaccines showed their effectiveness in daily use, but limited published data are available on controlled clinical trials. Vaccination recommendations in endemic areas vary significantly. In some countries, public vaccination programs are implemented. The WHO has recently issued recommendations on evidence-based use of TBE vaccines. However, more data are needed regarding safety, efficacy and long-term protection after vaccination.
Collapse
Affiliation(s)
- Herwig Kollaritsch
- Department of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
11
|
Paulke-Korinek M, Kundi M, Laaber B, Brodtraeger N, Seidl-Friedrich C, Wiedermann U, Kollaritsch H. Factors associated with seroimmunity against tick borne encephalitis virus 10 years after booster vaccination. Vaccine 2013; 31:1293-7. [DOI: 10.1016/j.vaccine.2012.12.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/06/2012] [Accepted: 12/24/2012] [Indexed: 11/16/2022]
|
12
|
Havlíková S, Ličková M, Ayllón N, Roller L, Kazimírová M, Slovák M, Moreno-Cid JA, Pérez de la Lastra JM, Klempa B, de la Fuente J. Immunization with recombinant subolesin does not reduce tick infection with tick-borne encephalitis virus nor protect mice against disease. Vaccine 2013; 31:1582-9. [PMID: 23357197 DOI: 10.1016/j.vaccine.2013.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/26/2012] [Accepted: 01/12/2013] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is a growing zoonotic disease caused by tick-borne encephalitis virus (TBEV) infection. Although effective vaccines for TBEV are available, on-going vaccination efforts are insufficient to prevent increase in TBE cases annually. Vaccination with arthropod vector antigens to reduce vector infestations and vector capacity allows control of several vector-borne diseases by targeting their common vector. Subolesin (SUB) is a tick protective antigen that has a role in tick innate immunity and other molecular pathways and has been shown to protect against tick infestations and infection by vector-borne pathogens. However, SUB expression and the effect of SUB immunization have not been evaluated for tick-borne viruses. Herein, we showed that SUB expression is downregulated during Ixodes ricinus tick feeding but induced in ticks infected with TBEV, thus supporting a role for this molecule in tick innate immune response to virus infection. Immunization with recombinant SUB reduced SUB mRNA levels in nymphs co-feeding with infected females and suggested and effect on tick infestations in mice. However, SUB immunization did not reduce tick infection with TBEV nor protect mice against TBE. These results suggested that SUB is not a good candidate antigen for vaccination against TBEV and support the characterization of tick-pathogen interactions to identify mechanisms that could be targeted to reduce TBEV infection and transmission by ticks.
Collapse
Affiliation(s)
- Sabína Havlíková
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Martínez CA, Giulietti AM, Talou JR. Research advances in plant-made flavivirus antigens. Biotechnol Adv 2012; 30:1493-505. [PMID: 22480936 DOI: 10.1016/j.biotechadv.2012.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/14/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022]
Abstract
Outbreaks of flaviviruses such as dengue (DV), yellow fever (YFV), Japanese encephalitis (JEV), tick-borne encephalitis (TBEV) and West Nile (WNV) affect numerous countries around the world. The fast spread of these viruses is the result of increases in the human population, rapid urbanisation and globalisation. While vector control is an important preventive measure against vector-borne diseases, it has failed to prevent the spread of these diseases, particularly in developing countries where the implementation of control measures is intermittent. As antiviral drugs against flaviviruses are not yet available, vaccination remains the most important tool for prevention. Although human vaccines for YFV, TBEV and JEV are available, on-going vaccination efforts are insufficient to prevent infection. No vaccines against DENV and WNV are available. Research advances have provided important tools for flavivirus vaccine development, such as the use of plants as a recombinant antigen production platform. This review summarises the research efforts in this area and highlights why a plant system is considered a necessary alternative production platform for high-tech subunit vaccines.
Collapse
Affiliation(s)
- C A Martínez
- Cátedra de Microbiología Industrial y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, CP 1113, C.A.B.A, Argentina
| | | | | |
Collapse
|
14
|
Fontaine A, Diouf I, Bakkali N, Missé D, Pagès F, Fusai T, Rogier C, Almeras L. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors 2011; 4:187. [PMID: 21951834 PMCID: PMC3197560 DOI: 10.1186/1756-3305-4-187] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 09/28/2011] [Indexed: 01/25/2023] Open
Abstract
The saliva of haematophagous arthropods contains an array of anti-haemostatic, anti-inflammatory and immunomodulatory molecules that contribute to the success of the blood meal. The saliva of haematophagous arthropods is also involved in the transmission and the establishment of pathogens in the host and in allergic responses. This survey provides a comprehensive overview of the pharmacological activity and immunogenic properties of the main salivary proteins characterised in various haematophagous arthropod species. The potential biological and epidemiological applications of these immunogenic salivary molecules will be discussed with an emphasis on their use as biomarkers of exposure to haematophagous arthropod bites or vaccine candidates that are liable to improve host protection against vector-borne diseases.
Collapse
Affiliation(s)
- Albin Fontaine
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Ibrahima Diouf
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Nawal Bakkali
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Dorothée Missé
- Laboratoire de Génétique et Evolution des Maladies infectieuses, UMR 2724 CNRS/IRD, Montpellier, France
| | - Frédéric Pagès
- Unité d'Entomologie Médicale, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Thierry Fusai
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Christophe Rogier
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
- Institut Pasteur de Madagascar, B.P. 1274, Ambohitrakely, 101 Antananarivo, Madagascar
| | - Lionel Almeras
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| |
Collapse
|
15
|
Complete genome sequence analysis of tick-borne encephalitis viruses isolated in northeastern China. Arch Virol 2011; 156:1485-8. [PMID: 21614436 DOI: 10.1007/s00705-011-1031-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/11/2011] [Indexed: 01/21/2023]
Abstract
Tick-borne encephalitis virus (TBEV) causes lethal encephalitis in humans, posing a growing public-health problem in many European and Asian countries. TBEV is currently endemic in northeastern China, but the complete genome sequences of Chinese TBEV strains have not been reported. During a TBE outbreak in 2010 in Mudanjiang City, Heilongjiang Province, China, two TBEV strains were isolated from serum samples of two patients, and the complete sequences were determined and compared with other known TBEV strains. Both Mudanjiang isolates consisted of 10,774 nucleotides and encoded a single open reading frame coding for a polyprotein of 3414 amino acids, and a unique deletion of 364 nucleotides in the 3' untranslated region (UTR) was recorded. Phylogenetic analysis based on the amino acid sequence of the E protein and the nucleotide sequence of the 3'UTR revealed that the Mudanjiang isolates are closely related to the Senzhang and Sofjin-HO strains and belong to the Far Eastern subtype of TBEV. These findings provide insight into the evolutionary relationships among Chinese TBEV isolates and are useful for laboratory diagnosis and vaccine development for TBEV.
Collapse
|
16
|
Wiedermann U. Tick borne encephalitis TBE – Vaccination in non-endemic countries. Travel Med Infect Dis 2010; 8:251-6. [DOI: 10.1016/j.tmaid.2010.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/13/2010] [Indexed: 11/28/2022]
|
17
|
Petri E, Gniel D, Zent O. Tick-borne encephalitis (TBE) trends in epidemiology and current and future management. Travel Med Infect Dis 2010; 8:233-45. [DOI: 10.1016/j.tmaid.2010.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 12/30/2022]
|
18
|
Heyman P, Cochez C, Hofhuis A, van der Giessen J, Sprong H, Porter SR, Losson B, Saegerman C, Donoso-Mantke O, Niedrig M, Papa A. A clear and present danger: tick-borne diseases in Europe. Expert Rev Anti Infect Ther 2010; 8:33-50. [PMID: 20014900 DOI: 10.1586/eri.09.118] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ticks can transmit a variety of viruses, bacteria or parasites that can cause serious infections or conditions in humans and animals. While tick-borne diseases are becoming an increasing and serious problem in Europe, tick-borne diseases are also responsible for major depressions in livestock production and mortality in sub-Saharan Africa, Latin America and Asia. This review will focus on the most important circulating tick-transmitted pathogens in Europe (Borrelia spp., Anaplasma phagocytophilum, Babesia spp., tick-borne encephalitis virus, Rickettsia spp. and Crimean-Congo hemorrhagic fever virus).
Collapse
Affiliation(s)
- Paul Heyman
- Research Laboratory for Vector Borne Diseases, Queen Astrid Military Hospital, Bruynstraat 1, B-1120 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Paulke-Korinek M, Rendi-Wagner P, Kundi M, Laaber B, Wiedermann U, Kollaritsch H. Booster vaccinations against tick-borne encephalitis: 6 Years follow-up indicates long-term protection. Vaccine 2009; 27:7027-30. [DOI: 10.1016/j.vaccine.2009.09.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/03/2009] [Accepted: 09/16/2009] [Indexed: 11/29/2022]
|
20
|
Dana AN. Diagnosis and treatment of tick infestation and tick-borne diseases with cutaneous manifestations. Dermatol Ther 2009; 22:293-326. [PMID: 19580576 DOI: 10.1111/j.1529-8019.2009.01244.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hard and soft ticks may be associated directly or indirectly with a number of dermatoses, both infectious and inflammatory in origin. Morbidity may occur as a result of tick bites, tick toxicosis, and even infestation. These arthropod vectors may transmit life-threatening protozoan, bacterial, rickettsial, and viral diseases with systemic and cutaneous findings. Additionally, ticks may transmit more than one pathogen with subsequent human coinfection. This article reviews the presentation of tick-borne illnesses and the medical management of these diseases. Among others, diseases such as ehrlichiosis, anaplasmosis, babesiosis, tularemia, borrelioses, tick-borne encephalitides, rickettsial spotted fevers, and tick typhus are discussed in this article. The recognition of skin manifestations associated with these diseases is paramount to early diagnosis and treatment initiation.
Collapse
Affiliation(s)
- Ali N Dana
- Department of Dermatology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
21
|
Abstract
BACKGROUND Research on orienteers is useful for assessing the risk of infections associated with physical activity in the forest. In this paper four types of infections are reviewed, and the efficacy of preventive initiatives is discussed. MATERIAL AND METHODS The paper is based on literature retrieved from a non-systemic search in PubMed. RESULTS Hepatitis B infection was more prevalent among orienteers before they were obliged to use protective clothing. In the 1980s, there was an increase of sudden unexpected death among young Swedish orienteers. Bartonella infection was later suggested as an underlying cause. No unexpected deaths have occurred among young orienteers after 1992 when specific advice was given regarding training and competitions. Orienteers do not seem to be affected by lyme borreliosis or tick-borne encephalitis (TBE) more often than others, but only two old studies have been performed. INTERPRETATION Orienteers may be at risk of acquiring infection from lyme borreliosis and TBE in Norway in the future, as the incidence of these contagions is increasing. Norwegian medical personnel should consider TBE vaccination of orienteers and others who wander in areas with a high prevalence of infected ticks.
Collapse
Affiliation(s)
- Knut Hagen
- Nasjonalt kompetansesenter for hodepine, Avdeling for nevrologi og klinisk nevrofysiologi, St. Olavs hospital, 7006 Trondheim.
| |
Collapse
|