1
|
Abstract
Thrombus formation is dependent on the interaction of platelets, leukocytes and endothelial cells as well as proteins of the coagulation cascade. This interaction is tightly controlled by phospho-regulated pathways involving protein kinase CK2. A growing number of studies have demonstrated an important role of this kinase in the regulation of primary and secondary hemostasis. Inhibition of CK2 downregulates the expression of important adhesion molecules on platelets and endothelial cells, such as glycoprotein (GP)IIb/IIIa, P-selectin, von Willebrand factor and vascular cell adhesion molecule. Moreover, the reduced CK2-dependent phosphorylation of different coagulation factors prevents the conversion of fibrinogen to fibrin. Targeting these mechanisms may open the door for the development of novel anti-thrombotic therapies.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Beate M Schmitt
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Matthias W Laschke
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Michael D Menger
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
2
|
Sanchez EF, Flores-Ortiz RJ, Alvarenga VG, Eble JA. Direct Fibrinolytic Snake Venom Metalloproteinases Affecting Hemostasis: Structural, Biochemical Features and Therapeutic Potential. Toxins (Basel) 2017; 9:toxins9120392. [PMID: 29206190 PMCID: PMC5744112 DOI: 10.3390/toxins9120392] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) are predominant in viperid venoms, which provoke hemorrhage and affect hemostasis and thrombosis. P-I class enzymes consist only of a single metalloproteinase domain. Despite sharing high sequence homology, only some of them induce hemorrhage. They have direct fibrin(ogen)olytic activity. Their main biological substrate is fibrin(ogen), whose Aα-chain is degraded rapidly and independently of activation of plasminogen. It is important to understand their biochemical and physiological mechanisms, as well as their applications, to study the etiology of some human diseases and to identify sites of potential intervention. As compared to all current antiplatelet therapies to treat cardiovascular events, the SVMPs have outstanding biochemical attributes: (a) they are insensitive to plasma serine proteinase inhibitors; (b) they have the potential to avoid bleeding risk; (c) mechanistically, they are inactivated/cleared by α2-macroglobulin that limits their range of action in circulation; and (d) few of them also impair platelet aggregation that represent an important target for therapeutic intervention. This review will briefly highlight the structure–function relationships of these few direct-acting fibrinolytic agents, including, barnettlysin-I, isolated from Bothrops barnetti venom, that could be considered as potential agent to treat major thrombotic disorders. Some of their pharmacological advantages are compared with plasmin.
Collapse
Affiliation(s)
- Eladio F Sanchez
- Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, MG, Brazil.
| | - Renzo J Flores-Ortiz
- Graduate Program in Nursing, Federal University of Minas Gerais, Belo Horizonte 30130-100, MG, Brazil.
| | - Valeria G Alvarenga
- Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, MG, Brazil.
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 15, 48149 Muenster, Germany.
| |
Collapse
|
3
|
Platelet adhesion involves a novel interaction between vimentin and von Willebrand factor under high shear stress. Blood 2014; 123:2715-21. [PMID: 24642750 DOI: 10.1182/blood-2013-10-530428] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The interaction between platelet receptor glycoprotein Ibα and the A1 domain of von Willebrand factor (VWF) mediates tethering/translocation of platelets to sites of vascular injury. Unexpectedly, we observed platelets translocating over A1A2A3 domains protein slower than on A1 domain at high shear stress. This observation suggests an additional interaction between A domains and an adhesive receptor. We investigated vimentin because we have data showing the interaction of vimentin with the A2 domain of VWF. Moreover, vimentin is expressed on the platelet surface. This novel interaction was analyzed by using purified VWF, recombinant proteins, anti-vimentin antibodies, parallel flow chamber adhesion assays, flow cytometry, and vimentin-deficient murine platelets. The active form of VWF bound to vimentin, and the purified A2 domain blocked that binding. The interaction of a gain-of-function A1A2A3 mutant with platelet was reduced using anti-vimentin antibody. Platelet adhesion to wild-type (WT) A1A2A3 protein, collagen, and fibrin(ogen) was inhibited (32-75%) by anti-vimentin antibody under high shear stress. Compared with WT mice, platelets from vimentin-deficient mice had a reduced flow-dependent adhesion to both collagen and purified murine VWF. Last, the vimentin knockout mice had a prolonged tail bleeding time. The results describe that platelet vimentin engages VWF during platelet adhesion under high shear stress.
Collapse
|
4
|
Abstract
The contributions by blood cells to pathological venous thrombosis were only recently appreciated. Both platelets and neutrophils are now recognized as crucial for thrombus initiation and progression. Here we review the most recent findings regarding the role of neutrophil extracellular traps (NETs) in thrombosis. We describe the biological process of NET formation (NETosis) and how the extracellular release of DNA and protein components of NETs, such as histones and serine proteases, contributes to coagulation and platelet aggregation. Animal models have unveiled conditions in which NETs form and their relation to thrombogenesis. Genetically engineered mice enable further elucidation of the pathways contributing to NETosis at the molecular level. Peptidylarginine deiminase 4, an enzyme that mediates chromatin decondensation, was identified to regulate both NETosis and pathological thrombosis. A growing body of evidence reveals that NETs also form in human thrombosis and that NET biomarkers in plasma reflect disease activity. The cell biology of NETosis is still being actively characterized and may provide novel insights for the design of specific inhibitory therapeutics. After a review of the relevant literature, we propose new ways to approach thrombolysis and suggest potential prophylactic and therapeutic agents for thrombosis.
Collapse
|
5
|
Maurer E, Tang C, Schaff M, Bourdon C, Receveur N, Ravanat C, Eckly A, Hechler B, Gachet C, Lanza F, Mangin PH. Targeting platelet GPIbβ reduces platelet adhesion, GPIb signaling and thrombin generation and prevents arterial thrombosis. Arterioscler Thromb Vasc Biol 2013; 33:1221-9. [PMID: 23559635 DOI: 10.1161/atvbaha.112.301013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The glycoprotein (GP) Ib-V-IX complex regulates the adhesion, activation, and procoagulant activity of platelets. We previously reported that RAM.1, a rat monoclonal antibody directed against the extracellular domain of mouse GPIbβ, diminished adhesion of platelets and chinese hamster ovary cells transfected with the human GPIb-IX complex to von Willebrand factor under flow conditions. Here, we further evaluated the functional importance of GPIbβ by studying the impact of RAM.1 on GPIb-mediated platelet responses and in vitro and in vivo thrombus formation. APPROACH AND RESULTS We show that RAM.1 dramatically reduced GPIb-mediated filopodia extension of chinese hamster ovary GPIb-IX cells after adhesion to von Willebrand factor. RAM.1 also reduced filopodia extension and GPIb-mediated Ca(2+) signaling after adhesion of mouse platelets to von Willebrand factor. RAM.1 inhibited thrombin generation in platelet-rich plasma without impairing phosphatidylserine exposure. In addition, RAM.1 reduced thrombus formation after perfusion of mouse whole blood over collagen in a shear-dependent manner. This effect was confirmed in vivo, because injection of F(ab)'2 fragments of RAM.1 diminished thrombus formation induced by laser beam injury of mesenteric arterioles and forceps injury of the abdominal aorta. In contrast, RAM.1 F(ab)'2 did not prolong the tail-bleeding time or increase the volume of blood lost. CONCLUSIONS These findings are the first evidence that targeting a subunit other than GPIbα can lead to an antithrombotic effect via the GPIb-V-IX complex. This could represent an alternative way to reduce thrombus formation with a minor impact on hemostasis.
Collapse
Affiliation(s)
- Eric Maurer
- Inserm UMR-S949, Université Université de Strasbourg, Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Brown T, Forouzan O, Shevkoplyas S, Khismatullin D. Histamine reduces GPIbα-mediated adhesion of platelets to TNF-α-activated vascular endothelium. Thromb Res 2013; 131:150-7. [DOI: 10.1016/j.thromres.2012.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/14/2012] [Accepted: 11/29/2012] [Indexed: 01/07/2023]
|
7
|
|
8
|
Sane DC, Streer NP, Owen J. Myocardial necrosis in patients with thrombotic thrombocytopenic purpura: pathophysiology and rationale for specific therapy. Eur J Haematol 2009; 82:83-92. [DOI: 10.1111/j.1600-0609.2008.01172.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Ketch TR, Turner SJ, Sacrinty MT, Lingle KC, Applegate RJ, Kutcher MA, Sane DC. ABO blood types: Influence on infarct size, procedural characteristics and prognosis. Thromb Res 2008; 123:200-5. [PMID: 18378281 DOI: 10.1016/j.thromres.2008.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 01/29/2008] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
|
10
|
Benard SA, Smith TM, Cunningham K, Jacob J, DeSilva T, Lin L, Shaw GD, Kriz R, Kelleher KS. Identification of peptide antagonists to glycoprotein Ibalpha that selectively inhibit von Willebrand factor dependent platelet aggregation. Biochemistry 2008; 47:4674-82. [PMID: 18363340 DOI: 10.1021/bi702428q] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GPIbalpha is an integral membrane protein of the GPIb-IX-V complex found on the platelet surface that interacts with the A1 domain of von Willebrand factor (vWF-A1). The interaction of GPIbalpha with vWF-A1 under conditions of high shear stress is the first step in platelet-driven thrombus formation. Phage display was used to identify peptide antagonists of the GPIbalpha-vWF-A1 interaction. Two nine amino acid cysteine-constrained phage display libraries were screened against GPIbalpha revealing peptides that formed a consensus sequence. A peptide with sequence most representative of the consensus, designated PS-4, was used as the basis for an optimized library. The optimized selection identified additional GPIbalpha binding peptides with sequences nearly identical to the parent peptide. Surface plasmon resonance of the PS-4 parent and two optimized synthetic peptides, OS-1 and OS-2, determined their equilibrium dissociation GPIbalpha binding constants ( K Ds) of 64, 0.74, and 31 nM, respectively. Isothermal calorimetry corroborated the K D of peptide PS-4 with a resulting affinity value of 68 nM. An ELISA demonstrated that peptides PS-4, OS-1, and OS-2 competitively inhibited the interaction between the vWF-A1 domain and GPIbalpha-Fc in a concentration-dependent manner. All three peptides inhibited GPIbalpha-vWF-mediated platelet aggregation induced under high shear conditions using the platelet function analyzer (PFA-100) with full blockade observed at 150 nM for OS-1. In addition, OS-1 blocked ristocetin-induced platelet agglutination of human platelets in plasma with no influence on platelet aggregation induced by several agonists of alternative platelet aggregation pathways, demonstrating that this peptide specifically disrupted the GPIbalpha-vWF-A1 interaction.
Collapse
Affiliation(s)
- Susan Adam Benard
- Departments of Chemical and Screening Sciences and Cardiovascular and Metabolic Disease, Wyeth Research, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hsu CC, Wu WB, Chang YH, Kuo HL, Huang TF. Antithrombotic effect of a protein-type I class snake venom metalloproteinase, kistomin, is mediated by affecting glycoprotein Ib-von Willebrand factor interaction. Mol Pharmacol 2007; 72:984-92. [PMID: 17609416 DOI: 10.1124/mol.107.038018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding of von Willebrand factor (vWF) to platelet glycoprotein (GP) Ib-IX-V mediates platelet activation in the early stage of thrombus formation. Kistomin, a snake venom metalloproteinase (SVMP) purified from venom of Calloselasma rhodostoma, has been shown to inhibit vWF-induced platelet aggregation. However, its action mechanism, structure-function relationship, and in vivo antithrombotic effects are still largely unknown. In the present study, cDNA encoding kistomin precursor was cloned and revealed that kistomin is a P-I class SVMP with only a proteinase domain. Further analysis indicated that kistomin specifically inhibited vWF-induced platelet aggregation through binding and cleavage of platelet GPIbalpha and vWF. Cleavage of platelet GPIbalpha by kistomin resulted in release of 45- and 130-kDa soluble fragments, indicating that kistomin cleaves GPIbalpha at two distinct sites. In parallel, cleavage of vWF by kistomin also resulted in the formation of low-molecular-mass multimers of vWF. In ex vivo and in vivo studies, kistomin cleaved platelet GPIbalpha in whole blood. Moreover, GPIbalpha agonist-induced platelet aggregation ex vivo was inhibited, and tail-bleeding time was prolonged in mice administered kistomin intravenously. Kistomin's in vivo antithrombotic effect was also evidenced by prolonging the occlusion time in mesenteric microvessels of mice. In conclusion, kistomin, a P-I class metalloproteinase, has a relative specificity for GPIbalpha and vWF and its proteolytic activity on GPIbalpha-vWF is responsible for its antithrombotic activity both in vitro and in vivo. Kistomin can be useful as a tool for studying metalloproteinase-substrate interactions and has a potential being developed as an antithrombotic agent.
Collapse
Affiliation(s)
- Chun-Chieh Hsu
- Department of Pharmacology, College of Medicine, National Taiwan University, No1, Sec1, Jen-Ai Rd, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Kroll MH, Feng S. Targeting shear stress-induced platelet activation: is lesion-specific antiplatelet therapy a realistic clinical goal? Expert Rev Cardiovasc Ther 2006; 3:941-51. [PMID: 16181038 DOI: 10.1586/14779072.3.5.941] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Platelets are mediators of physiologic hemostasis and pathologic thrombosis. They operate within distinctive vascular and rheologic microenvironments, and their participation in hemostasis or thrombosis is directed by distinct variables operating within the microenvironment. Thrombosis is not simply too much hemostasis: there is good evidence that triggering mechanisms of platelet aggregation under low shear stress conditions are different from those operating under high shear stress conditions. Such differences are hypothesized to exist in vivo and to separate mechanisms of microvascular hemostasis from mechanisms of arterial thrombosis, such as those involved in myocardial, cerebral and peripheral vascular ischemia and infarction. This separation forms the conceptual basis for the hypothesis that lesion-specific antithrombotic agents might some day be invented that inhibit arterial thrombosis without causing bleeding that arises from impaired hemostasis. The focus of much of the work in this field has been platelet aggregation initiated by shear-dependent von Willebrand factor binding to the platelet glycoprotein Ib-IX-V complex. It is hypothesized that by elucidating molecular mechanisms of platelet activation operating under pathologically elevated shear stresses, targets of lesion-specific therapies will one day be identified for use in clinical syndromes of arterial thrombosis.
Collapse
Affiliation(s)
- Michael H Kroll
- Michael E DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
13
|
Wang Q, Shorten D, Xu X, Shaw GD, Schaub RG, Shea C, Brooks J, Sako D, Wiswall E, Xu J, Szklut P, Patel VS. Effect of von Willebrand Factor on the Pharmacokinetics of Recombinant Human Platelet Glycoprotein Ibα-Immunoglobulin G1 Chimeric Proteins. Pharm Res 2006; 23:1743-9. [PMID: 16850270 DOI: 10.1007/s11095-006-9018-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE Recombinant human platelet glycoprotein Ibalpha-immunoglobulin G1 chimeric proteins (GPIbalpha-Ig) have varying levels of anti-thrombotic activities based on their ability to compete for platelet mediated adhesion to von Willebrand Factor (vWF). Valine substituted GPIbalpha-Ig chimeras, at certain position, increase the binding affinity to vWF over its "wild-type" GPIbalpha-Ig analog. The purpose of this study was to determine the pharmacokinetics of two valine substituted GPIbalpha-Ig chimeras, GPIbalpha-Ig/1V (valine substitution at 239 position) and GPIbalpha-Ig/2V (double valine substitution at 233 and 239 position), in mice, rats and dogs. METHODS Head-to-head comparisons of pharmacokinetics of GPIbalpha-Ig/1V and GPIbalpha-Ig/2V were investigated in rats and dogs after intravenous administration. Since vWF precipitates in the serum but not in plasma preparation, the concentration-time profiles of GPIbalpha-Ig/2V in rats were examined from the same blood samples for determination of matrix effect. The disposition of GPIbalpha-Ig/2V was also compared in vWF-deficient versus wild-type mice. RESULTS For GPIbalpha-Ig/2V, the serum clearances were 2.62+/-0.27 ml/hr/kg in rats and 1.97+/-0.24 ml/hr/kg in dogs. The serum clearances of less potent GPIbalpha-Ig/1V were 1.08+/-0.08 and 0.97+/-0.19 ml/hr/kg in rats and dogs, respectively. In addition, the serum clearance of GPlbalpha-Ig/2V of 1.53 ml/hr/kg in vWF-deficient mice was lower than that in wild-type mice of 2.79 ml/hr/kg. CONCLUSION The difference in disposition for valine substituted forms of GPIbalpha-Ig in laboratory animals are likely affected by their enhanced binding affinity for circulating vWF.
Collapse
Affiliation(s)
- Qin Wang
- Wyeth Research, 1 Burtt Road, Andover, Massachusetts 01810, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Anticalins are a class of engineered ligand-binding proteins that are based on the lipocalin scaffold. The lipocalin protein architecture is characterised by a compact, rigid beta-barrel that supports four structurally hypervariable loops. These loops form a pocket for the specific complexation of differing target molecules. Natural lipocalins occur in human plasma and body fluids, where they usually function in the transport of vitamins, steroids or metabolic compounds. Using targeted mutagenesis of the loop region and biochemical selection techniques, variants with novel ligand specificities, both for low-molecular weight substances and for macromolecular protein targets, can be generated. Due to their small size, typically between 160 and 180 residues, robust tertiary structure and composition of a single polypeptide chain, such 'anticalins' provide several advantages over antibodies concerning economy of production, stability during storage, faster pharmacokinetics and better tissue penetration. At present, anticalins offer three major mechanisms for therapeutic application: (i) as antidotes, by quickly removing toxic or otherwise irritating compounds from the human body; (ii) as antagonists, for example, by binding to cellular receptors and blocking them from interaction with their natural signalling molecules; (iii) as tissue-targeting vehicles, by addressing toxic molecules or enzymes to disease-related cell surface proteins.
Collapse
|
15
|
Abstract
Anticalins are a novel class of engineered ligand-binding proteins that are prepared from lipocalins--conventional plasma proteins in humans--via targeted random mutagenesis and selection against prescribed haptens or antigens. The first anticalins were selected to bind to small ligands, such as the cardioactive drug digoxin. Recently, libraries that also permit the generation of anticalins with high affinities and specificities for protein targets, especially disease-related cell-surface receptors, have been constructed. Anticalins are much smaller than antibodies or their antigen-binding fragments, lack glycosylation as well as immunological effector functions, and consist of a single, stably folded polypeptide chain. Thus, they offer benefits as biopharmaceuticals in several areas of medical therapy, for example as receptor antagonists or as effective antidotes against toxic compounds.
Collapse
|