1
|
Mahmood Janlou MA, Sahebjamee H, Yazdani M, Fozouni L. Structure-based virtual screening and molecular dynamics approaches to identify new inhibitors of Staphylococcus aureus sortase A. J Biomol Struct Dyn 2024; 42:1157-1169. [PMID: 37184111 DOI: 10.1080/07391102.2023.2201863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 05/16/2023]
Abstract
Staphylococcus aureus is a prevalent Gram-positive bacteria leading cause of a wide range of human pathologies. Moreover, antibiotic résistance of pathogenesis bacteria is one of the worldwide health problems. In Gram-positive bacteria, the enzyme of SrtA, is responsible for the anchoring of surface-exposed proteins to the cell wall peptidoglycan. Because of its critical role in Gram-positive bacterial pathogenesis, SrtA is an attractive target for anti-virulence during drug development. To date, some SrtA inhibitors have been discovered most of them being derived from flavonoid compounds, like Myricetin. In order to provide potential hit molecules against SrtA for clinical use, we obtained a total of 293 compounds by performing in silico shape-based screening of compound libraries against Myristin as a reference structure. Employing molecular docking and scoring functions, the top 3 compounds Apigenin, Efloxate, and Compound 8261032 were screened by comparing their docking scores with Myricetin. Furthermore, MD simulations and MM-PBSA binding energy calculation studies revealed that only Compound 8261032 strongly binds to the catalytic core of the SrtA enzyme than Myricetin, and stable behavior was consistently observed in the docking complex. Compound 8261032 showed a good number of hydrogen bonds with SrtA and higher MM-PBSA binding energy when compared to all three molecules. Also, it makes strength interactions with Arg139 and His62, which are critical for SrtA biological activity. This study showed that the development of this inhibitor could be a fundamental strategy against resistant bacteria, but further studies in vitro are needed to confirm this claim.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehr Ali Mahmood Janlou
- Department of Biophysics, Faculty of Biological Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Hassan Sahebjamee
- Department of Biophysics, Faculty of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Leila Fozouni
- Department of Microbiology, Faculty of Biological Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| |
Collapse
|
2
|
Zeng D, Debabov D, Hartsell TL, Cano RJ, Adams S, Schuyler JA, McMillan R, Pace JL. Approved Glycopeptide Antibacterial Drugs: Mechanism of Action and Resistance. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026989. [PMID: 27663982 DOI: 10.1101/cshperspect.a026989] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The glycopeptide antimicrobials are a group of natural product and semisynthetic glycosylated peptides that show antibacterial activity against Gram-positive organisms through inhibition of cell-wall synthesis. This is achieved primarily through binding to the d-alanyl-d-alanine terminus of the lipid II bacterial cell-wall precursor, preventing cross-linking of the peptidoglycan layer. Vancomycin is the foundational member of the class, showing both clinical longevity and a still preferential role in the therapy of methicillin-resistant Staphylococcus aureus and of susceptible Enterococcus spp. Newer lipoglycopeptide derivatives (telavancin, dalbavancin, and oritavancin) were designed in a targeted fashion to increase antibacterial activity, in some cases through secondary mechanisms of action. Resistance to the glycopeptides emerged in delayed fashion and occurs via a spectrum of chromosome- and plasmid-associated elements that lead to structural alteration of the bacterial cell-wall precursor substrates.
Collapse
Affiliation(s)
- Daina Zeng
- Agile Sciences, Raleigh, North Carolina 27606
| | | | - Theresa L Hartsell
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins School of Medicine and Nursing, Baltimore, Maryland 21287
| | - Raul J Cano
- ATCC Center for Translational Microbiology, Union, New Jersey 07083.,Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California 93407
| | - Stacy Adams
- Center for Skin Biology, GlaxoSmithKline, Durham, North Carolina 27703
| | | | - Ronald McMillan
- ATCC Center for Translational Microbiology, Union, New Jersey 07083
| | - John L Pace
- ATCC Center for Translational Microbiology, Union, New Jersey 07083.,STEM Program, Kean University, Union, New Jersey 07083.,Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707
| |
Collapse
|
3
|
Yang Z, Liu Y, Ahn J, Qiao Z, Endres JL, Gautam N, Huang Y, Li J, Zheng J, Alnouti Y, Bayles KW, Li R. Novel fluorinated pyrrolomycins as potent anti-staphylococcal biofilm agents: Design, synthesis, pharmacokinetics and antibacterial activities. Eur J Med Chem 2016; 124:129-137. [PMID: 27565555 DOI: 10.1016/j.ejmech.2016.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus (SA) is a major cause of hospital- and community-associated bacterial infections in the U.S. and around the world. These infections have become increasingly difficult to treat due to the propensity to develop antibiotic resistance and form biofilm. To date, no antibiofilm agents are available for clinical use. To add to the repertoire of antibiotics for clinical use and to provide novel agents for combating both SA and biofilm infections, we previously reported marinopyrroles as potent anti-SA agents. In this study, we used fragment-based and bioisostere approaches to design and synthesize a series of novel fluorinated pyrrolomycins for the first time, performed analyses of their physicochemical and drug-like properties, and investigated structure activity relationships and pharmacokinetics. These promising fluorinated pyrrolomycins demonstrate potent antibacterial activity against SA with favorable drug-like properties and pharmacokinetic profiles. Importantly, these compounds kill staphylococcal biofilm-associated cells with a lack of mammalian cell cytotoxicity and no occurrence of bacterial resistance. Our novel fluorinated pyrrolomycin 4 has a clogP value of 4.1, an MIC of 73 ng/mL, MBC of 4 μg/mL, kill staphylococcal-associated biofilm at 8 μg/mL, bioavailability of 35%, and the elimination half-life of 6.04 h and 6.75 h by intravenous and oral administration, respectively. This is the first report of comprehensive drug discovery studies on pyrrolomycin-based antibiotics.
Collapse
Affiliation(s)
- Zunhua Yang
- UNMC Center for Drug Discovery and Department of Pharmaceutical Sciences, United States
| | - Yan Liu
- UNMC Center for Drug Discovery and Department of Pharmaceutical Sciences, United States
| | - Jongsam Ahn
- Department of Pathology and Microbiology, United States
| | - Zhen Qiao
- UNMC Center for Drug Discovery and Department of Pharmaceutical Sciences, United States
| | | | - Nagsen Gautam
- UNMC Center for Drug Discovery and Department of Pharmaceutical Sciences, United States
| | - Yunlong Huang
- Department of Pharmacology and Experimental Neuroscience, United States
| | - Jerry Li
- UNMC Center for Drug Discovery and Department of Pharmaceutical Sciences, United States
| | - Jialin Zheng
- Department of Pathology and Microbiology, United States; Department of Pharmacology and Experimental Neuroscience, United States
| | - Yazen Alnouti
- UNMC Center for Drug Discovery and Department of Pharmaceutical Sciences, United States
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, United States; Center for Staphylococcal Research, United States
| | - Rongshi Li
- UNMC Center for Drug Discovery and Department of Pharmaceutical Sciences, United States; Center for Staphylococcal Research, United States; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
4
|
Leuthner KD, Buechler KA, Kogan D, Saguros A, Lee HS. Clinical efficacy of dalbavancin for the treatment of acute bacterial skin and skin structure infections (ABSSSI). Ther Clin Risk Manag 2016; 12:931-40. [PMID: 27354809 PMCID: PMC4907732 DOI: 10.2147/tcrm.s86330] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acute bacterial skin and skin structure infections (ABSSSI) are a common disease causing patients to seek treatment through the health care system. With the continued increase of drug-resistant bacterial pathogens, these infections are becoming more difficult to successfully cure. Lipoglycopeptides have unique properties that allow the drug to remain active toward both common and challenging pathogens at the infected site for lengthy periods of time. Dalbavancin, a new lipoglycopeptide, provides two unique dosing regimens for the treatment of ABSSSI. The original regimen of 1,000 mg intravenous infusion followed by a 500 mg intravenous infusion after a week has been shown as safe and effective in multiple, randomized noninferiority trials. These studies also demonstrated that dalbavancin was similar to standard regimens in terms of both safety and tolerability. Recently a single 1,500 mg dose was demonstrated to be equivalent to the dalbavancin two-dose regimen for treating ABSSSI. With the introduction of dalbavancin, clinicians have the option to provide an intravenous antimicrobial agent shown to be as effective as traditional therapies, without requiring admission into the hospitals or prescribing a medication which may not be utilized optimally. Further understanding of dalbavancin and its unusual properties can provide unique treatment situations with potential benefits for both the patient and the overall health care system, which should be further explored.
Collapse
Affiliation(s)
- Kimberly D Leuthner
- Department of Pharmaceutical Services, University Medical Center of Southern Nevada, Las Vegas, NV, USA
| | - Kristin A Buechler
- Department of Pharmaceutical Services, University Medical Center of Southern Nevada, Las Vegas, NV, USA
| | - David Kogan
- Department of Pharmaceutical Services, University Medical Center of Southern Nevada, Las Vegas, NV, USA
| | - Agafe Saguros
- Department of Pharmaceutical Services, University Medical Center of Southern Nevada, Las Vegas, NV, USA
| | - H Stephen Lee
- Roseman University of Health Sciences College of Pharmacy, Henderson, NV, USA
| |
Collapse
|