1
|
Evic V, Soic R, Mocibob M, Kekez M, Houser J, Wimmerová M, Matković-Čalogović D, Gruic-Sovulj I, Kekez I, Rokov-Plavec J. Evolutionarily conserved cysteines in plant cytosolic seryl-tRNA synthetase are important for its resistance to oxidation. FEBS Lett 2023; 597:2975-2992. [PMID: 37804069 DOI: 10.1002/1873-3468.14748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
We have previously identified a unique disulfide bond in the crystal structure of Arabidopsis cytosolic seryl-tRNA synthetase involving cysteines evolutionarily conserved in all green plants. Here, we discovered that both cysteines are important for protein stability, but with opposite effects, and that their microenvironment may promote disulfide bond formation in oxidizing conditions. The crystal structure of the C244S mutant exhibited higher rigidity and an extensive network of noncovalent interactions correlating with its higher thermal stability. The activity of the wild-type showed resistance to oxidation with H2 O2 , while the activities of cysteine-to-serine mutants were impaired, indicating that the disulfide link may enable the protein to function under oxidative stress conditions which can be beneficial for an efficient plant stress response.
Collapse
Affiliation(s)
- Valentina Evic
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ruzica Soic
- Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marko Mocibob
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mario Kekez
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Josef Houser
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Dubravka Matković-Čalogović
- Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ivana Kekez
- Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jasmina Rokov-Plavec
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Miranda ER, Haus JM. Glyoxalase I is a novel target for the prevention of metabolic derangement. Pharmacol Ther 2023; 250:108524. [PMID: 37722607 DOI: 10.1016/j.pharmthera.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Obesity prevalence in the US has nearly tripled since 1975 and a parallel increase in prevalence of type 2 diabetes (T2D). Obesity promotes a myriad of metabolic derangements with insulin resistance (IR) being perhaps the most responsible for the development of T2D and other related diseases such as cardiovascular disease. The precarious nature of IR development is such that it provides a valuable target for the prevention of further disease development. However, the mechanisms driving IR are numerous and complex making the development of viable interventions difficult. The development of metabolic derangement in the context of obesity promotes accumulation of reactive metabolites such as the reactive alpha-dicarbonyl methylglyoxal (MG). MG accumulation has long been appreciated as a marker of disease progression in patients with T2D as well as the development of diabetic complications. However, recent evidence suggests that the accumulation of MG occurs with obesity prior to T2D onset and may be a primary driving factor for the development of IR and T2D. Further, emerging evidence also suggests that this accumulation of MG with obesity may be a result in a loss of MG detoxifying capacity of glyoxalase I. In this review, we will discuss the evidence that posits MG accumulation because of GLO1 attenuation is a novel target mechanism of the development of metabolic derangement. In addition, we will also explore the regulation of GLO1 and the strategies that have been investigated so far to target GLO1 regulation for the prevention and treatment of metabolic derangement.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
3
|
Decker D, Aubert J, Wilczynska M, Kleczkowski LA. Exploring Redox Modulation of Plant UDP-Glucose Pyrophosphorylase. Int J Mol Sci 2023; 24:ijms24108914. [PMID: 37240260 DOI: 10.3390/ijms24108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
UDP-glucose (UDPG) pyrophosphorylase (UGPase) catalyzes a reversible reaction, producing UDPG, which serves as an essential precursor for hundreds of glycosyltransferases in all organisms. In this study, activities of purified UGPases from sugarcane and barley were found to be reversibly redox modulated in vitro through oxidation by hydrogen peroxide or oxidized glutathione (GSSG) and through reduction by dithiothreitol or glutathione. Generally, while oxidative treatment decreased UGPase activity, a subsequent reduction restored the activity. The oxidized enzyme had increased Km values with substrates, especially pyrophosphate. The increased Km values were also observed, regardless of redox status, for UGPase cysteine mutants (Cys102Ser and Cys99Ser for sugarcane and barley UGPases, respectively). However, activities and substrate affinities (Kms) of sugarcane Cys102Ser mutant, but not barley Cys99Ser, were still prone to redox modulation. The data suggest that plant UGPase is subject to redox control primarily via changes in the redox status of a single cysteine. Other cysteines may also, to some extent, contribute to UGPase redox status, as seen for sugarcane enzymes. The results are discussed with respect to earlier reported details of redox modulation of eukaryotic UGPases and regarding the structure/function properties of these proteins.
Collapse
Affiliation(s)
- Daniel Decker
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | - Juliette Aubert
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | | | - Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
4
|
Hong Z, Gong W, Yang J, Li S, Liu Z, Perrett S, Zhang H. Exploration of the cysteine reactivity of human inducible Hsp70 and cognate Hsc70. J Biol Chem 2022; 299:102723. [PMID: 36410435 PMCID: PMC9800336 DOI: 10.1016/j.jbc.2022.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022] Open
Abstract
Hsp70s are multifunctional proteins and serve as the central hub of the protein quality control network. Hsp70s are also related to a number of diseases and have been established as drug targets. Human HspA1A (hHsp70) and HspA8 (hHsc70) are the major cytosolic Hsp70s, and they have both overlapping and distinct functions. hHsp70 contains five cysteine residues, and hHsc70 contains four cysteine residues. Previous studies have shown these cysteine residues can undergo different cysteine modifications such as oxidation or reaction with electrophiles to regulate their function, and hHsp70 and hHsc70 have different cysteine reactivity. To address the mechanism of the differences in cysteine reactivity between hHsp70 and hHsc70, we studied the factors that determine this reactivity by Ellman assay for the quantification of accessible free thiols and NMR analysis for the assessment of structural dynamics. We found the lower cysteine reactivity of hHsc70 is probably due to its lower structural dynamics and the stronger inhibition effect of interaction between the α-helical lid subdomain of the substrate-binding domain (SBDα) and the β-sheet substrate-binding subdomain (SBDβ) on cysteine reactivity of hHsc70. We determined that Gly557 in hHsp70 contributes significantly to the higher structural dynamics and cysteine reactivity of hHsp70 SBDα. Exploring the cysteine reactivity of hHsp70 and hHsc70 facilitates an understanding of the effects of redox reactions and electrophiles on their chaperone activity and regulation mechanisms, and how these differences allow them to undertake distinct cellular roles.
Collapse
Affiliation(s)
- Zhouping Hong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of the Chinese Academy of Sciences, Beijing, China
| | - Sainan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of the Chinese Academy of Sciences, Beijing, China
| | - Zhenyan Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of the Chinese Academy of Sciences, Beijing, China,For correspondence: Hong Zhang; Sarah Perrett
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of the Chinese Academy of Sciences, Beijing, China,For correspondence: Hong Zhang; Sarah Perrett
| |
Collapse
|
5
|
Li X, Zhang T, Day NJ, Feng S, Gaffrey MJ, Qian WJ. Defining the S-Glutathionylation Proteome by Biochemical and Mass Spectrometric Approaches. Antioxidants (Basel) 2022; 11:2272. [PMID: 36421458 PMCID: PMC9687251 DOI: 10.3390/antiox11112272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 08/27/2023] Open
Abstract
Protein S-glutathionylation (SSG) is a reversible post-translational modification (PTM) featuring the conjugation of glutathione to a protein cysteine thiol. SSG can alter protein structure, activity, subcellular localization, and interaction with small molecules and other proteins. Thus, it plays a critical role in redox signaling and regulation in various physiological activities and pathological events. In this review, we summarize current biochemical and analytical approaches for characterizing SSG at both the proteome level and at individual protein levels. To illustrate the mechanism underlying SSG-mediated redox regulation, we highlight recent examples of functional and structural consequences of SSG modifications. Finally, we discuss the analytical challenges in characterizing SSG and the thiol PTM landscape, future directions for understanding of the role of SSG in redox signaling and regulation and its interplay with other PTMs, and the potential role of computational approaches to accelerate functional discovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
6
|
Chen X, Zhang J, Li H, Liu W, Xi Y, Liu X. A Comprehensive Comparison of Different Selenium Supplements: Mitigation of Heat Stress and Exercise Fatigue-Induced Liver Injury. Front Nutr 2022; 9:917349. [PMID: 35634369 PMCID: PMC9133842 DOI: 10.3389/fnut.2022.917349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
This study aimed to compare the protective effects of different selenium supplements against heat stress and exercise fatigue-induced liver injury and to investigate the potential mechanisms of action. Selenium-enriched soybean protein (SePro), selenium-enriched soybean peptides (SePPs), and selenomethionine (SeMet) are organic selenium supplements in which selenium replaces the sulfur in their sulfur-containing amino acids. Common peptides (PPs) are obtained by enzymatic hydrolysis of soybean protein which was extracted from common soybean. The SePPs with higher hydrolysis degree and selenium retention were isolated via alkaline solubilization and acid precipitation and the enzymatic hydrolysis of alkaline protease, neutral protease, and papain. The results showed that SePPs could significantly increase the antioxidant levels in rats, inhibit lipid peroxidation, and reduce liver enzyme levels in rat serum, while the histological findings indicated that the inflammatory cell infiltration in the liver tissue was reduced, and new cells appeared after treatment with SePPs. Moreover, SePPs could increase glutathione (GSH) and GSH peroxidase (GSH-Px) in the liver, as well as protect the liver by regulating the NF-κB/IκB pathway, prevent interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) release in the liver. The SePPs displayed higher antioxidant and anti-inflammatory activity in vivo than SePro, SeMet, Sodium selenite (Na2SeO3), and PPs. Therefore, SePPs could be used as a priority selenium resource to develop heatstroke prevention products or nutritional supplements.
Collapse
|
7
|
Abstract
Cellular redox homeostasis is precisely balanced by generation and elimination of reactive oxygen species (ROS). ROS are not only capable of causing oxidation of proteins, lipids and DNA to damage cells but can also act as signaling molecules to modulate transcription factors and epigenetic pathways that determine cell survival and death. Hsp70 proteins are central hubs for proteostasis and are important factors to ameliorate damage from different kinds of stress including oxidative stress. Hsp70 members often participate in different cellular signaling pathways via their clients and cochaperones. ROS can directly cause oxidative cysteine modifications of Hsp70 members to alter their structure and chaperone activity, resulting in changes in the interactions between Hsp70 and their clients or cochaperones, which can then transfer redox signals to Hsp70-related signaling pathways. On the other hand, ROS also activate some redox-related signaling pathways to indirectly modulate Hsp70 activity and expression. Post-translational modifications including phosphorylation together with elevated Hsp70 expression can expand the capacity of Hsp70 to deal with ROS-damaged proteins and support antioxidant enzymes. Knowledge about the response and role of Hsp70 in redox homeostasis will facilitate our understanding of the cellular knock-on effects of inhibitors targeting Hsp70 and the mechanisms of redox-related diseases and aging.
Collapse
|
8
|
Molina L, Segura A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. PLANTS (BASEL, SWITZERLAND) 2021; 10:2305. [PMID: 34834668 PMCID: PMC8622723 DOI: 10.3390/plants10112305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 05/17/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Environmental Protection, Estación Experimental del Zaidín, C.S.I.C., Calle Profesor Albareda 1, 18008 Granada, Spain;
| | | |
Collapse
|
9
|
Zou X, Ahmad MI, Zhao D, Zhang M, Li C. Glutaredoxin1 knockout promotes high-fat diet-induced obesity in male mice but not in female ones. Food Funct 2021; 12:7415-7427. [PMID: 34190288 DOI: 10.1039/d1fo01241j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study aims to explore how a high-fat diet and glutaredoxin1 (Glrx1) deficiency affect the development of obesity in male and female mice. A high-fat diet induced great differences in calorie intake and body weight gain between male and female mice; furthermore, the Glrx1 deficiency made male mice more sensitive to a high-fat diet than females. Male mice had higher glucose intolerance, and Glrx1 deficiency aggravated gender differences in glucose intolerance. Glrx1 deficiency aggravated high-fat diet-induced hyperlipidemia. The mRNA levels of HMGCR, Srebf-1c, Srebf-2, CD36, FASN and SCD1 were consistently lower in females than in males. Glrx1 deficiency exacerbated high-fat diet induced liver injury and oxidative stress. Diet but not gender or genotype altered the composition of gut microbiota. These findings provide a new insight into the different susceptibilities to obesity caused by a high-fat diet between males and females.
Collapse
Affiliation(s)
- Xiaoyu Zou
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Nanjing Agricultural University, Nanjing 210095, P.R. China.
| | | | | | | | | |
Collapse
|
10
|
Yang J, Zhang H, Gong W, Liu Z, Wu H, Hu W, Chen X, Wang L, Wu S, Chen C, Perrett S. S-Glutathionylation of human inducible Hsp70 reveals a regulatory mechanism involving the C-terminal α-helical lid. J Biol Chem 2020; 295:8302-8324. [PMID: 32332101 PMCID: PMC7294093 DOI: 10.1074/jbc.ra119.012372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/13/2020] [Indexed: 12/23/2022] Open
Abstract
Heat shock protein 70 (Hsp70) proteins are a family of ancient and conserved chaperones. Cysteine modifications have been widely detected among different Hsp70 family members in vivo, but their effects on Hsp70 structure and function are unclear. Here, we treated HeLa cells with diamide, which typically induces disulfide bond formation except in the presence of excess GSH, when glutathionylated cysteines predominate. We show that in these cells, HspA1A (hHsp70) undergoes reversible cysteine modifications, including glutathionylation, potentially at all five cysteine residues. In vitro experiments revealed that modification of cysteines in the nucleotide-binding domain of hHsp70 is prevented by nucleotide binding but that Cys-574 and Cys-603, located in the C-terminal α-helical lid of the substrate-binding domain, can undergo glutathionylation in both the presence and absence of nucleotide. We found that glutathionylation of these cysteine residues results in unfolding of the α-helical lid structure. The unfolded region mimics substrate by binding to and blocking the substrate-binding site, thereby promoting intrinsic ATPase activity and competing with binding of external substrates, including heat shock transcription factor 1 (Hsf1). Thus, post-translational modification can alter the structure and regulate the function of hHsp70.
Collapse
Affiliation(s)
- Jie Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China .,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Zhenyan Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Huiwen Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Wanhui Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Xinxin Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China .,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China.,Beijing Institute for Brain Disorders, Youanmen, Beijing, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China .,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| |
Collapse
|
11
|
Abstract
Redox proteomics is a field of proteomics that is concerned with the characterization of the oxidation state of proteins to gain information about their modulated structure, function, activity, and involvement in different physiological pathways. Oxidative modifications of proteins have been shown to be implicated in normal physiological processes of cells as well as in pathomechanisms leading to the development of cancer, diabetes, neurodegenerative diseases, and some rare hereditary metabolic diseases, like classic galactosemia. Reactive oxygen species generate a variety of reversible and irreversible modifications in amino acid residue side chains and within the protein backbone. These oxidative post-translational modifications (Ox-PTMs) can participate in the activation of signal transduction pathways and mediate the toxicity of harmful oxidants. Thus the application of advanced redox proteomics technologies is important for gaining insights into molecular mechanisms of diseases. Mass-spectrometry-based proteomics is one of the most powerful methods that can be used to give detailed qualitative and quantitative information on protein modifications and allows us to characterize redox proteomes associated with diseases. This Review illustrates the role and biological consequences of Ox-PTMs under basal and oxidative stress conditions by focusing on protein carbonylation and S-glutathionylation, two abundant modifications with an impact on cellular pathways that have been intensively studied during the past decade.
Collapse
Affiliation(s)
- Atef Mannaa
- Borg AlArab Higher Institute of Engineering and Technology , New Borg AlArab City , Alexandria , Egypt
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty , University of Cologne , Joseph-Stelzmann-Str. 52 , 50931 Cologne , Germany
| |
Collapse
|
12
|
Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants. 3 Biotech 2019; 9:395. [PMID: 31656733 DOI: 10.1007/s13205-019-1924-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Plants encounter a variety of adverse environmental conditions, such as high salinity, drought, extreme heat/cold and heavy metals contamination (abiotic stress) or attack of various pathogens (biotic stress). These detrimental environmental factors enhanced the ROS production such as singlet oxygen (1O2), superoxide (O2 •-), hydrogen peroxide (H2O2) and hydroxyl radicals (OH•). ROS are highly reactive and directly target several cellular molecules and metabolites, which lead to severe cellular dysfunction. Plants respond to oxidative damages by activating antioxidant machinery to trigger signalling cascades for stress tolerance. H2O2 signalling balances the plant metabolism through cross-talk with other signals and plant hormones during growth, development and stress responses. H2O2 facilitates the regulation of different stress-responsive transcription factors (TFs) including NAC, Zinc finger, WRKY, ERF, MYB, DREB and bZIP as both upstream and downstream events during stress signalling. The present review focuses on the biological synthesis of the H2O2 and its effect on the upregulation of kinase genes and stress related TFs for imparting stress tolerance.
Collapse
|
13
|
Abstract
Significance: Redox homeostasis is finely tuned and governed by distinct intracellular mechanisms. The dysregulation of this either by external or internal events is a fundamental pathophysiologic base for many pulmonary diseases. Recent Advances: Based on recent discoveries, it is increasingly clear that cellular redox state and oxidation of signaling molecules are critical modulators of lung disease and represent a final common pathway that leads to poor respiratory outcomes. Critical Issues: Based on the wide variety of stimuli that alter specific redox signaling pathways, improved understanding of the disease and patient-specific alterations are needed for the development of therapeutic targets. Further Directions: For the full comprehension of redox signaling in pulmonary disease, it is essential to recognize the role of reactive oxygen intermediates in modulating biological responses. This review summarizes current knowledge of redox signaling in pulmonary development and pulmonary vascular disease.
Collapse
Affiliation(s)
- Gaston Ofman
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Trent E Tipple
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Drought-mitigating Pseudomonas putida GAP-P45 modulates proline turnover and oxidative status in Arabidopsis thaliana under water stress. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1366-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Yang F, Yi M, Liu Y, Wang Q, Hu Y, Deng H. Glutaredoxin-1 Silencing Induces Cell Senescence via p53/p21/p16 Signaling Axis. J Proteome Res 2018; 17:1091-1100. [DOI: 10.1021/acs.jproteome.7b00761] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fan Yang
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meiqi Yi
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Liu
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingtao Wang
- Beijing Chaoyang Hospital Affiliated to Capital Medical University, Chaoyang District, Beijing 100020, China
| | - Yadong Hu
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Renmin South Road, Chengdu 610000, China
| | - Haiteng Deng
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:856-867. [PMID: 27801967 DOI: 10.1111/tpj.13299] [Citation(s) in RCA: 1124] [Impact Index Per Article: 140.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) play a key role in the acclimation process of plants to abiotic stress. They primarily function as signal transduction molecules that regulate different pathways during plant acclimation to stress, but are also toxic byproducts of stress metabolism. Because each subcellular compartment in plants contains its own set of ROS-producing and ROS-scavenging pathways, the steady-state level of ROS, as well as the redox state of each compartment, is different at any given time giving rise to a distinct signature of ROS levels at the different compartments of the cell. Here we review recent studies on the role of ROS in abiotic stress in plants, and propose that different abiotic stresses, such as drought, heat, salinity and high light, result in different ROS signatures that determine the specificity of the acclimation response and help tailor it to the exact stress the plant encounters. We further address the role of ROS in the acclimation of plants to stress combination as well as the role of ROS in mediating rapid systemic signaling during abiotic stress. We conclude that as long as cells maintain high enough energy reserves to detoxify ROS, ROS is beneficial to plants during abiotic stress enabling them to adjust their metabolism and mount a proper acclimation response.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Rosa M Rivero
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario Espinardo, Ed. 25, 30100, Espinardo, Murcia, Spain
| | - Eduardo Blumwald
- Department of Plant Sciences, Mail Stop 5, University of California, 1 Shields Ave, Davis, CA, 95616, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| |
Collapse
|
17
|
Pilo AL, Zhao F, McLuckey SA. Gas-Phase Oxidation via Ion/Ion Reactions: Pathways and Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:991-1004. [PMID: 28050870 PMCID: PMC5438755 DOI: 10.1007/s13361-016-1554-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/31/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
Here, we provide an overview of pathways available upon the gas-phase oxidation of peptides and DNA via ion/ion reactions and explore potential applications of these chemistries. The oxidation of thioethers (i.e., methionine residues and S-alkyl cysteine residues), disulfide bonds, S-nitrosylated cysteine residues, and DNA to the [M+H+O]+ derivative via ion/ion reactions with periodate and peroxymono-sulfate anions is demonstrated. The oxidation of neutral basic sites to various oxidized structures, including the [M+H+O]+, [M-H]+, and [M-H-NH3]+ species, via ion/ion reactions is illustrated and the oxidation characteristics of two different oxidizing reagents, periodate and persulfate anions, are compared. Lastly, the highly efficient generation of molecular radical cations via ion/ion reactions with sulfate radical anion is summarized. Activation of the newly generated molecular radical peptide cations results in losses of various neutral side chains, several of which generate dehydroalanine residues that can be used to localize the amino acid from which the dehydroalanine was generated. The chemistries presented herein result in a diverse range of structures that can be used for a variety of applications, including the identification and localization of S-alkyl cysteine residues, the oxidative cleavage of disulfide bonds, and the generation of molecular radical cations from even-electron doubly protonated peptides. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alice L Pilo
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Feifei Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
18
|
Grabsztunowicz M, Koskela MM, Mulo P. Post-translational Modifications in Regulation of Chloroplast Function: Recent Advances. FRONTIERS IN PLANT SCIENCE 2017; 8:240. [PMID: 28280500 PMCID: PMC5322211 DOI: 10.3389/fpls.2017.00240] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 05/08/2023]
Abstract
Post-translational modifications (PTMs) of proteins enable fast modulation of protein function in response to metabolic and environmental changes. Phosphorylation is known to play a major role in regulating distribution of light energy between the Photosystems (PS) I and II (state transitions) and in PSII repair cycle. In addition, thioredoxin-mediated redox regulation of Calvin cycle enzymes has been shown to determine the efficiency of carbon assimilation. Besides these well characterized modifications, recent methodological progress has enabled identification of numerous other types of PTMs in various plant compartments, including chloroplasts. To date, at least N-terminal and Lys acetylation, Lys methylation, Tyr nitration and S-nitrosylation, glutathionylation, sumoylation and glycosylation of chloroplast proteins have been described. These modifications impact DNA replication, control transcriptional efficiency, regulate translational machinery and affect metabolic activities within the chloroplast. Moreover, light reactions of photosynthesis as well as carbon assimilation are regulated at multiple levels by a number of PTMs. It is likely that future studies will reveal new metabolic pathways to be regulated by PTMs as well as detailed molecular mechanisms of PTM-mediated regulation.
Collapse
Affiliation(s)
| | | | - Paula Mulo
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|
19
|
Allan KM, Loberg MA, Chepngeno J, Hurtig JE, Tripathi S, Kang MG, Allotey JK, Widdershins AH, Pilat JM, Sizek HJ, Murphy WJ, Naticchia MR, David JB, Morano KA, West JD. Trapping redox partnerships in oxidant-sensitive proteins with a small, thiol-reactive cross-linker. Free Radic Biol Med 2016; 101:356-366. [PMID: 27816612 PMCID: PMC5154803 DOI: 10.1016/j.freeradbiomed.2016.10.506] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/14/2016] [Accepted: 10/27/2016] [Indexed: 12/15/2022]
Abstract
A broad range of redox-regulated proteins undergo reversible disulfide bond formation on oxidation-prone cysteine residues. Heightened reactivity of the thiol groups in these cysteines also increases susceptibility to modification by organic electrophiles, a property that can be exploited in the study of redox networks. Here, we explored whether divinyl sulfone (DVSF), a thiol-reactive bifunctional electrophile, cross-links oxidant-sensitive proteins to their putative redox partners in cells. To test this idea, previously identified oxidant targets involved in oxidant defense (namely, peroxiredoxins, methionine sulfoxide reductases, sulfiredoxin, and glutathione peroxidases), metabolism, and proteostasis were monitored for cross-link formation following treatment of Saccharomyces cerevisiae with DVSF. Several proteins screened, including multiple oxidant defense proteins, underwent intermolecular and/or intramolecular cross-linking in response to DVSF. Specific redox-active cysteines within a subset of DVSF targets were found to influence cross-linking; in addition, DVSF-mediated cross-linking of its targets was impaired in cells first exposed to oxidants. Since cross-linking appeared to involve redox-active cysteines in these proteins, we examined whether potential redox partners became cross-linked to them upon DVSF treatment. Specifically, we found that several substrates of thioredoxins were cross-linked to the cytosolic thioredoxin Trx2 in cells treated with DVSF. However, other DVSF targets, like the peroxiredoxin Ahp1, principally formed intra-protein cross-links upon DVSF treatment. Moreover, additional protein targets, including several known to undergo S-glutathionylation, were conjugated via DVSF to glutathione. Our results indicate that DVSF is of potential use as a chemical tool for irreversibly trapping and discovering thiol-based redox partnerships within cells.
Collapse
Affiliation(s)
- Kristin M Allan
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Matthew A Loberg
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Juliet Chepngeno
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jennifer E Hurtig
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Susmit Tripathi
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Min Goo Kang
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jonathan K Allotey
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Afton H Widdershins
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jennifer M Pilat
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Herbert J Sizek
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Wesley J Murphy
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Matthew R Naticchia
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Joseph B David
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States.
| |
Collapse
|
20
|
Ghoshal N, Sharma S, Banerjee A, Kurkalang S, Raghavan SC, Chatterjee A. Influence of reduced glutathione on end-joining of DNA double-strand breaks: Cytogenetical and molecular approach. Mutat Res 2016; 795:1-9. [PMID: 27883910 DOI: 10.1016/j.mrfmmm.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/06/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022]
Abstract
Radiation induced DNA double-strand breaks (DSB) are the major initial lesions whose misrejoining may lead to exchange aberrations. However, the role of glutathione (GSH), a major cellular thiol, in regulating cell's sensitivity to DNA damaging agents is not well understood. Influence of endogenous GSH on the efficiency of X-rays and bleomycin (Blem) induced DNA DSBs end-joining has been tested here cytogenetically, in human lymphocytes and Hct116 cells. In another approach, oligomeric DNA (75bp) containing 5'-compatible and non-compatible overhangs mimicking the endogenous DSB were for rejoining in presence of cell-free extracts from cells having different endogenous GSH levels. Frequency of aberrations, particularly exchange aberrations, was significantly increased when Blem was combined with radiation. The exchange aberration frequency was further enhanced when combined treatment was given at 4°C since DNA lesions are poorly repaired at 4°C so that a higher number of DNA breaks persist and interact when shifted from 4°C to 37°C. The exchange aberrations increased further when the combined treatment was given to Glutathione-ester (GE) pre-treated cells, indicating more frequent rejoining of DNA lesions in presence of higher cellular GSH. This is further supported by the drastic reduction in frequency of exchange aberrations but significant increase in incidences of deletions when combined treatment was given to GSH-depleted cells. End-joining efficiency of DNA DSBs with compatible ends was better than for non-compatible ends. End-joining efficiency of testicular and MCF7 cell extracts was better than that of lungs and Hct116 cells. Cell extract made from GE-treated MCF-7 cells provided more efficient end-joining than from untreated and GSH-depleted cells. However, direct addition of GSH to the cell-free extracts showed considerable reduction in end-joining efficiency. Present data indicate that higher endogenous GSH favours rejoining of DNA DSBs (both restitution and illegitimate reunion) which in turn produce more exchange aberrations.
Collapse
Affiliation(s)
- Nitin Ghoshal
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022, India
| | - Sheetal Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Atanu Banerjee
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022, India
| | - Sillarine Kurkalang
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Anupam Chatterjee
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022, India.
| |
Collapse
|
21
|
Evidence for a role for the putative Drosophila hGRX1 orthologue in copper homeostasis. Biometals 2016; 29:705-13. [PMID: 27379771 DOI: 10.1007/s10534-016-9946-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022]
Abstract
Glutaredoxins are a family of small molecular weight proteins that have a central role in cellular redox regulation. Human GRX1 (hGRX1) has also been shown to play an integral role in copper homeostasis by regulating the redox activity of the metalated sites of copper chaperones such as ATOX1 and SOD1, and the copper efflux proteins ATP7A and ATP7B. To further elucidate the role of hGRX1 in copper homeostasis, we examined the impact of RNA interference-mediated knockdown of CG6852, a putative Drosophila orthologue of hGRX1. CG6852 shares ~41 % amino acid identity with hGRX1 and key functional domains including the metal-binding CXXC motif are conserved between the two proteins. Knockdown of CG6852 in the adult midline caused a thoracic cleft and reduced scutellum, phenotypes that were exacerbated by additional knockdown of copper uptake transporters Ctr1A and Ctr1B. Knockdown of CG6852 in the adult eye enhanced a copper-deficiency phenotype caused by Ctr1A knockdown while ubiquitous knockdown of CG6852 resulted a mild systemic copper deficiency. Therefore we conclude that CG6852 is a putative orthologue of hGRX1 and may play an important role in Drosophila copper homeostasis.
Collapse
|
22
|
Loi VV, Rossius M, Antelmann H. Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol 2015; 6:187. [PMID: 25852656 PMCID: PMC4360819 DOI: 10.3389/fmicb.2015.00187] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 12/31/2022] Open
Abstract
Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH) present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while Actinomycetes produce the related redox buffer mycothiol (MSH). In eukaryotes, proteins are post-translationally modified to S-glutathionylated proteins under conditions of oxidative stress. S-glutathionylation has emerged as major redox-regulatory mechanism in eukaryotes and protects active site cysteine residues against overoxidation to sulfonic acids. First studies identified S-glutathionylated proteins also in Gram-negative bacteria. Advances in mass spectrometry have further facilitated the identification of protein S-bacillithiolations and S-mycothiolation as BSH- and MSH-mixed protein disulfides formed under oxidative stress in Firmicutes and Actinomycetes, respectively. In Bacillus subtilis, protein S-bacillithiolation controls the activities of the redox-sensing OhrR repressor and the methionine synthase MetE in vivo. In Corynebacterium glutamicum, protein S-mycothiolation was more widespread and affected the functions of the maltodextrin phosphorylase MalP and thiol peroxidase (Tpx). In addition, novel bacilliredoxins (Brx) and mycoredoxins (Mrx1) were shown to function similar to glutaredoxins in the reduction of BSH- and MSH-mixed protein disulfides. Here we review the current knowledge about the functions of the bacterial thiol-redox buffers glutathione, bacillithiol, and mycothiol and the role of protein S-thiolation in redox regulation and thiol protection in model and pathogenic bacteria.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Martina Rossius
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Haike Antelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| |
Collapse
|
23
|
Lin JCY, Chiang BY, Chou CC, Chen TC, Chen YJ, Chen YJ, Lin CH. Glutathionylspermidine in the modification of protein SH groups: the enzymology and its application to study protein glutathionylation. Molecules 2015; 20:1452-74. [PMID: 25599150 PMCID: PMC6272389 DOI: 10.3390/molecules20011452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/15/2014] [Indexed: 11/29/2022] Open
Abstract
Cysteine is very susceptible to reactive oxygen species. In response; posttranslational thiol modifications such as reversible disulfide bond formation have arisen as protective mechanisms against undesired in vivo cysteine oxidation. In Gram-negative bacteria a major defense mechanism against cysteine overoxidation is the formation of mixed protein disulfides with low molecular weight thiols such as glutathione and glutathionylspermidine. In this review we discuss some of the mechanistic aspects of glutathionylspermidine in prokaryotes and extend its potential use to eukaryotes in proteomics and biochemical applications through an example with tissue transglutaminase and its S-glutathionylation.
Collapse
Affiliation(s)
- Jason Ching-Yao Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Bing-Yu Chiang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Tzu-Chieh Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| |
Collapse
|
24
|
Morielli T, O'Flaherty C. Oxidative stress impairs function and increases redox protein modifications in human spermatozoa. Reproduction 2015; 149:113-23. [PMID: 25385721 PMCID: PMC5489333 DOI: 10.1530/rep-14-0240] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative stress, generated by excessive reactive oxygen species (ROS) or decreased antioxidant defenses (and possibly both), is associated with male infertility. Oxidative stress results in redox-dependent protein modifications, such as tyrosine nitration and S-glutathionylation. Normozoospermic sperm samples from healthy individuals were included in this study. Samples were incubated with increasing concentrations (0-5 mM) of exogenous hydrogen peroxide, tert-butyl hydroperoxide, or diethylamine NONOate (DA-NONOate, a nitric oxide (NO∙) donor) added to the medium. Spermatozoa treated with or without ROS were incubated under capacitating conditions and then levels of tyrosine phosphorylation and percentage of acrosome reaction (AR) induced by lysophosphatidylcholine were determined. Modified sperm proteins from cytosolic, triton-soluble, and triton-insoluble fractions were analyzed by SDS-PAGE immunoblotting and immunocytochemistry with anti-glutathione and anti-nitrotyrosine antibodies. Levels of S-glutathionylation increased dose dependently after exposure to hydroperoxides (P<0.05) and were localized mainly to the cytosolic and triton-soluble fractions of the spermatozoa. Levels of tyrosine-nitrated proteins increased dose dependently after exposure to DA-NONOate (P<0.05) and were mainly localized to the triton-insoluble fraction. ROS-treated spermatozoa showed impaired motility without affecting viability (hypo-osmotic swelling test). These treated spermatozoa had tyrosine phosphorylation and AR levels similar to that of non-capacitated spermatozoa following incubation under capacitating conditions, suggesting an impairment of sperm capacitation by oxidative stress. In conclusion, oxidative stress promotes a dose-dependent increase in tyrosine nitration and S-glutathionylation and alters motility and the ability of spermatozoa to undergo capacitation.Free Spanish abstractA Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/149/1/113/suppl/DC1.
Collapse
Affiliation(s)
- Tania Morielli
- The Research Institute of the McGill University Health CentreDepartments of Surgery (Urology Division)Obstetrics and GynecologyPharmacology and TherapeuticsMcGill University, Montréal, Québec, Canada The Research Institute of the McGill University Health CentreDepartments of Surgery (Urology Division)Obstetrics and GynecologyPharmacology and TherapeuticsMcGill University, Montréal, Québec, Canada
| | - Cristian O'Flaherty
- The Research Institute of the McGill University Health CentreDepartments of Surgery (Urology Division)Obstetrics and GynecologyPharmacology and TherapeuticsMcGill University, Montréal, Québec, Canada The Research Institute of the McGill University Health CentreDepartments of Surgery (Urology Division)Obstetrics and GynecologyPharmacology and TherapeuticsMcGill University, Montréal, Québec, Canada The Research Institute of the McGill University Health CentreDepartments of Surgery (Urology Division)Obstetrics and GynecologyPharmacology and TherapeuticsMcGill University, Montréal, Québec, Canada The Research Institute of the McGill University Health CentreDepartments of Surgery (Urology Division)Obstetrics and GynecologyPharmacology and TherapeuticsMcGill University, Montréal, Québec, Canada
| |
Collapse
|
25
|
Samarasinghe KTG, Munkanatta Godage DNP, VanHecke GC, Ahn YH. Metabolic Synthesis of Clickable Glutathione for Chemoselective Detection of Glutathionylation. J Am Chem Soc 2014; 136:11566-9. [DOI: 10.1021/ja503946q] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Garrett C. VanHecke
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Young-Hoon Ahn
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
26
|
Pan KT, Chen YY, Pu TH, Chao YS, Yang CY, Bomgarden RD, Rogers JC, Meng TC, Khoo KH. Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia. Antioxid Redox Signal 2014; 20:1365-81. [PMID: 24152285 PMCID: PMC3936484 DOI: 10.1089/ars.2013.5326] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/22/2013] [Accepted: 09/07/2013] [Indexed: 11/13/2022]
Abstract
AIMS Distinctive states of redox-dependent cysteine (Cys) modifications are known to regulate signaling homeostasis under various pathophysiological conditions, including myocardial injury or protection in response to ischemic stress. Recent evidence further implicates a dynamic interplay among these modified forms following changes in cellular redox environment. However, a precise delineation of multiplexed Cys modifications in a cellular context remains technically challenging. To this end, we have now developed a mass spectrometry (MS)-based quantitative approach using a set of novel iodoacetyl-based Cys-reactive isobaric tags (irreversible isobaric iodoacetyl Cys-reactive tandem mass tag [iodoTMT]) endowed with unique irreversible Cys-reactivities. RESULTS We have established a sequential iodoTMT-switch procedure coupled with efficient immunoenrichment and advanced shotgun liquid chromatography-MS/MS analysis. This workflow allows us to differentially quantify the multiple redox-modified forms of a Cys site in the original cellular context. In one single analysis, we have identified over 260 Cys sites showing quantitative differences in multiplexed redox modifications from the total lysates of H9c2 cardiomyocytes experiencing hypoxia in the absence and presence of S-nitrosoglutathione (GSNO), indicative of a distinct pattern of individual susceptibility to S-nitrosylation or S-glutathionylation. Among those most significantly affected are proteins functionally implicated in hypoxic damage from which we showed that GSNO would protect. INNOVATION We demonstrate for the first time how quantitative analysis of various Cys-redox modifications occurring in biological samples can be performed precisely and simultaneously at proteomic levels. CONCLUSION We have not only developed a new approach to map global Cys-redoxomic regulation in vivo, but also provided new evidences implicating Cys-redox modifications of key molecules in NO-mediated ischemic cardioprotection.
Collapse
Affiliation(s)
- Kuan-Ting Pan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yi-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tsung-Hsien Pu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Yu-Shu Chao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Yi Yang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | - Tzu-Ching Meng
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
27
|
Su D, Gaffrey MJ, Guo J, Hatchell KE, Chu RK, Clauss TRW, Aldrich JT, Wu S, Purvine S, Camp DG, Smith RD, Thrall BD, Qian WJ. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. Free Radic Biol Med 2014; 67:460-70. [PMID: 24333276 PMCID: PMC3945121 DOI: 10.1016/j.freeradbiomed.2013.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 12/17/2022]
Abstract
S-Glutathionylation (SSG) is an important regulatory posttranslational modification on protein cysteine (Cys) thiols, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols, and covalent capture of reduced thiols using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was initially validated by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG modification compared to controls. This approach was extended to identify potential SSG-modified Cys sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment, thus providing a database of proteins and Cys sites susceptible to this modification under oxidative stress. Functional analysis revealed that the most significantly enriched molecular function categories for proteins sensitive to SSG modifications were free radical scavenging and cell death/survival. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of SSG-modified proteins. The analytical strategy also provides a unique approach to determining the major pathways and cellular processes most susceptible to S-glutathionylation under stress conditions.
Collapse
Affiliation(s)
- Dian Su
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jia Guo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Kayla E Hatchell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Therese R W Clauss
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Joshua T Aldrich
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sam Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - David G Camp
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| |
Collapse
|
28
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
29
|
Lockwood TD. Lysosomal metal, redox and proton cycles influencing the CysHis cathepsin reaction. Metallomics 2013; 5:110-24. [PMID: 23302864 DOI: 10.1039/c2mt20156a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the 1930's pioneers discovered that maximal autolysis in tissue homogenates requires metal chelator, sulfhydryl reducing agent and acid pH. However, metals, reducing equivalents and protons (MR&P) have been overlooked as combined catalytic controls. Three categories of lysosomal machinery drive three distinguishable cycles importing and exporting MR&P. Zn(2+) preemptively inhibits CysHis catalysis under otherwise optimal protonation and reduction. Protein-bound cell Zn(2+) concentration is 200-2000 times the non-sequestered inhibitory concentration. Following autophagy, lysosomal proteolysis liberates much inhibitory Zn(2+). The vacuolar proton pump is the driving force for Zn(2+) export, as well as protonation of the peptidolytic mechanism. Other machinery of lysosomal cycles includes proton-driven Zn(2+) exporters (e.g. SLC11A1), Zn(2+) channels (e.g. TRPML-1), lysosomal thiol reductase, etc. The CysHis dyad is a sensor of the vacuolar environment of MR&P, an integrator of these simultaneous variables, and a catalytic responder. Rate-determination can shift between autophagic substrate acquisition (swallowing) and substrate degradation (digesting). Zn(2+) recycling from degraded proteins to new proteins is a fourth cycle that might pace lysosomal function under some conditions. Heritable insufficient or excess functions of CysHis cathepsins are associated with dysfunctional inflammation and immunity/auto-immunity, including diabetic pathogenesis.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Dept. of Pharmacology, School of Medicine, Wright State University, Dayton, Ohio 45435, USA.
| |
Collapse
|
30
|
Abstract
SIGNIFICANCE Glutaredoxins (Grxs) are small oxidoreductases of the thioredoxin family of proteins regulating the thiol redox state of several proteins. Thereby, Grxs are key elements in redox signaling. RECENT ADVANCES Redox signaling via protein thiols depends on reversible oxidative modifications induced mainly by reactive oxygen/nitrogen species and glutathione (GSH) in form of its oxidized disulfide or S-nitroso-glutathione. Grxs contribute to redox signaling by the catalysis of glutathionylation, de-glutathionylation, as well as reduction of disulfide bridges via two distinct enzymatic mechanisms. The dithiol mechanism utilizes both active site cysteines to reduce disulfides, whereas the monothiol mechanism utilizes only the N-terminal active site cysteine for the reduction of GSH mixed disulfides. The sphere of action of Grxs continues to grow with the recent identification of novel targets. CRITICAL ISSUES Because of limited methodological tools, the identification of new substrates for oxidoreductases in general is one of the biggest challenges in this research area. FUTURE DIRECTIONS With this review, we provide a condensed summary of the current knowledge of thiol/disulfide exchange reactions catalyzed by Grxs regarding the mechanistic, structural, and functional aspects. The latter will be of high importance for future research directions, gaining novel insights into redox signaling in general, and the role of Grxs in particular.
Collapse
Affiliation(s)
- Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst Moritz Arndt-Universität Greifswald, Greifswald, Germany
| | | |
Collapse
|
31
|
Collins Y, Chouchani ET, James AM, Menger KE, Cochemé HM, Murphy MP. Mitochondrial redox signalling at a glance. J Cell Sci 2013; 125:801-6. [PMID: 22448036 DOI: 10.1242/jcs.098475] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yvonne Collins
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | | | |
Collapse
|
32
|
Chatterjee A. Reduced glutathione: a radioprotector or a modulator of DNA-repair activity? Nutrients 2013; 5:525-42. [PMID: 23434907 PMCID: PMC3635210 DOI: 10.3390/nu5020525] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/15/2012] [Accepted: 01/31/2013] [Indexed: 11/17/2022] Open
Abstract
The tripeptide glutathione (GSH) is the most abundant intracellular nonprotein thiol, and it is involved in many cellular functions including redox-homeostatic buffering. Cellular radiosensitivity has been shown to be inversely correlated to the endogenous level of GSH. On the other hand, controversy is raised with respect to its role in the field of radioprotection since GSH failed to provide consistent protection in several cases. Reports have been published that DNA repair in cells has a dependence on GSH. Subsequently, S-glutathionylation (forming mixed disulfides with the protein-sulfhydryl groups), a potent mechanism for posttranslational regulation of a variety of regulatory and metabolic proteins when there is a change in the celluar redox status (lower GSH/GSSG ratio), has received increased attention over the last decade. GSH, as a single agent, is found to affect DNA damage and repair, redox regulation and multiple cell signaling pathways. Thus, seemingly, GSH does not only act as a radioprotector against DNA damage induced by X-rays through glutathionylation, it may also act as a modulator of the DNA-repair activity. Judging by the number of publications within the last six years, it is obvious that the field of protein glutathionylation impinges on many aspects of biology, from regulation of protein function to roles of cell cycle and apoptosis. Aberrant protein glutathionylation and its association with cancer and other diseases is an area of increasing interest.
Collapse
Affiliation(s)
- Anupam Chatterjee
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
33
|
Buşu C, Li W, Caldito G, Aw TY. Inhibition of glutathione synthesis in brain endothelial cells lengthens S-phase transit time in the cell cycle: Implications for proliferation in recovery from oxidative stress and endothelial cell damage. Redox Biol 2013; 1:131-139. [PMID: 23682351 PMCID: PMC3652486 DOI: 10.1016/j.redox.2013.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress-induced decrease in tissue or systemic glutathione (GSH) and damage to the vascular endothelium of the blood-brain barrier such as occurs in diabetes or stroke will have important implications for brain homeostasis. Endothelial proliferation or repair is crucial to preserving barrier function. Cell proliferation has been associated with increased intracellular GSH, but the kinetic and distribution of GSH during cell cycle is poorly understood. Here, we determined the influence of cellular GSH status on the early dynamics of nuclear-to-cytosol (N-to-C) GSH distribution (6-h interval) during proliferation in a human brain microvascular endothelial cell line (IHEC). Control IHECs exhibited two peak S-phases of the cell cycle at 48 and 60 h post seeding that temporally corresponded to peak nuclear GSH levels and expression of cdk1, the S-to-G2-to-M checkpoint controller, suggesting a link between cell cycle progression and nuclear GSH. Sustained inhibition of GSH synthesis delayed S-to-G2/M cell transition; cell arrest in the S-phase was correlated with decreased total nuclear GSH and increased nuclear expressions of chk2/phospho-chk2 and GADPH. The temporal correspondence of nuclear chk2 activation and GAPDH expression with S-phase prolongation is consistent with enhanced DNA damage response and extended time for DNA repair. Strikingly, when GSH synthesis was restored, cell transit time through S-phase remained delayed. Significantly, total nuclear GSH remained depressed, indicating a time lag between restored cellular GSH synthetic capacity and recovery of the nuclear GSH status. Interestingly, despite a delay in cell cycle recovery, nuclear expressions of chk2/phospho-chk2 and GAPDH resembled those of control cells. This means that restoration of nuclear DNA integrity preceded normalization of the cell cycle. The current results provide important insights into GSH control of endothelial proliferation with implications for cell repair or wound healing in recovery post-oxidative damage.
Collapse
Affiliation(s)
- Carmina Buşu
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center- Shreveport, 1501 Kings Highway, Shreveport, Louisiana, 71130, USA
| | | | | | | |
Collapse
|
34
|
Glutathione in cerebral microvascular endothelial biology and pathobiology: implications for brain homeostasis. Int J Cell Biol 2012; 2012:434971. [PMID: 22745639 PMCID: PMC3382959 DOI: 10.1155/2012/434971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 02/07/2023] Open
Abstract
The integrity of the vascular endothelium of the blood-brain barrier (BBB) is central to cerebrovascular homeostasis. Given the function of the BBB as a physical and metabolic barrier that buffers the systemic environment, oxidative damage to the endothelial monolayer will have significant deleterious impact on the metabolic, immunological, and neurological functions of the brain. Glutathione (GSH) is a ubiquitous major thiol within mammalian cells that plays important roles in antioxidant defense, oxidation-reduction reactions in metabolic pathways, and redox signaling. The existence of distinct GSH pools within the subcellular organelles supports an elegant mode for independent redox regulation of metabolic processes, including those that control cell fate. GSH-dependent homeostatic control of neurovascular function is relatively unexplored. Significantly, GSH regulation of two aspects of endothelial function is paramount to barrier preservation, namely, GSH protection against oxidative endothelial cell injury and GSH control of postdamage cell proliferation in endothelial repair and/or wound healing. This paper highlights our current insights and hypotheses into the role of GSH in cerebral microvascular biology and pathobiology with special focus on endothelial GSH and vascular integrity, oxidative disruption of endothelial barrier function, GSH regulation of endothelial cell proliferation, and the pathological implications of GSH disruption in oxidative stress-associated neurovascular disorders, such as diabetes and stroke.
Collapse
|
35
|
Chiang BY, Chou CC, Hsieh FT, Gao S, Lin JCY, Lin SH, Chen TC, Khoo KH, Lin CH. In vivo tagging and characterization of S-glutathionylated proteins by a chemoenzymatic method. Angew Chem Int Ed Engl 2012; 51:5871-5. [PMID: 22555962 PMCID: PMC3505901 DOI: 10.1002/anie.201200321] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/13/2012] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Kay-Hooi Khoo
- Institute of Biological ChemistryAcademia Sinica No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529 (Taiwan) and Institute of Biochemical Sciences National Taiwan University (Taiwan)
| | - Chun-Hung Lin
- Institute of Biological ChemistryAcademia Sinica No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529 (Taiwan) and Institute of Biochemical Sciences National Taiwan University (Taiwan)
| |
Collapse
|
36
|
Chiang BY, Chou CC, Hsieh FT, Gao S, Lin JCY, Lin SH, Chen TC, Khoo KH, Lin CH. In Vivo Tagging and Characterization of S-Glutathionylated Proteins by a Chemoenzymatic Method. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Murphy MP. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 2012; 16:476-95. [PMID: 21954972 DOI: 10.1089/ars.2011.4289] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE The mitochondrial matrix contains much of the machinery at the heart of metabolism. This compartment is also exposed to a high and continual flux of superoxide, hydrogen peroxide, and related reactive species. To protect mitochondria from these sources of oxidative damage, there is an integrated set of thiol systems within the matrix comprising the thioredoxin/peroxiredoxin/methionine sulfoxide reductase pathways and the glutathione/glutathione peroxidase/glutathione-S-transferase/glutaredoxin pathways that in conjunction with protein thiols prevent much of this oxidative damage. In addition, the changes in the redox state of many components of these mitochondrial thiol systems may transduce and relay redox signals within and through the mitochondrial matrix to modulate the activity of biochemical processes. RECENT ADVANCES Here, mitochondrial thiol systems are reviewed, and areas of uncertainty are pointed out, focusing on recent developments in our understanding of their roles. CRITICAL ISSUES The areas of particular focus are on the multiple, overlapping roles of mitochondrial thiols and on understanding how these thiols contribute to both antioxidant defenses and redox signaling. FUTURE DIRECTIONS Recent technical progress in the identification and quantification of thiol modifications by redox proteomics means that many of the questions raised about the multiple roles of mitochondrial thiols can now be addressed.
Collapse
|
38
|
Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD. Redox regulation in photosynthetic organisms: focus on glutathionylation. Antioxid Redox Signal 2012; 16:567-86. [PMID: 22053845 DOI: 10.1089/ars.2011.4255] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In photosynthetic organisms, besides the well-established disulfide/dithiol exchange reactions specifically controlled by thioredoxins (TRXs), protein S-glutathionylation is emerging as an alternative redox modification occurring under stress conditions. This modification, consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue, can not only protect specific cysteines from irreversible oxidation but also modulate protein activities and appears to be specifically controlled by small disulfide oxidoreductases of the TRX superfamily named glutaredoxins (GRXs). RECENT STUDIES In recent times, several studies allowed significant progress in this area, mostly due to the identification of several plant proteins undergoing S-glutathionylation and to the characterization of the molecular mechanisms and the proteins involved in the control of this modification. CRITICAL ISSUES This article provides a global overview of protein glutathionylation in photosynthetic organisms with particular emphasis on the mechanisms of protein glutathionylation and deglutathionylation and a focus on the role of GRXs. Then, we describe the methods employed for identification of glutathionylated proteins in photosynthetic organisms and review the targets and the possible physiological functions of protein glutathionylation. FUTURE DIRECTIONS In order to establish the importance of protein S-glutathionylation in photosynthetic organisms, future studies should be aimed at delineating more accurately the molecular mechanisms of glutathionylation and deglutathionylation reactions, at identifying proteins undergoing S-glutathionylation in vivo under diverse conditions, and at investigating the importance of redoxins, GRX, and TRX, in the control of this redox modification in vivo.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | |
Collapse
|
39
|
van der Linde K, Gutsche N, Leffers HM, Lindermayr C, Müller B, Holtgrefe S, Scheibe R. Regulation of plant cytosolic aldolase functions by redox-modifications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:946-57. [PMID: 21782461 DOI: 10.1016/j.plaphy.2011.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/27/2011] [Indexed: 05/04/2023]
Abstract
From the five genes which code for cytosolic fructose 1,6-bisphosphate aldolases in Arabidopsis thaliana L., the cDNA clone of cAld2 (At2g36460), was heterologously expressed in E. coli and incubated under various oxidizing and reducing conditions. Covalent binding of a GSH moiety to the enzyme was shown by incorporation of biotinylated GSH (BioGEE) and by immunodetection with monoclonal anti-GSH serum. Nitrosylation after incubation with GSNO or SNP was demonstrated using the biotin-switch assay. Mass-spectrometry analysis showed glutathionylation and/or nitrosylation at two different cysteine residues: GSH was found to be attached to C68 and C173, while the nitroso-group was incorporated only into C173. Non-reducing SDS-PAGE conducted with purified wild-type and various Cys-mutant proteins revealed the presence of disulfide bridges in the oxidized enzyme, as described for rabbit muscle aldolase. Incubation of the purified enzyme with GSSG (up to 25 mM) led to partial and reversible inactivation of enzyme activity; NADPH, in the presence of the components of the cytosolic NADP-dependent thioredoxin system, could reactivate the aldolase as did DTT. Total and irreversible inactivation occurred with low concentrations (0.1 mM) of nitrosoglutathione (GSNO). Inactivation was prevented by co-incubation of cAld2 with fructose-1,6-bisphosphate (FBP). Nuclear localization of cAld2 and interaction with thioredoxins was shown by transient expression of fusion constructs with fluorescent proteins in isolated protoplasts.
Collapse
Affiliation(s)
- Karina van der Linde
- Department of Plant Physiology, University of Osnabrueck, D-49069 Osnabrueck, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Marino SM, Gladyshev VN. Redox biology: computational approaches to the investigation of functional cysteine residues. Antioxid Redox Signal 2011; 15:135-46. [PMID: 20812876 PMCID: PMC3110093 DOI: 10.1089/ars.2010.3561] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 08/19/2010] [Accepted: 09/02/2010] [Indexed: 12/18/2022]
Abstract
Cysteine (Cys) residues serve many functions, such as catalysis, stabilization of protein structure through disulfides, metal binding, and regulation of protein function. Cys residues are also subject to numerous post-translational modifications. In recent years, various computational tools aiming at classifying and predicting different functional categories of Cys have been developed, particularly for structural and catalytic Cys. On the other hand, given complexity of the subject, bioinformatics approaches have been less successful for the investigation of regulatory Cys sites. In this review, we introduce different functional categories of Cys residues. For each category, an overview of state-of-the-art bioinformatics methods and tools is provided, along with examples of successful applications and potential limitations associated with each approach. Finally, we discuss Cys-based redox switches, which modify the view of distinct functional categories of Cys in proteins.
Collapse
Affiliation(s)
- Stefano M Marino
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
41
|
Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J. The role of annexin 1 in drought stress in Arabidopsis. PLANT PHYSIOLOGY 2009; 150:1394-410. [PMID: 19482919 PMCID: PMC2705051 DOI: 10.1104/pp.109.135228] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/18/2009] [Indexed: 05/18/2023]
Abstract
Annexins act as targets of calcium signals in eukaryotic cells, and recent results suggest that they play an important role in plant stress responses. We found that in Arabidopsis (Arabidopsis thaliana), AnnAt1 (for annexin 1) mRNA levels were up-regulated in leaves by most of the stress treatments applied. Plants overexpressing AnnAt1 protein were more drought tolerant and knockout plants were more drought sensitive than ecotype Columbia plants. We also observed that hydrogen peroxide accumulation in guard cells was reduced in overexpressing plants and increased in knockout plants both before and after treatment with abscisic acid. Oxidative protection resulting from AnnAt1 overexpression could be due to the low level of intrinsic peroxidase activity exhibited by this protein in vitro, previously linked to a conserved histidine residue found in a peroxidase-like motif. However, analyses of a mutant H40A AnnAt1 protein in a bacterial complementation test and in peroxidase activity assays indicate that this residue is not critical to the ability of AnnAt1 to confer oxidative protection. To further examine the mechanism(s) linking AnnAt1 expression to stress resistance, we analyzed the reactive S3 cluster to determine if it plays a role in AnnAt1 oligomerization and/or is the site for posttranslational modification. We found that the two cysteine residues in this cluster do not form intramolecular or intermolecular bonds but are highly susceptible to oxidation-driven S-glutathionylation, which decreases the Ca(2+) affinity of AnnAt1 in vitro. Moreover, S-glutathionylation of AnnAt1 occurs in planta after abscisic acid treatment, which suggests that this modification could be important in regulating the cellular function of AnnAt1 during stress responses.
Collapse
|
42
|
Alvarez S, Wilson GH, Chen S. Determination of in vivo disulfide-bonded proteins in Arabidopsis. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:101-4. [DOI: 10.1016/j.jchromb.2008.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 01/12/2023]
|
43
|
Reddy NM, Kleeberger SR, Bream JH, Fallon PG, Kensler TW, Yamamoto M, Reddy SP. Genetic disruption of the Nrf2 compromises cell-cycle progression by impairing GSH-induced redox signaling. Oncogene 2008; 27:5821-32. [PMID: 18542053 PMCID: PMC2646365 DOI: 10.1038/onc.2008.188] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 05/05/2008] [Accepted: 05/12/2008] [Indexed: 01/10/2023]
Abstract
Genetic disruption of Nrf2 greatly enhances susceptibility to prooxidant- and carcinogen-induced experimental models of various human disorders; but the mechanisms by which this transcription factor confers protection are unclear. Using Nrf2-proficient (Nrf2(+/+)) and Nrf2-deficient (Nrf2(-/-)) primary epithelial cultures as a model, we now show that Nrf2 deficiency leads to oxidative stress and DNA lesions, accompanied by impairment of cell-cycle progression, mainly G(2)/M-phase arrest. Both N-acetylcysteine and glutathione (GSH) supplementation ablated the DNA lesions and DNA damage-response pathways in Nrf2(-/-) cells; however only GSH could rescue the impaired colocalization of mitosis-promoting factors and the growth arrest. Akt activation was deregulated in Nrf2(-/-) cells, but GSH supplementation restored it. Inhibition of Akt signaling greatly diminished the GSH-induced Nrf2(-/-) cell proliferation and wild-type cell proliferation. GSH depletion impaired Akt signaling and mitosis-promoting factor colocalization in Nrf2(+/+) cells. Collectively, our findings uncover novel functions for Nrf2 in regulating oxidative stress-induced cell-cycle arrest, especially G(2)/M-checkpoint arrest, and proliferation, and GSH-regulated redox signaling and Akt are required for this process.
Collapse
Affiliation(s)
- NM Reddy
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - SR Kleeberger
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - JH Bream
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - PG Fallon
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - TW Kensler
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - M Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - SP Reddy
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
44
|
Passarelli C, Petrini S, Pastore A, Bonetto V, Sale P, Gaeta LM, Tozzi G, Bertini E, Canepari M, Rossi R, Piemonte F. Myosin as a potential redox-sensor: an in vitro study. J Muscle Res Cell Motil 2008; 29:119-26. [PMID: 18780150 DOI: 10.1007/s10974-008-9145-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 08/28/2008] [Indexed: 11/26/2022]
Abstract
A balanced redox status is necessary to optimize force production in contractile apparatus, where free radicals generated by skeletal muscle are involved in some basic physiological processes like excitation-contraction coupling. Protein glutathionylation has a key role in redox regulation of proteins and signal transduction. Here we show that myosin is sensitive to in vitro glutathionylation and MALDI-TOF analysis identified three potential sites of glutathione binding, two of them locating on the myosin head. Glutathionylation of myosin has an important impact on the protein structure, as documented by the lower fluorescence quantum yield of glutathionylated myosin and its increased susceptibility to the proteolytic cleavage. Myosin function is also sensitive to glutathionylation, which modulates its ATPase activity depending on GSSG redox balance. Thus, like the phosphorylation/dephosphorylation cycle, glutathionylation may represent a mechanism by which glutathione modulates sarcomere functions depending on the tissue redox state, and myosin may constitute a muscle redox-sensor.
Collapse
Affiliation(s)
- Chiara Passarelli
- Molecular Medicine Unit, Children's Hospital and Research Institute Bambino Gesù, Department of Biology, University of Rome Roma Tre, P.za S. Onofrio, 4, Rome, 00165, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liebeke M, Pöther DC, van Duy N, Albrecht D, Becher D, Hochgräfe F, Lalk M, Hecker M, Antelmann H. Depletion of thiol-containing proteins in response to quinones inBacillus subtilis. Mol Microbiol 2008; 69:1513-29. [DOI: 10.1111/j.1365-2958.2008.06382.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Michelet L, Zaffagnini M, Vanacker H, Le Maréchal P, Marchand C, Schroda M, Lemaire SD, Decottignies P. In Vivo Targets of S-Thiolation in Chlamydomonas reinhardtii. J Biol Chem 2008; 283:21571-8. [DOI: 10.1074/jbc.m802331200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
47
|
Janssen-Heininger YMW, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, van der Vliet A. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 2008; 45:1-17. [PMID: 18423411 PMCID: PMC2453533 DOI: 10.1016/j.freeradbiomed.2008.03.011] [Citation(s) in RCA: 581] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/04/2008] [Accepted: 03/11/2008] [Indexed: 12/15/2022]
Abstract
Oxidants are produced as a by-product of aerobic metabolism, and organisms ranging from prokaryotes to mammals have evolved with an elaborate and redundant complement of antioxidant defenses to confer protection against oxidative insults. Compelling data now exist demonstrating that oxidants are used in physiological settings as signaling molecules with important regulatory functions controlling cell division, migration, contraction, and mediator production. These physiological functions are carried out in an exquisitely regulated and compartmentalized manner by mild oxidants, through subtle oxidative events that involve targeted amino acids in proteins. The precise understanding of the physiological relevance of redox signal transduction has been hampered by the lack of specificity of reagents and the need for chemical derivatization to visualize reversible oxidations. In addition, it is difficult to measure these subtle oxidation events in vivo. This article reviews some of the recent findings that illuminate the significance of redox signaling and exciting future perspectives. We also attempt to highlight some of the current pitfalls and the approaches needed to advance this important area of biochemical and biomedical research.
Collapse
|
48
|
Kemp M, Go YM, Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 2008; 44:921-37. [PMID: 18155672 PMCID: PMC2587159 DOI: 10.1016/j.freeradbiomed.2007.11.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/28/2007] [Accepted: 11/14/2007] [Indexed: 01/18/2023]
Abstract
Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend on redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide, and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but nonequilibrium steady states, are largely independently regulated in different subcellular compartments, and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential, and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways, and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention.
Collapse
Affiliation(s)
- Melissa Kemp
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta GA 30332
| | - Young-Mi Go
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322
| | - Dean P. Jones
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322
- Corresponding Author: Dr. Dean P. Jones, 205 Whitehead Research Center, Emory University, Atlanta, GA 30322, Phone: 404-727-5970; Fax; 404-712-2974; E-mail:
| |
Collapse
|
49
|
Dalle-Donne I, Milzani A, Gagliano N, Colombo R, Giustarini D, Rossi R. Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid Redox Signal 2008; 10:445-73. [PMID: 18092936 DOI: 10.1089/ars.2007.1716] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein S-glutathionylation, the reversible binding of glutathione to protein thiols (PSH), is involved in protein redox regulation, storage of glutathione, and protection of PSH from irreversible oxidation. S-Glutathionylated protein (PSSG) can result from thiol/disulfide exchange between PSH and GSSG or PSSG; direct interaction between partially oxidized PSH and GSH; reactions between PSH and S-nitrosothiols, oxidized forms of GSH, or glutathione thiyl radical. Indeed, thiol/disulfide exchange is an unlikely intracellular mechanism for S-glutathionylation, because of the redox potential of most Cys residues and the GSSG export by most cells as a protective mechanism against oxidative stress. S-Glutathionylation can be reversed, following restoration of a reducing GSH/GSSG ratio, in an enzyme-dependent or -independent manner. Currently, definite evidence of protein S-glutathionylation has been clearly demonstrated in few human diseases. In aging human lenses, protein S-glutathionylation increases; during cataractogenesis, some of lens proteins, including alpha- and beta-crystallins, form both mixed disulfides and disulfide-cross-linked aggregates, which increase with cataract severity. The correlation of lens nuclear color and opalescence intensity with protein S-glutathionylation indicates that protein-thiol mixed disulfides may play an important role in cataractogenesis and development of brunescence in human lenses. Recently, specific PSSG have been identified in the inferior parietal lobule in Alzheimer's disease. However, much investigation is needed to clarify the actual involvement of protein S-glutathionylation in many human diseases.
Collapse
|
50
|
Berndt C, Lillig CH, Holmgren A. Thioredoxins and glutaredoxins as facilitators of protein folding. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:641-50. [PMID: 18331844 DOI: 10.1016/j.bbamcr.2008.02.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 12/27/2022]
Abstract
Thiol-disulfide oxidoreductase systems of bacterial cytoplasm and eukaryotic cytosol favor reducing conditions and protein thiol groups, while bacterial periplasm and eukaryotic endoplasmatic reticulum provide oxidizing conditions and a machinery for disulfide bond formation in the secretory pathway. Oxidoreductases of the thioredoxin fold superfamily catalyze steps in oxidative protein folding via protein-protein interactions and covalent catalysis to act as chaperones and isomerases of disulfides to generate a native fold. The active site dithiol/disulfide of thioredoxin fold proteins is CXXC where variations of the residues inside the disulfide ring are known to increase the redox potential like in protein disulfide isomerases. In the catalytic mechanism thioredoxin fold proteins bind to target proteins through conserved backbone-backbone hydrogen bonds and induce conformational changes of the target disulfide followed by nucleophilic attack by the N-terminally located low pK(a) Cys residue. This generates a mixed disulfide covalent bond which subsequently is resolved by attack from the C-terminally located Cys residue. This review will focus on two members of the thioredoxin superfamily of proteins known to be crucial for maintaining a reduced intracellular redox state, thioredoxin and glutaredoxin, and their potential functions as facilitators and regulators of protein folding and chaperone activity.
Collapse
Affiliation(s)
- Carsten Berndt
- The Medical Nobel Institute for Biochemistry, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|