1
|
Yang L, Meng B, Gong X, Jiang Y, Shentu X, Xue Z. Investigation of the synergistic effect mechanism underlying sequential use of palbociclib and cisplatin through integral proteomic and glycoproteomic analysis. Anticancer Drugs 2024; 35:806-816. [PMID: 39011652 PMCID: PMC11392100 DOI: 10.1097/cad.0000000000001633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Chemoresistance largely hampers the clinical use of chemodrugs for cancer patients, combination or sequential drug treatment regimens have been designed to minimize chemotoxicity and resensitize chemoresistance. In this work, the cytotoxic effect of cisplatin was found to be enhanced by palbociclib pretreatment in HeLa cells. With the integration of liquid chromatography-mass spectrometry-based proteomic and N-glycoproteomic workflow, we found that palbociclib alone mainly enhanced the N-glycosylation alterations in HeLa cells, while cisplatin majorly increased the different expression proteins related to apoptosis pathways. As a result, the sequential use of two drugs induced a higher expression level of apoptosis proteins BAX and BAK. Those altered N-glycoproteins induced by palbociclib were implicated in pathways that were closely associated with cell membrane modification and drug sensitivity. Specifically, the top four frequently glycosylated proteins FOLR1, L1CAM, CD63, and LAMP1 were all associated with drug resistance or drug sensitivity. It is suspected that palbociclib-induced N-glycosylation on the membrane protein allowed the HeLa cell to become more vulnerable to cisplatin treatment. Our study provides new insights into the mechanisms underlying the sequential use of target drugs and chemotherapy drugs, meanwhile suggesting a high-efficiency approach that involves proteomic and N-glycoproteomic to facilitate drug discovery.
Collapse
Affiliation(s)
- Lulu Yang
- Faculty of Life Sciences, China Jiliang University, Hangzhou
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xuping Shentu
- Faculty of Life Sciences, China Jiliang University, Hangzhou
| | - Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
2
|
Anny CA, Nouaille S, Fauré R, Schulz C, Spriet C, Huvent I, Biot C, Lefebvre T. A Step-by-Step Guide for the Production of Recombinant Fluorescent TAT-HA-Tagged Proteins and their Transduction into Mammalian Cells. Curr Protoc 2024; 4:e1016. [PMID: 38511507 DOI: 10.1002/cpz1.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Investigating the function of target proteins for functional prospection or therapeutic applications typically requires the production and purification of recombinant proteins. The fusion of these proteins with tag peptides and fluorescently derived proteins allows the monitoring of candidate proteins using SDS-PAGE coupled with western blotting and fluorescent microscopy, respectively. However, protein engineering poses a significant challenge for many researchers. In this protocol, we describe step-by-step the engineering of a recombinant protein with various tags: TAT-HA (trans-activator of transduction-hemagglutinin), 6×His and EGFP (enhanced green fluorescent protein) or mCherry. Fusion proteins are produced in E. coli BL21(DE3) cells and purified by immobilized metal affinity chromatography (IMAC) using a Ni-nitrilotriacetic acid (NTA) column. Then, tagged recombinant proteins are introduced into cultured animal cells by using the penetrating peptide TAT-HA. Here, we present a thorough protocol providing a detailed guide encompassing every critical step from plasmid DNA molecular assembly to protein expression and subsequent purification and outlines the conditions necessary for protein transduction technology into animal cells in a comprehensive manner. We believe that this protocol will be a valuable resource for researchers seeking an exhaustive, step-by-step guide for the successful production and purification of recombinant proteins and their entry by transduction within living cells. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA cloning, molecular assembly strategies, and protein production Basic Protocol 2: Protein purification Basic Protocol 3: Protein transduction in mammalian cells.
Collapse
Affiliation(s)
| | | | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
| | - Corentin Spriet
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | | | | | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
| |
Collapse
|
3
|
Wang Y, Li R, Shu W, Chen X, Lin Y, Wan J. Designed Nanomaterials-Assisted Proteomics and Metabolomics Analysis for In Vitro Diagnosis. SMALL METHODS 2024; 8:e2301192. [PMID: 37922520 DOI: 10.1002/smtd.202301192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/12/2023] [Indexed: 11/05/2023]
Abstract
In vitro diagnosis (IVD) is pivotal in modern medicine, enabling early disease detection and treatment optimization. Omics technologies, particularly proteomics and metabolomics, offer profound insights into IVD. Despite its significance, omics analyses for IVD face challenges, including low analyte concentrations and the complexity of biological environments. In addition, the direct omics analysis by mass spectrometry (MS) is often hampered by issues like large sample volume requirements and poor ionization efficiency. Through manipulating their size, surface charge, and functionalization, as well as the nanoparticle-fluid incubation conditions, nanomaterials have emerged as a promising solution to extract biomolecules and enhance the desorption/ionization efficiency in MS detection. This review delves into the last five years of nanomaterial applications in omics, focusing on their role in the enrichment, separation, and ionization analysis of proteins and metabolites for IVD. It aims to provide a comprehensive update on nanomaterial design and application in omics, highlighting their potential to revolutionize IVD.
Collapse
Affiliation(s)
- Yanhui Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiaonan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
4
|
Meng L, Wang B, Wang B, Feng Q, Zhang S, Xiong Z, Zhang S, Cai T, Ding CF, Yan Y. Post-synthesis of a titanium-rich magnetic COF nanocomposite with flexible branched polymers for efficient enrichment of phosphopeptides from human saliva and serum. Analyst 2023; 148:4738-4745. [PMID: 37646154 DOI: 10.1039/d3an00989k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A Ti4+-functionalized magnetic covalent organic framework material with flexible branched polymers (mCOF@ε-PL@THBA-Ti4+) built via an immobilized metal ion affinity chromatography (IMAC) enrichment strategy was proposed through post-synthesis modification. Hydrophilic ε-poly-L-lysine (ε-PL) rich in amino active groups was first introduced in the fabrication of the phosphopeptide enrichment material to increase the hydrophilicity while providing more functional modification pathways of the material. 2,3,4-Trihydroxy-benzaldehyde (THBA) provides abundant binding sites for the immobilization of numerous Ti4+, which is advantageous for the subsequent efficient phosphopeptide enrichment. The magnetic nanocomposite exhibited outstanding performance of phosphopeptide enrichment with good selectivity (1 : 5000), a low detection limit (2 fmol), and relatively high loading capacity (66.7 mg g-1). What's more, after treatment with mCOF@ε-PL@THBA-Ti4+, 16 endogenous phosphopeptides from fresh saliva of healthy people were recognized by MALDI-TOF MS, and 50 phosphopeptides belonging to 35 phosphoproteins from the serum of uremia patients were detected by nano-LC-MS/MS. Proteomics data analysis for the differential protein selection between uremia and normal controls was conducted using R software, and four down-regulated and three up-regulated proteins were obtained. The results suggested that the prepared material has potential applications in biomarker discovery.
Collapse
Affiliation(s)
- Luyan Meng
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
| | - Bing Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Sijia Zhang
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Zi Xiong
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Shun Zhang
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Ting Cai
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Chuan-Fan Ding
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yinghua Yan
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
5
|
Xue Z, Zeng J, Li Y, Meng B, Gong X, Zhao Y, Dai X. Proteomics reveals that cell density could affect the efficacy of drug treatment. Biochem Biophys Rep 2022; 33:101403. [PMID: 36561432 PMCID: PMC9763681 DOI: 10.1016/j.bbrep.2022.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
In vitro cell biology study plays a fundamental role in biological and drug development research, but the repeatability and accuracy of cell studies remain to be low. Various uncertainties during the cell culture process could introduce bias into drug research. In this study, we evaluate the potential effects and underlying mechanisms induced by cell number differences in the cell seeding process. Normally, drug experiments are initiated 24 h after cell seeding, and the difference in the cell number at the time of inoculation leads to the difference in cell confluence (cell density) when drug research is conducted. While cell confluence is closely related to intercellular communication, surface protein interaction, cell autocrine as well as paracrine protein expression of cells, it might have a potential impact on the effect of biological studies such as drug treatment. This study used proteomics technology to comprehensively explore the different protein expression patterns between cells with different confluences. Due to the high sensitivity and high throughput of liquid chromatography-mass spectrometry (LC-MS/MS) detection, it was hired to evaluate the protein expression differences of Hep3B cells with 3 different confluences (30%, 50%, and 70%). The differential expressed proteins were analyzed by the Reactome pathway and the Gene Ontology (GO) pathway. Significant differences were identified across three confluences in terms of the number of proteins identified, the protein expression pattern, and the expression level of certain KEGG pathways. We found that those proteins involved in the cell cycle pathway were differently expressed: the higher the cell confluence, the higher these proteins expressed. A cell cycle inhibitor palbociclib was selected to further verify this observation. Palbociclib in the same dose was applied to cells with different confluence, the results indicated that the growth inhibition effect of palbociclib increases along with the increasing trend of cell cycle protein expression. The result indicated that cell density did influence the effect of drug treatment. Furthermore, three other drugs, cisplatin, paclitaxel, and imatinib, were used to treat the three liver cancer cell lines Hep3B, SUN387, and MHCC97, and a similar observation was obtained that drug effect would be different when the cell confluences were different. Therefore, selecting an appropriate number of cells for plating is vitally important at the beginning of a drug study.
Collapse
Affiliation(s)
- Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Jiaming Zeng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China,Shenyang University of Chemical Technology, College of Chemical Engineering, Shenyang, 110142, PR China
| | - Yongshu Li
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, 518055, PR China
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China,Corresponding author.
| |
Collapse
|
6
|
Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. SEPARATIONS 2022. [DOI: 10.3390/separations9110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metal-Chelating Peptides (MCPs), obtained from protein hydrolysates, present various applications in the field of nutrition, pharmacy, cosmetic etc. The separation of MCPs from hydrolysates mixture is challenging, yet, techniques based on peptide-metal ion interactions such as Immobilized Metal Ion Affinity Chromatography (IMAC) seem to be efficient. However, separation processes are time consuming and expensive, therefore separation prediction using chromatography modelling and simulation should be necessary. Meanwhile, the obtention of sorption isotherm for chromatography modelling is a crucial step. Thus, Surface Plasmon Resonance (SPR), a biosensor method efficient to screen MCPs in hydrolysates and with similarities to IMAC might be a good option to acquire sorption isotherm. This review highlights IMAC experimental methodology to separate MCPs and how, IMAC chromatography can be modelled using transport dispersive model and input data obtained from SPR for peptides separation simulation.
Collapse
|
7
|
Fedorov II, Lineva VI, Tarasova IA, Gorshkov MV. Mass Spectrometry-Based Chemical Proteomics for Drug Target Discoveries. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:983-994. [PMID: 36180990 DOI: 10.1134/s0006297922090103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Chemical proteomics, emerging rapidly in recent years, has become a main approach to identifying interactions between the small molecules and proteins in the cells on a proteome scale and mapping the signaling and/or metabolic pathways activated and regulated by these interactions. The methods of chemical proteomics allow not only identifying proteins targeted by drugs, characterizing their toxicity and discovering possible off-target proteins, but also elucidation of the fundamental mechanisms of cell functioning under conditions of drug exposure or due to the changes in physiological state of the organism itself. Solving these problems is essential for both basic research in biology and clinical practice, including approaches to early diagnosis of various forms of serious diseases or prediction of the effectiveness of therapeutic treatment. At the same time, recent developments in high-resolution mass spectrometry have provided the technology for searching the drug targets across the whole cell proteomes. This review provides a concise description of the main objectives and problems of mass spectrometry-based chemical proteomics, the methods and approaches to their solution, and examples of implementation of these methods in biomedical research.
Collapse
Affiliation(s)
- Ivan I Fedorov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Victoria I Lineva
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
8
|
Comprehensive Evaluation of Different TiO2-Based Phosphopeptide Enrichment and Fractionation Methods for Phosphoproteomics. Cells 2022; 11:cells11132047. [PMID: 35805136 PMCID: PMC9265536 DOI: 10.3390/cells11132047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Protein phosphorylation is an essential post-translational modification that regulates multiple cellular processes. Due to their low stoichiometry and ionization efficiency, it is critical to efficiently enrich phosphopeptides for phosphoproteomics. Several phosphopeptide enrichment methods have been reported; however, few studies have comprehensively compared different TiO2-based phosphopeptide enrichment methods using complex proteomic samples. Here, we compared four TiO2-based phosphopeptide enrichment methods that used four non-phosphopeptide excluders (glutamic acid, lactic acid, glycolic acid, and DHB). We found that these four TiO2-based phosphopeptide enrichment methods had different enrichment specificities and that phosphopeptides enriched by the four methods had different physicochemical characteristics. More importantly, we discovered that phosphopeptides had a higher deamidation ratio than peptides from cell lysate and that phosphopeptides enriched using the glutamic acid method had a higher deamidation ratio than the other three methods. We then compared two phosphopeptide fractionation methods: ammonia- or TEA-based high pH reversed-phase (HpH-RP). We found that fewer phosphopeptides, especially multi-phosphorylated peptides, were identified using the ammonia-based method than using the TEA-based method. Therefore, the TEA-based HpH-RP fractionation method performed better than the ammonia method. In conclusion, we comprehensively evaluated different TiO2-based phosphopeptide enrichment and fractionation methods, providing a basis for selecting the proper protocols for comprehensive phosphoproteomics.
Collapse
|
9
|
Muselius B, Durand SL, Geddes-McAlister J. Proteomics of Cryptococcus neoformans: From the Lab to the Clinic. Int J Mol Sci 2021; 22:12390. [PMID: 34830272 PMCID: PMC8618913 DOI: 10.3390/ijms222212390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fungal pathogens cause an array of diseases by targeting both immunocompromised and immunocompetent hosts. Fungi overcome our current arsenal of antifungals through the emergence and evolution of resistance. In particular, the human fungal pathogen, Cryptococcus neoformans is found ubiquitously within the environment and causes severe disease in immunocompromised individuals around the globe with limited treatment options available. To uncover fundamental knowledge about this fungal pathogen, as well as investigate new detection and treatment strategies, mass spectrometry-based proteomics provides a plethora of tools and applications, as well as bioinformatics platforms. In this review, we highlight proteomics approaches within the laboratory to investigate changes in the cellular proteome, secretome, and extracellular vesicles. We also explore regulation by post-translational modifications and the impact of protein-protein interactions. Further, we present the development and comprehensive assessment of murine models of cryptococcal infection, which provide valuable tools to define the dynamic relationship between the host and pathogen during disease. Finally, we explore recent quantitative proteomics studies that begin to extrapolate the findings from the bench to the clinic for improved methods of fungal detection and monitoring. Such studies support a framework for personalized medical approaches to eradicate diseases caused by C. neoformans.
Collapse
Affiliation(s)
| | | | - Jennifer Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada; (B.M.); (S.-L.D.)
| |
Collapse
|
10
|
Wang Y, Li H, Sun H. Metalloproteomics for Unveiling the Mechanism of Action of Metallodrugs. Inorg Chem 2019; 58:13673-13685. [PMID: 31298530 DOI: 10.1021/acs.inorgchem.9b01199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yuchuan Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
11
|
Pandeswari PB, Sabareesh V. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Adv 2018; 9:313-344. [PMID: 35521579 PMCID: PMC9059502 DOI: 10.1039/c8ra07200k] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Owing to rapid growth in the elucidation of genome sequences of various organisms, deducing proteome sequences has become imperative, in order to have an improved understanding of biological processes. Since the traditional Edman method was unsuitable for high-throughput sequencing and also for N-terminus modified proteins, mass spectrometry (MS) based methods, mainly based on soft ionization modes: electrospray ionization and matrix-assisted laser desorption/ionization, began to gain significance. MS based methods were adaptable for high-throughput studies and applicable for sequencing N-terminus blocked proteins/peptides too. Consequently, over the last decade a new discipline called 'proteomics' has emerged, which encompasses the attributes necessary for high-throughput identification of proteins. 'Proteomics' may also be regarded as an offshoot of the classic field, 'biochemistry'. Many protein sequencing and proteomic investigations were successfully accomplished through MS dependent sequence elucidation of 'short proteolytic peptides (typically: 7-20 amino acid residues), which is called the 'shotgun' or 'bottom-up (BU)' approach. While the BU approach continues as a workhorse for proteomics/protein sequencing, attempts to sequence intact proteins without proteolysis, called the 'top-down (TD)' approach started, due to ambiguities in the BU approach, e.g., protein inference problem, identification of proteoforms and the discovery of posttranslational modifications (PTMs). The high-throughput TD approach (TD proteomics) is yet in its infancy. Nevertheless, TD characterization of purified intact proteins has been useful for detecting PTMs. With the hope to overcome the pitfalls of BU and TD strategies, another concept called the 'middle-down (MD)' approach was put forward. Similar to BU, the MD approach also involves proteolysis, but in a restricted manner, to produce 'longer' proteolytic peptides than the ones usually obtained in BU studies, thereby providing better sequence coverage. In this regard, special proteases (OmpT, Sap9, IdeS) have been used, which can cleave proteins to produce longer proteolytic peptides. By reviewing ample evidences currently existing in the literature that is predominantly on PTM characterization of histones and antibodies, herein we highlight salient features of the MD approach. Consequently, we are inclined to claim that the MD concept might have widespread applications in future for various research areas, such as clinical, biopharmaceuticals (including PTM analysis) and even for general/routine characterization of proteins including therapeutic proteins, but not just limited to analysis of histones or antibodies.
Collapse
Affiliation(s)
- P Boomathi Pandeswari
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| | - Varatharajan Sabareesh
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| |
Collapse
|
12
|
Thawornpan P, Thanapongpichat S, Tun AW, Phongdara A, de Jong L, Buncherd H. Fly-ash as a low-cost material for isolation of phosphoproteins. CHEMOSPHERE 2018; 213:124-132. [PMID: 30216812 DOI: 10.1016/j.chemosphere.2018.08.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Metal oxide affinity chromatography (MOAC) is one of the most commonly used techniques for selective isolation phosphoproteins and phosphopeptides. This technique is capable of capturing the phosphorylated biomolecules through the affinity of the phosphoryl group for metal oxides/hydroxides. Fly-ash (FA), a by-product of coal-combustion power plants, is primarily composed of oxides of silicon and metals, among which iron and titanium. A number of studies have demonstrated the potential of these metal oxides for phosphoprotein and phosphopeptide enrichment. FA is annually produced over hundred million tons worldwide and generally considered as hazardous waste. It is thus of great importance to enhance its utilization. Here we present the first demonstration of the utility of FA as a low-cost MOAC material for the enrichment of phosphoproteins. With an FA-microcolumn, phosphoproteins can be successfully sequestered from other proteins. FA-microcolumns are shown to be simple, cheap and selective devices for phosphoprotein enrichment from a small volume of mixtures.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | | | - Aung Win Tun
- Faculty of Graduate Studies, Mahidol University, Thailand
| | - Amornrat Phongdara
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand; Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Luitzen de Jong
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, the Netherlands
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
13
|
Yu X, Wei S, Yang Y, Ding Z, Wang Q, Zhao J, Liu X, Chu X, Tian J, Wu N, Fan Y. Identification of cadmium-binding proteins from rice (Oryza sativa L.). Int J Biol Macromol 2018; 119:597-603. [DOI: 10.1016/j.ijbiomac.2018.07.190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/02/2018] [Accepted: 07/30/2018] [Indexed: 01/02/2023]
|
14
|
Lau BYC, Othman A, Ramli US. Application of Proteomics Technologies in Oil Palm Research. Protein J 2018; 37:473-499. [DOI: 10.1007/s10930-018-9802-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Mokhonov VV, Vasilenko EA, Gorshkova EN, Astrakhantseva IV, Novikov DV, Novikov VV. SlyD-deficient Escherichia coli strains: A highway to contaminant-free protein extraction. Biochem Biophys Res Commun 2018; 499:967-972. [PMID: 29626483 DOI: 10.1016/j.bbrc.2018.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Binding of native bacterial protein SlyD to metal affinity matrices remains a major problem in affinity purification of His-tagged recombinant proteins from Escherichia coli cells. In this study, four novel E. coli strains that lack the expression of SlyD/SlyX, were engineered using λ-red mediated chromosomal deletion. The resultant mutant E. coli strains allow us to obtain SlyD-free proteins immediately after metal affinity chromatography, and eliminate additional purification processes. As a model protein, bispecific antibodies composed of anti-F4/80 VHH module and anti-TNF VHH module (MYSTI-2) were used. Using this protein we have shown that the SlyD/SlyX-deficient E. coli strains allow us to obtain a fully functional protein.
Collapse
Affiliation(s)
- Vladislav V Mokhonov
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia.
| | - Ekaterina A Vasilenko
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia
| | - Ekaterina N Gorshkova
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia
| | - Irina V Astrakhantseva
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia
| | - Dmitry V Novikov
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia
| | - Viktor V Novikov
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia
| |
Collapse
|
16
|
Hu Y, Romão E, Vertommen D, Vincke C, Morales-Yánez F, Gutiérrez C, Liu C, Muyldermans S. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins. Protein Expr Purif 2017; 137:64-76. [DOI: 10.1016/j.pep.2017.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/26/2022]
|
17
|
Development of a metal/chelate polyhydroxyethylmethacrylate monolith capillary for selective depletion of immunoglobulin G from human plasma for proteomics. J Chromatogr A 2017; 1517:117-125. [DOI: 10.1016/j.chroma.2017.08.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/17/2017] [Accepted: 08/17/2017] [Indexed: 02/03/2023]
|
18
|
Wang Y, Wang H, Li H, Sun H. Application of Metallomics and Metalloproteomics for Understanding the Molecular Mechanisms of Action of Metal-Based Drugs. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2017:199-222. [DOI: 10.1007/978-3-319-55448-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Zhang H, Xia Y, Chen C, Zhuang K, Song Y, Shen Z. Analysis of Copper-Binding Proteins in Rice Radicles Exposed to Excess Copper and Hydrogen Peroxide Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1216. [PMID: 27582750 PMCID: PMC4987373 DOI: 10.3389/fpls.2016.01216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/02/2016] [Indexed: 05/15/2023]
Abstract
Copper (Cu) is an essential micronutrient for plants, but excess Cu can inactivate and disturb the protein function due to unavoidable binding to proteins at the cellular level. As a redox-active metal, Cu toxicity is mediated by the formation of reactive oxygen species (ROS). Cu-binding structural motifs may alleviate Cu-induced damage by decreasing free Cu(2+) activity in cytoplasm or scavenging ROS. The identification of Cu-binding proteins involved in the response of plants to Cu or ROS toxicity may increase our understanding the mechanisms of metal toxicity and tolerance in plants. This study investigated change of Cu-binding proteins in radicles of germinating rice seeds under excess Cu and oxidative stress using immobilized Cu(2+) affinity chromatography, two-dimensional electrophoresis, and mass spectra analysis. Quantitative image analysis revealed that 26 protein spots showed more than a 1.5-fold difference in abundances under Cu or H2O2 treatment compared to the control. The identified Cu-binding proteins were involved in anti-oxidative defense, stress response and detoxification, protein synthesis, protein modification, and metabolism regulation. The present results revealed that 17 out of 24 identified Cu-binding proteins have a similar response to low concentration Cu (20 μM Cu) and H2O2 stress, and 5 out of 24 were increased under low and high concentration Cu (100 μM Cu) but unaffected under H2O2 stress, which hint Cu ions can regulate Cu-binding proteins accumulation by H2O2 or no H2O2 pathway to cope with excess Cu in cell. The change pattern of these Cu-binding proteins and their function analysis warrant to further study the roles of Cu ions in these Cu-binding proteins of plant cells.
Collapse
Affiliation(s)
- Hongxiao Zhang
- College of Agriculture, Henan University of Science and TechnologyLuoyang, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Kai Zhuang
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Yufeng Song
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
20
|
Bakhshpour M, Derazshamshir A, Bereli N, Elkak A, Denizli A. [PHEMA/PEI]–Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:824-31. [DOI: 10.1016/j.msec.2016.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/24/2015] [Accepted: 01/03/2016] [Indexed: 01/05/2023]
|
21
|
Perçin I, Karakoç V, Ergün B, Denizli A. Metal-immobilized magnetic nanoparticles for cytochrome C purification from rat liver. Biotechnol Appl Biochem 2015; 63:31-40. [DOI: 10.1002/bab.1347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Işık Perçin
- Department of Biology; Molecular Biology Division; Hacettepe University; Beytepe Ankara Turkey
| | - Veyis Karakoç
- Department of Chemistry; Biochemistry Division; Hacettepe University; Beytepe Ankara Turkey
| | - Bahar Ergün
- Department of Chemistry; Biochemistry Division; Hacettepe University; Beytepe Ankara Turkey
| | - Adil Denizli
- Department of Chemistry; Biochemistry Division; Hacettepe University; Beytepe Ankara Turkey
| |
Collapse
|
22
|
Sivapragasam M, Abdullah N. RECOVERY OF CYCLODEXTRIN GLUCANOTRANSFERASE (CGTase) USING IMMOBILIZED METAL CHELATING AFFINITY CHROMATOGRAPHY. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2015. [DOI: 10.1590/0104-6632.20150321s00003124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Abstract
PURPOSE OF REVIEW By determining metalloproteomes via high-throughput methodology, metalloproteomics provides a research strategy for investigating nutritional and metabolic issues relating to metals. In this review, we examine recent developments in metalloproteomics since its early days approximately 12 years ago, when we utilized metalloproteomics to investigate copper disposition in hepatocytes in relation to Wilson disease. RECENT FINDINGS A metalloproteome is the set of proteins that have metal-binding capacity by being metalloproteins or manifesting metal-binding sites. Like all proteomes, a metalloproteome is determined within the context of a well defined system. It can be ascertained for a single metal or multiple metals in that system. Apart from major technological advances in analytical techniques, recent work has examined metalloproteomes for metals other than copper, notably nickel, zinc and manganese. Given the importance of microbiomes to metabolism, microbial metalloproteomics is a rapidly expanding and promising new field. SUMMARY Metals play key roles in metabolic processes. Sufficient technological progress has taken place in the past decade to make metalloproteomics an exciting and innovative type of research in nutrition and metabolism. It elucidates how metals contribute to metabolic physiology across the phyla, including in microbes. For humans, it may clarify mechanisms as well as identify informative diagnostic or prognostic biomarkers.
Collapse
Affiliation(s)
- Eve A Roberts
- aDivision of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children bGenetics and Genome Biology Program cMolecular Structure and Function Program, The Hospital for Sick Children Research Institute dDepartments of Paediatrics eMedicine fPharmacology gBiochemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Song Y, Zhang H, Chen C, Wang G, Zhuang K, Cui J, Shen Z. Proteomic analysis of copper-binding proteins in excess copper-stressed rice roots by immobilized metal affinity chromatography and two-dimensional electrophoresis. Biometals 2014; 27:265-76. [DOI: 10.1007/s10534-014-9707-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/23/2014] [Indexed: 11/29/2022]
|
25
|
Synthesis of petal-like ferric oxide/cysteine architectures and their application in affinity separation of proteins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 34:468-73. [PMID: 24268283 DOI: 10.1016/j.msec.2013.09.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/28/2013] [Accepted: 09/29/2013] [Indexed: 11/20/2022]
Abstract
Petal-like ferric oxide/cysteine (FeOOH/Cys) architectures were prepared through a solvothermal route, which possessed high thiol group density. These thiol groups as binding sites can chelate Ni(2+) ions, which can be further used to enrich and separate his-tagged proteins directly from the mixture of lysed cells without sample pretreatment. These results show that the FeOOH/Cys architectures with immobilized Ni(2+) ions present negligible nonspecific protein adsorption and high protein adsorption capacity, with the saturation capacity being 88mg/g, which are especially suitable for purification of his-tagged proteins.
Collapse
|
26
|
Zou X, Li K, Zhao Y, Zhang Y, Li B, Song C. Ferroferric oxide/l-cysteine magnetic nanospheres for capturing histidine-tagged proteins. J Mater Chem B 2013; 1:5108-5113. [PMID: 32261102 DOI: 10.1039/c3tb20726a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferroferric oxide/l-cysteine (Fe3O4/Cys) nanospheres (NSs) have been successfully synthesized via a facile solvothermal route. Fe3O4/Cys NSs possessed high thiol group density and saturation magnetization (Ms) of 84.6 emu g-1. The prepared magnetic NSs are biocompatible and manipulatable by an external magnetic force. After chelating Ni2+ ions, Fe3O4/Cys-Ni2+ NSs were used to enrich and purify histidine-tagged (His-tagged) proteins directly from the mixture of lysed cells without pretreatment. It has been found that Fe3O4/Cys-Ni2+ NSs present negligible nonspecific protein adsorption and high protein binding activity with the saturation capacity being 53.2 μg mg-1 and they are especially suitable for rapid purification of His-tagged proteins.
Collapse
Affiliation(s)
- Xueyan Zou
- Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004, P. R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Cheung RCF, Wong JH, Ng TB. Immobilized metal ion affinity chromatography: a review on its applications. Appl Microbiol Biotechnol 2012; 96:1411-20. [PMID: 23099912 DOI: 10.1007/s00253-012-4507-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 01/14/2023]
Abstract
After 35 years of development, immobilized metal ion affinity chromatography (IMAC) has evolved into a popular protein purification technique. This review starts with a discussion of its mechanism and advantages. It continues with its applications which include the purification of histidine-tagged proteins, natural metal-binding proteins, and antibodies. IMAC used in conjunction with mass spectroscopy for phosphoprotein fractionation and proteomics is also covered. Finally, this review addresses the developments, limitations, and considerations of IMAC in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, China
| | | | | |
Collapse
|
28
|
Ge R, Shan W. Bacterial phosphoproteomic analysis reveals the correlation between protein phosphorylation and bacterial pathogenicity. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:119-27. [PMID: 22196355 PMCID: PMC5054445 DOI: 10.1016/s1672-0229(11)60015-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 08/08/2011] [Indexed: 11/28/2022]
Abstract
Increasing evidence shows that protein phosphorylation on serine, threonine and tyrosine residues is a major regulatory post-translational modification in the bacteria. This review focuses on the implications of bacterial phosphoproteome in bacterial pathogenicity and highlights recent development of methods in phosphoproteomics and the connectivity of the phosphorylation networks. Recent technical developments in the high accuracy mass spectrometry have dramatically transformed proteomics and made it possible the characterization of a few exhaustive site-specific bacterial phosphoproteomes. The high abundance of tyrosine phosphorylations in a few bacterial phosphoproteomes suggests their roles in the pathogenicity, especially in the case of pathogen–host interactions; the high abundance of multi-phosphorylation sites in bacterial phosphoprotein is a compensation of the relatively small phosphorylation size and an indicator of the delicate regulation of protein functions.
Collapse
Affiliation(s)
- Ruiguang Ge
- Laboratory of Integrative Biosciences, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | | |
Collapse
|
29
|
Guerrier L, Fortis F, Boschetti E. Solid-phase fractionation strategies applied to proteomics investigations. Methods Mol Biol 2012; 818:11-33. [PMID: 22083813 DOI: 10.1007/978-1-61779-418-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methods for protein fractionation in the proteomics investigation field are relatively numerous. They apply to the prefractionation of the sample to obtain less complex protein mixtures for an easier analysis; they are also used as a means to evidence specific proteins or protein classes otherwise impossible to detect. They involve depletion of high-abundance proteins suppressing the signal of dilute species; they are also capable to enhance the detectability of low-abundance species while concomitantly decreasing the concentration of abundant proteins such as albumin in serum and hemoglobin in red blood cell lysates. Fractionation of proteomes is also used for the isolation of targeted species that are selected for their different expression under certain pathological conditions and that are detected by mass spectrometry. Two unconventional methods of large interest in proteomics due to the low level of protein redundancy between fractions are also reported.All these methods are reviewed and detailed method given to allow specialists of proteomics investigation to access selected separation methods generally dispersed on different technical reviews or books.
Collapse
Affiliation(s)
- Luc Guerrier
- Bio-Rad Laboratories, Marnes la Coquette, France
| | | | | |
Collapse
|
30
|
Protein fractionation and detection for metalloproteomics: challenges and approaches. Anal Bioanal Chem 2012; 402:3311-22. [DOI: 10.1007/s00216-012-5743-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 12/17/2022]
|
31
|
Tay LL, Huang PJ, Tanha J, Ryan S, Wu X, Hulse J, Chau LK. Silica encapsulated SERS nanoprobe conjugated to the bacteriophage tailspike protein for targeted detection of Salmonella. Chem Commun (Camb) 2011; 48:1024-6. [PMID: 22158658 DOI: 10.1039/c1cc16325f] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica-encapsulated Raman-reporter embedded SERS nanoprobes, named nanoaggregate embedded beads (NAEBs), were conjugated to the Salmonella specific tailspike protein (TSP) isolated from the P22 bacteriophage to enable a highly specific and ultrasensitive optical transduction platform. We demonstrate three successful surface conjugation strategies and highlight the detection of a single bacterium using SERS.
Collapse
Affiliation(s)
- Li-Lin Tay
- National Research Council Canada, Ottawa, Canada.
| | | | | | | | | | | | | |
Collapse
|
32
|
Tichy A, Salovska B, Rehulka P, Klimentova J, Vavrova J, Stulik J, Hernychova L. Phosphoproteomics: Searching for a needle in a haystack. J Proteomics 2011; 74:2786-97. [DOI: 10.1016/j.jprot.2011.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/13/2011] [Accepted: 07/22/2011] [Indexed: 11/27/2022]
|
33
|
Li J, Kelm KB, Tezak Z. Regulatory perspective on translating proteomic biomarkers to clinical diagnostics. J Proteomics 2011; 74:2682-90. [PMID: 21856459 DOI: 10.1016/j.jprot.2011.07.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/13/2011] [Accepted: 07/27/2011] [Indexed: 01/31/2023]
Abstract
Issues associated with the translation of complex proteomic biomarkers from discovery to clinical diagnostics have been widely discussed among academic researchers, government agencies, as well as assay and instrumentation manufacturers. Here, we provide an overview of the regulatory framework and type of information that is typically required in order to evaluate in vitro diagnostic tests regulated by the Office of In Vitro Diagnostic Device Evaluation and Safety (OIVD) at the US Food and Drug Administration (FDA), with the focus on some of the issues specific to protein-based complex tests. Technological points pertaining to mass spectrometry platforms and assessment of potential concerns important for assurance of safety and effectiveness of this type of assays when introduced into clinical diagnostic use, as well as general approaches for evaluating the performance of these devices, are discussed.
Collapse
Affiliation(s)
- Jinong Li
- Office of In Vitro Diagnostic Device Evaluation and Safety, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States.
| | | | | |
Collapse
|
34
|
Sun X, Xiao CL, Ge R, Yin X, Li H, Li N, Yang X, Zhu Y, He X, He QY. Putative copper- and zinc-binding motifs in Streptococcus pneumoniae identified by immobilized metal affinity chromatography and mass spectrometry. Proteomics 2011; 11:3288-98. [PMID: 21751346 DOI: 10.1002/pmic.201000396] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 05/04/2011] [Accepted: 05/11/2011] [Indexed: 11/09/2022]
Abstract
The aim of metalloproteomics is to identify and characterize putative metal-binding proteins and metal-binding motifs. In this study, we performed a systematical metalloproteomic analysis on Streptococcus pneumoniae through the combined use of efficient immobilized metal affinity chromatography enrichment and high-accuracy linear ion trap-Orbitrap MS to identify metal-binding proteins and metal-binding peptides. In total, 232 and 166 putative metal-binding proteins were respectively isolated by Cu- and Zn-immobilized metal affinity chromatography columns, in which 133 proteins were present in both preparations. The putative metalloproteins are mainly involved in protein, nucleotide and carbon metabolisms, oxidation and cell cycle regulation. Based on the sequence of the putative Cu- and Zn-binding peptides, putative Cu-binding motifs were identified: H(X)mH (m=0-11), C(X)(2) C, C(X)nH (n=2-4, 6, 9), H(X)iM (i=0-10) and M(X)tM (t=8 or 12), while putative Zn-binding motifs were identified as follows: H(X)mH (m=1-12), H(X)iM (i=0-12), M(X)tM (t=0, 3 and 4), C(X)nH (n=1, 2, 7, 10 and 11). Equilibrium dialysis and inductively coupled plasma-MS experiments confirmed that the artificially synthesized peptides harboring differential identified metal-binding motifs interacted directly with the metal ions. The metalloproteomic study presented here suggests that the comparably large size and diverse functions of the S. pneumoniae metalloproteome may play important roles in various biological processes and thus contribute to the bacterial pathologies.
Collapse
Affiliation(s)
- Xuesong Sun
- Institute of Life and Health Engineering/National Engineering and Research Center of Genetic Medicine, Jinan University, Guangzhou, P R China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Identification of Proteins Related to Nickel Homeostasis in Helicobater pylori by Immobilized Metal Affinity Chromatography and Two-Dimensional Gel Electrophoresis. Met Based Drugs 2011; 2008:289490. [PMID: 18288244 PMCID: PMC2225478 DOI: 10.1155/2008/289490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 10/21/2007] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a widespread human pathogen causing peptic ulcers and chronic gastritis. Maintaining nickel homeostasis is crucial for the establishment of
H. pylori infection in humans. We used immobilized-nickel affinity chromatography to isolate Ni-related proteins from H. pylori cell extracts. Two-dimensional gel electrophoresis and mass spectrometry were employed to separate and identify twenty two Ni-interacting proteins in H. pylori. These Ni-interacting proteins can be classified into several general functional categories, including cellular processes (HspA, HspB, TsaA, and NapA), enzymes (Urease, Fumarase, GuaB, Cad, PPase, and DmpI), membrane-associated proteins (OM jhp1427 and HpaA), iron storage protein (Pfr), and hypothetical proteins (HP0271, HP jhp0216, HP jhp0301, HP0721, HP0614, and HP jhp0118). The implication of these proteins in nickel homeostasis is discussed.
Collapse
|
36
|
Process intensification of immobilized metal affinity chromatography with longitudinal and oscillatory transverse electric fields. Sep Purif Technol 2011. [DOI: 10.1016/j.seppur.2011.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Tsang C, Ge R, Sun H. Metalloproteomics of Arsenic, Antimony and Bismuth Based Drugs. BIOLOGICAL CHEMISTRY OF ARSENIC, ANTIMONY AND BISMUTH 2010:353-376. [DOI: 10.1002/9780470975503.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Gates MB, Tomer KB, Deterding LJ. Comparison of metal and metal oxide media for phosphopeptide enrichment prior to mass spectrometric analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1649-59. [PMID: 20634090 PMCID: PMC2982680 DOI: 10.1016/j.jasms.2010.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/08/2010] [Accepted: 06/11/2010] [Indexed: 05/15/2023]
Abstract
Several affinity resins consisting of ionic metals or metal oxides were investigated for their phosphopeptide enrichment capabilities with subsequent mass spectrometric analyses. Commercially-available enrichment metal oxide affinity chromatography (MOAC) resins using manufacturer's and/or published protocols were compared and evaluated for the most efficient and selective method that could be implemented as a standard enrichment procedure. From these comparative analyses, using a tryptic digest of casein proteins, it was determined that in our hands, two of the resins out-performed the others based on a variety of criteria, including the number of phosphorylation sites identified during MS analyses, the lower numbers of nonspecifically bound peptides observed, and the limits of detection. Applicability of these enrichment resins to a complex biological mixture was investigated. For this work, a mixture of avian histones was digested, subjected to titanium dioxide phosphopeptide enrichment, and analyzed by mass spectrometry. Eight phosphorylated tryptic peptides were observed following enrichment and subsequent LC/MS/MS analyses. Of note, seven of the eight phosphopeptides were not observed without titanium dioxide enrichment. From these analyses, four sites of phosphorylation were unequivocally determined, two of which have not been reported previously. Four additional phosphopeptides were observed; however, the site of phosphorylation could not be distinguished but was localized to one of two possible amino acids. These methods should aid in the investigation of proteins post-translationally modified with phosphate, especially those present at low concentrations as was demonstrated by successful enrichment at the femtomole level.
Collapse
Affiliation(s)
| | | | - Leesa J. Deterding
- Correspondence: Dr. Leesa Deterding, NIH, NIEHS, Laboratory of Structural Biology, Phone: (919)-541-3009, Fax: (919)-541-0220,
| |
Collapse
|
39
|
Chou HC, Chen YW, Lee TR, Wu FS, Chan HT, Lyu PC, Timms JF, Chan HL. Proteomics study of oxidative stress and Src kinase inhibition in H9C2 cardiomyocytes: a cell model of heart ischemia-reperfusion injury and treatment. Free Radic Biol Med 2010; 49:96-108. [PMID: 20385227 DOI: 10.1016/j.freeradbiomed.2010.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/26/2010] [Accepted: 04/01/2010] [Indexed: 11/25/2022]
Abstract
Protein phosphorylation plays a crucial role in the signal transduction pathways that regulate gene expression, metabolism, cell adhesion, and cell survival in response to oxidative stress. In this study, we have used hydrogen peroxide treatment of H9C2 rat cardiomyocytes as a model of oxidative stress in heart ischemia-reperfusion injury. We show that oxidative stress induces a robust tyrosine phosphorylation of multiple proteins in this cell type. A phosphoproteomics approach using anti-phosphotyrosine affinity purification and LC-MS/MS was then used to identify the protein targets of this stress-induced phosphorylation. Twenty-three tyrosine-phosphorylated proteins were identified, with the majority known to be associated with cell-cell junctions, the actin cytoskeleton, and cell adhesion. This suggested that oxidative stress may have a profound effect on intercellular connections and the cytoskeleton to affect cell adhesion, morphology, and survival. Importantly, Src kinase was shown to be a major upstream regulator of these events. Immunofluorescence studies, fluorescence-activated cell sorting, and cell-based assays were used to demonstrate oxidative stress-induced modification of cell adhesion structures and the cytoskeleton, induced de-adhesion, and increased apoptosis, which were reversed by treatment with the Src kinase inhibitor PP1. These data demonstrate the critical role of Src kinase in oxidative stress-induced phosphorylation and cell damage in cardiomyocytes and suggest that targeting this kinase may be an effective strategy for preventing ischemia-reperfusion injury in the heart.
Collapse
Affiliation(s)
- Hsiu-Chuan Chou
- Tissue Regeneration Bio-Device Tech Lab, Medical Electronics and Device Technology Center, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tiwari N, Woods L, Haley R, Kight A, Goforth R, Clark K, Ataai M, Henry R, Beitle R. Identification and characterization of native proteins of Escherichia coli BL-21 that display affinity towards Immobilized Metal Affinity Chromatography and Hydrophobic Interaction Chromatography Matrices. Protein Expr Purif 2010; 70:191-5. [DOI: 10.1016/j.pep.2009.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 10/20/2022]
|
41
|
Sun H, Chai ZF. Metallomics: An integrated science for metals in biology and medicine. ANNUAL REPORTS SECTION "A" (INORGANIC CHEMISTRY) 2010; 106:20. [DOI: 10.1039/b920672h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
42
|
Cheng KW, Wong CC, Wang M, He QY, Chen F. Identification and characterization of molecular targets of natural products by mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:126-155. [PMID: 19319922 DOI: 10.1002/mas.20235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Natural products, and their derivatives and mimics, have contributed to the development of important therapeutics to combat diseases such as infections and cancers over the past decades. The value of natural products to modern drug discovery is still considerable. However, its development is hampered by a lack of a mechanistic understanding of their molecular action, as opposed to the emerging molecule-targeted therapeutics that are tailored to a specific protein target(s). Recent advances in the mass spectrometry-based proteomic approaches have the potential to offer unprecedented insights into the molecular action of natural products. Chemical proteomics is established as an invaluable tool for the identification of protein targets of natural products. Small-molecule affinity selection combined with mass spectrometry is a successful strategy to "fish" cellular targets from the entire proteome. Mass spectrometry-based profiling of protein expression is also routinely employed to elucidate molecular pathways involved in the therapeutic and possible toxicological responses upon treatment with natural products. In addition, mass spectrometry is increasingly utilized to probe structural aspects of natural products-protein interactions. Limited proteolysis, photoaffinity labeling, and hydrogen/deuterium exchange in conjunction with mass spectrometry are sensitive and high-throughput strategies that provide low-resolution structural information of non-covalent natural product-protein complexes. In this review, we provide an overview on the applications of mass spectrometry-based techniques in the identification and characterization of natural product-protein interactions, and we describe how these applications might revolutionize natural product-based drug discovery.
Collapse
Affiliation(s)
- Ka-Wing Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Li R, Wang Y, Chen GL, Wang XG, Zheng JB. Retention Behavior of Proteins on Glutamic Acid-Boned Silica Stationary Phase. Chromatographia 2009. [DOI: 10.1365/s10337-009-1219-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Torta F, Fusi M, Casari CS, Bottani CE, Bachi A. Titanium Dioxide Coated MALDI Plate for On Target Analysis of Phosphopeptides. J Proteome Res 2009; 8:1932-42. [DOI: 10.1021/pr8008836] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Federico Torta
- Biological Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy, and Dipartimento di Chimica, Materiali e Ingegneria Chimica, NEMAS-Center for NanoEngineered Materials and Surfaces and IIT, Italian Institute of Technology, Politecnico di Milano, Via Ponzio 34/3, I-20133 Milan, Italy
| | - Matteo Fusi
- Biological Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy, and Dipartimento di Chimica, Materiali e Ingegneria Chimica, NEMAS-Center for NanoEngineered Materials and Surfaces and IIT, Italian Institute of Technology, Politecnico di Milano, Via Ponzio 34/3, I-20133 Milan, Italy
| | - Carlo S. Casari
- Biological Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy, and Dipartimento di Chimica, Materiali e Ingegneria Chimica, NEMAS-Center for NanoEngineered Materials and Surfaces and IIT, Italian Institute of Technology, Politecnico di Milano, Via Ponzio 34/3, I-20133 Milan, Italy
| | - Carlo E. Bottani
- Biological Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy, and Dipartimento di Chimica, Materiali e Ingegneria Chimica, NEMAS-Center for NanoEngineered Materials and Surfaces and IIT, Italian Institute of Technology, Politecnico di Milano, Via Ponzio 34/3, I-20133 Milan, Italy
| | - Angela Bachi
- Biological Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy, and Dipartimento di Chimica, Materiali e Ingegneria Chimica, NEMAS-Center for NanoEngineered Materials and Surfaces and IIT, Italian Institute of Technology, Politecnico di Milano, Via Ponzio 34/3, I-20133 Milan, Italy
| |
Collapse
|
46
|
Quan L, Cao Q, Li Z, Li N, Li K, Liu F. Highly efficient and low-cost purification of lysozyme: A novel tris(hydroxymethyl)aminomethane immobilized affinity column. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:594-8. [DOI: 10.1016/j.jchromb.2009.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/08/2009] [Accepted: 01/11/2009] [Indexed: 10/21/2022]
|
47
|
Poetz O, Hoeppe S, Templin MF, Stoll D, Joos TO. Proteome wide screening using peptide affinity capture. Proteomics 2009; 9:1518-23. [DOI: 10.1002/pmic.200800842] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Pernemalm M, Lewensohn R, Lehtiö J. Affinity prefractionation for MS-based plasma proteomics. Proteomics 2009; 9:1420-7. [DOI: 10.1002/pmic.200800377] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
|
50
|
Sun X, Tsang CN, Sun H. Identification and characterization of metallodrug binding proteins by (metallo)proteomics. Metallomics 2009; 1:25-31. [DOI: 10.1039/b813121j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|