1
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Zhang J, Sans M, Garza KY, Eberlin LS. MASS SPECTROMETRY TECHNOLOGIES TO ADVANCE CARE FOR CANCER PATIENTS IN CLINICAL AND INTRAOPERATIVE USE. MASS SPECTROMETRY REVIEWS 2021; 40:692-720. [PMID: 33094861 DOI: 10.1002/mas.21664] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Developments in mass spectrometry technologies have driven a widespread interest and expanded their use in cancer-related research and clinical applications. In this review, we highlight the developments in mass spectrometry methods and instrumentation applied to direct tissue analysis that have been tailored at enhancing performance in clinical research as well as facilitating translation and implementation of mass spectrometry in clinical settings, with a focus on cancer-related studies. Notable studies demonstrating the capabilities of direct mass spectrometry analysis in biomarker discovery, cancer diagnosis and prognosis, tissue analysis during oncologic surgeries, and other clinically relevant problems that have the potential to substantially advance cancer patient care are discussed. Key challenges that need to be addressed before routine clinical implementation including regulatory efforts are also discussed. Overall, the studies highlighted in this review demonstrate the transformative potential of mass spectrometry technologies to advance clinical research and care for cancer patients. © 2020 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Marta Sans
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Kyana Y Garza
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Livia S Eberlin
- Department of Chemistry, University of Texas at Austin, Austin, TX
| |
Collapse
|
3
|
Su M, Zhang Z, Zhou L, Han C, Huang C, Nice EC. Proteomics, Personalized Medicine and Cancer. Cancers (Basel) 2021; 13:2512. [PMID: 34063807 PMCID: PMC8196570 DOI: 10.3390/cancers13112512] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
As of 2020 the human genome and proteome are both at >90% completion based on high stringency analyses. This has been largely achieved by major technological advances over the last 20 years and has enlarged our understanding of human health and disease, including cancer, and is supporting the current trend towards personalized/precision medicine. This is due to improved screening, novel therapeutic approaches and an increased understanding of underlying cancer biology. However, cancer is a complex, heterogeneous disease modulated by genetic, molecular, cellular, tissue, population, environmental and socioeconomic factors, which evolve with time. In spite of recent advances in treatment that have resulted in improved patient outcomes, prognosis is still poor for many patients with certain cancers (e.g., mesothelioma, pancreatic and brain cancer) with a high death rate associated with late diagnosis. In this review we overview key hallmarks of cancer (e.g., autophagy, the role of redox signaling), current unmet clinical needs, the requirement for sensitive and specific biomarkers for early detection, surveillance, prognosis and drug monitoring, the role of the microbiome and the goals of personalized/precision medicine, discussing how emerging omics technologies can further inform on these areas. Exemplars from recent onco-proteogenomic-related publications will be given. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the hurdles that have to be overcome.
Collapse
Affiliation(s)
- Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Chao Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
4
|
Orlando E, Aebersold DM, Medová M, Zimmer Y. Oncogene addiction as a foundation of targeted cancer therapy: The paradigm of the MET receptor tyrosine kinase. Cancer Lett 2019; 443:189-202. [DOI: 10.1016/j.canlet.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
|
5
|
Orlando E, Aebersold R. On the contribution of mass spectrometry-based platforms to the field of personalized oncology. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Mato JM, Elortza F, Lu SC, Brun V, Paradela A, Corrales FJ. Liver cancer-associated changes to the proteome: what deserves clinical focus? Expert Rev Proteomics 2018; 15:749-756. [PMID: 30204005 DOI: 10.1080/14789450.2018.1521277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is recognized as the fifth most common neoplasm and currently represents the second leading form of cancer-related death worldwide. Despite great progress has been done in the understanding of its pathogenesis, HCC represents a heavy societal and economic burden as most patients are still diagnosed at advanced stages and the 5-year survival rate remain below 20%. Early detection and revolutionary therapies that rely on the discovery of new molecular biomarkers and therapeutic targets are therefore urgently needed to develop precision medicine strategies for a more efficient management of patients. Areas covered: This review intends to comprehensively analyse the proteomics-based research conducted in the last few years to address some of the principal still open riddles in HCC biology, based on the identification of molecular drivers of tumor progression and metastasis. Expert commentary: The technical advances in mass spectrometry experienced in the last decade have significantly improved the analytical capacity of proteome wide studies. Large-scale protein and protein variant (post-translational modifications) identification and quantification have allowed detailed dissections of molecular mechanisms underlying HCC progression and are already paving the way for the identification of clinically relevant proteins and the development of their use on patient care.
Collapse
Affiliation(s)
- José M Mato
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain.,b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Félix Elortza
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain.,b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Shelly C Lu
- c Division of Digestive and Liver Diseases , Cedars-Sinai Medical Center , LA , CA , USA
| | - Virginie Brun
- d Université Grenoble-Alpes, CEA, BIG, Biologie à Grande Echelle, Inserm , Grenoble , France
| | - Alberto Paradela
- e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| | - Fernando J Corrales
- b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain.,e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| |
Collapse
|
7
|
Segura V, Valero ML, Cantero L, Muñoz J, Zarzuela E, García F, Aloria K, Beaskoetxea J, Arizmendi JM, Navajas R, Paradela A, Díez P, Dégano RM, Fuentes M, Orfao A, Montero AG, Garin-Muga A, Corrales FJ, Pino MMSD. In-Depth Proteomic Characterization of Classical and Non-Classical Monocyte Subsets. Proteomes 2018; 6:proteomes6010008. [PMID: 29401756 PMCID: PMC5874767 DOI: 10.3390/proteomes6010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 01/02/2023] Open
Abstract
Monocytes are bone marrow-derived leukocytes that are part of the innate immune system. Monocytes are divided into three subsets: classical, intermediate and non-classical, which can be differentiated by their expression of some surface antigens, mainly CD14 and CD16. These cells are key players in the inflammation process underlying the mechanism of many diseases. Thus, the molecular characterization of these cells may provide very useful information for understanding their biology in health and disease. We performed a multicentric proteomic study with pure classical and non-classical populations derived from 12 healthy donors. The robust workflow used provided reproducible results among the five participating laboratories. Over 5000 proteins were identified, and about half of them were quantified using a spectral counting approach. The results represent the protein abundance catalogue of pure classical and enriched non-classical blood peripheral monocytes, and could serve as a reference dataset of the healthy population. The functional analysis of the differences between cell subsets supports the consensus roles assigned to human monocytes.
Collapse
Affiliation(s)
- Víctor Segura
- Proteomics, Genomics and Bioinformatics Unit, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain.
| | - M Luz Valero
- Proteomics Unit; Central Service for Experimental Research (SCSIE), University of Valencia. Dr Moliner 50, 46100 Burjassot, Spain.
| | - Laura Cantero
- Proteomics Unit; Central Service for Experimental Research (SCSIE), University of Valencia. Dr Moliner 50, 46100 Burjassot, Spain.
| | - Javier Muñoz
- Spanish National Cancer Research Centre (CNIO), Melchor Férnandez Almagro, 3, 28029 Madrid. Spain.
| | - Eduardo Zarzuela
- Spanish National Cancer Research Centre (CNIO), Melchor Férnandez Almagro, 3, 28029 Madrid. Spain.
| | - Fernando García
- Spanish National Cancer Research Centre (CNIO), Melchor Férnandez Almagro, 3, 28029 Madrid. Spain.
| | - Kerman Aloria
- Proteomics Core Facility-SGIKER, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain.
| | - Javier Beaskoetxea
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain.
| | - Jesús M Arizmendi
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain.
| | - Rosana Navajas
- Proteomics Unit, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain.
| | - Alberto Paradela
- Proteomics Unit, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain.
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Rosa Mª Dégano
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Alberto Orfao
- Cancer Research Center. University of Salamanca-CSIC, IBSAL, 37007 Salamanca, Spain.
| | - Andrés García Montero
- Spanish National DNA Bank Carlos III, University of Salamanca, 37007 Salamanca, Spain.
| | - Alba Garin-Muga
- Proteomics, Genomics and Bioinformatics Unit, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain.
| | - Fernando J Corrales
- Proteomics Unit, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain.
| | - Manuel M Sánchez Del Pino
- Department of Biochemistry and Molecular Biology, University of Valencia. Dr Moliner 50, 46100 Burjassot, Spain.
- Biotechnology and Biomedicine Interdisciplinary Research Unit (ERI BIOTECMED), University of Valencia. Dr Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
8
|
Mora MI, Molina M, Odriozola L, Elortza F, Mato JM, Sitek B, Zhang P, He F, Latasa MU, Ávila MA, Corrales FJ. Prioritizing Popular Proteins in Liver Cancer: Remodelling One-Carbon Metabolism. J Proteome Res 2017; 16:4506-4514. [PMID: 28944671 DOI: 10.1021/acs.jproteome.7b00390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary liver cancer (HCC) is recognized as the fifth most common neoplasm and the second leading cause of cancer death worldwide. Most risk factors are known, and the molecular pathogenesis has been widely studied in the past decade; however, the underlying molecular mechanisms remain to be unveiled, as they will facilitate the definition of novel biomarkers and clinical targets for more effective patient management. We utilize the B/D-HPP popular protein strategy. We report a list of popular proteins that have been highly cocited with the expression "liver cancer". Several enzymes highlight the known metabolic remodeling of liver cancer cells, four of which participate in one-carbon metabolism. This pathway is central to the maintenance of differentiated hepatocytes, as it is considered the connection between intermediate metabolism and epigenetic regulation. We designed a targeted selective reaction monitoring (SRM) method to follow up one-carbon metabolism adaptation in mouse HCC and in regenerating liver following exposure to CCl4. This method allows systematic monitoring of one-carbon metabolism and could prove useful in the follow-up of HCC and of chronically liver-diseased patients (cirrhosis) at risk of HCC. The SRM data are available via ProteomeXchange in PASSEL (PASS01060).
Collapse
Affiliation(s)
- María Isabel Mora
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Manuela Molina
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Leticia Odriozola
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE , CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - José María Mato
- Proteomics Platform, CIC bioGUNE , CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Pumin Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 100039, China.,National Center for Protein Sciences (The PHOENIX Center, Beijing) , Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 100039, China.,National Center for Protein Sciences (The PHOENIX Center, Beijing) , Beijing 102206, China
| | - María Uxue Latasa
- Hepatology Laboratory, CIMA, University of Navarra , CIBERehd, 31008 Pamplona, Spain
| | - Matías Antonio Ávila
- Hepatology Laboratory, CIMA, University of Navarra , CIBERehd, 31008 Pamplona, Spain
| | - Fernando José Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC , Proteored-ISCIII, CIBERehd. 28049 Madrid, Spain
| |
Collapse
|
9
|
Faria SS, Morris CFM, Silva AR, Fonseca MP, Forget P, Castro MS, Fontes W. A Timely Shift from Shotgun to Targeted Proteomics and How It Can Be Groundbreaking for Cancer Research. Front Oncol 2017; 7:13. [PMID: 28265552 PMCID: PMC5316539 DOI: 10.3389/fonc.2017.00013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
The fact that cancer is a leading cause of death all around the world has naturally sparked major efforts in the pursuit of novel and more efficient biomarkers that could better serve as diagnostic tools, prognostic predictors, or therapeutical targets in the battle against this type of disease. Mass spectrometry-based proteomics has proven itself as a robust and logical alternative to the immuno-based methods that once dominated the field. Nevertheless, intrinsic limitations of classic proteomic approaches such as the natural gap between shotgun discovery-based methods and clinically applicable results have called for the implementation of more direct, hypothesis-based studies such as those made available through targeted approaches, that might be able to streamline biomarker discovery and validation as a means to increase survivability of affected patients. In fact, the paradigm shifting potential of modern targeted proteomics applied to cancer research can be demonstrated by the large number of advancements and increasing examples of new and more useful biomarkers found during the course of this review in different aspects of cancer research. Out of the many studies dedicated to cancer biomarker discovery, we were able to devise some clear trends, such as the fact that breast cancer is the most common type of tumor studied and that most of the research for any given type of cancer is focused on the discovery diagnostic biomarkers, with the exception of those that rely on samples other than plasma and serum, which are generally aimed toward prognostic markers. Interestingly, the most common type of targeted approach is based on stable isotope dilution-selected reaction monitoring protocols for quantification of the target molecules. Overall, this reinforces that notion that targeted proteomics has already started to fulfill its role as a groundbreaking strategy that may enable researchers to catapult the number of viable, effective, and validated biomarkers in cancer clinical practice.
Collapse
Affiliation(s)
- Sara S Faria
- Mastology Program, Federal University of Uberlandia (UFU) , Uberlandia , Brazil
| | - Carlos F M Morris
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Adriano R Silva
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Micaella P Fonseca
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Patrice Forget
- Department of Anesthesiology and Perioperative Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit of Brussel , Brussels , Belgium
| | - Mariana S Castro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| |
Collapse
|
10
|
Huang Z, Ma L, Huang C, Li Q, Nice EC. Proteomic profiling of human plasma for cancer biomarker discovery. Proteomics 2016; 17. [PMID: 27550791 DOI: 10.1002/pmic.201600240] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Zhao Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou P. R. China
- Criminal police detachment of Guang'an City Public Security Bureau; P. R. China
| | - Linguang Ma
- Criminal police detachment of Guang'an City Public Security Bureau; P. R. China
| | - Canhua Huang
- State Key Laboratory for Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
| | - Qifu Li
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou P. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Australia
| |
Collapse
|
11
|
|