1
|
Israni DK, Patel ML, Dodiya RK. Exploring the versatility of miRNA-128: a comprehensive review on its role as a biomarker and therapeutic target in clinical pathways. Mol Biol Rep 2024; 51:860. [PMID: 39068606 DOI: 10.1007/s11033-024-09822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
MicroRNAs (miRNAs/ miRs) are short, noncoding RNAs, usually consisting of 18 to 24 nucleotides, that control gene expression after the process of transcription and have crucial roles in several clinical processes. This article seeks to provide an in-depth review and evaluation of the many activities of miR-128, accentuating its potential as a versatile biomarker and target for therapy; The circulating miR-128 has garnered interest because of its substantial influence on gene regulation and its simplicity in extraction. Several miRNAs, such as miR-128, have been extracted from circulating blood cells, cerebrospinal fluid, and plasma/serum. The miR-128 molecule can specifically target a diverse range of genes, enabling it to have intricate physiological impacts by concurrently regulating many interrelated pathways. It has a vital function in several biological processes, such as modulating the immune system, regulating brain plasticity, organizing the cytoskeleton, and inducing neuronal death. In addition, miR-128 modulates genes associated with cell proliferation, the cell cycle, apoptosis, plasma LDL levels, and gene expression regulation in cardiac development. The dysregulation of miR-128 expression and activity is associated with the development of immunological responses, changes in neural plasticity, programmed cell death, cholesterol metabolism, and heightened vulnerability to autoimmune illnesses, neuroimmune disorders, cancer, and cardiac problems; The paper highlights the importance of studying the consequences of miR-128 dysregulation in these specific locations. By examining the implications of miRNA-128 dysregulation in these areas, the article underscores its significance in diagnosis and treatment, providing a foundation for research and clinical applications.
Collapse
Affiliation(s)
- Dipa K Israni
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India.
| | - Manish L Patel
- LJ Institute of Pharmacy, LJ University, Ahmedabad, Gujarat, India
| | - Rohinee K Dodiya
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India
| |
Collapse
|
2
|
Gorostidi-Aicua M, Reparaz I, Otaegui-Chivite A, García K, Romarate L, Álvarez de Arcaya A, Mendiburu I, Arruti M, Castillo-Triviño T, Moles L, Otaegui D. Bacteria-Fungi Interactions in Multiple Sclerosis. Microorganisms 2024; 12:872. [PMID: 38792701 PMCID: PMC11124083 DOI: 10.3390/microorganisms12050872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Multiple sclerosis (MS) arises from a complex interplay between host genetic factors and environmental components, with the gut microbiota emerging as a key area of investigation. In the current study, we used ion torrent sequencing to delve into the bacteriome (bacterial microbiota) and mycobiome (fungal microbiota) of people with MS (pwMS), and compared them to healthy controls (HC). Through principal coordinate, diversity, and abundance analyses, as well as clustering and cross-kingdom microbial correlation assessments, we uncovered significant differences in the microbial profiles between pwMS and HC. Elevated levels of the fungus Torulaspora and the bacterial family Enterobacteriaceae were observed in pwMS, whereas beneficial bacterial taxa, such as Prevotelladaceae and Dialister, were reduced. Notably, clustering analysis revealed overlapping patterns in the bacteriome and mycobiome data for 74% of the participants, with weakened cross-kingdom interactions evident in the altered microbiota of pwMS. Our findings highlight the dysbiosis of both bacterial and fungal microbiota in MS, characterized by shifts in biodiversity and composition. Furthermore, the distinct disease-associated pattern of fungi-bacteria interactions suggests that fungi, in addition to bacteria, contribute to the pathogenesis of MS. Overall, our study sheds light on the intricate microbial dynamics underlying MS, paving the way for further investigation into the potential therapeutic targeting of the gut microbiota in MS management.
Collapse
Affiliation(s)
- Miriam Gorostidi-Aicua
- Biogipuzkoa Health Research Institute, Neuroimmunology Group, 20014 San Sebastián, Spain; (M.G.-A.); (I.R.); (A.O.-C.); (K.G.); (L.R.); (I.M.); (M.A.); (T.C.-T.)
- Center for Biomedical Research Network in Neurodegenerative Diseases (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
| | - Iraia Reparaz
- Biogipuzkoa Health Research Institute, Neuroimmunology Group, 20014 San Sebastián, Spain; (M.G.-A.); (I.R.); (A.O.-C.); (K.G.); (L.R.); (I.M.); (M.A.); (T.C.-T.)
| | - Ane Otaegui-Chivite
- Biogipuzkoa Health Research Institute, Neuroimmunology Group, 20014 San Sebastián, Spain; (M.G.-A.); (I.R.); (A.O.-C.); (K.G.); (L.R.); (I.M.); (M.A.); (T.C.-T.)
- Center for Biomedical Research Network in Neurodegenerative Diseases (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
| | - Koldo García
- Biogipuzkoa Health Research Institute, Neuroimmunology Group, 20014 San Sebastián, Spain; (M.G.-A.); (I.R.); (A.O.-C.); (K.G.); (L.R.); (I.M.); (M.A.); (T.C.-T.)
| | - Leire Romarate
- Biogipuzkoa Health Research Institute, Neuroimmunology Group, 20014 San Sebastián, Spain; (M.G.-A.); (I.R.); (A.O.-C.); (K.G.); (L.R.); (I.M.); (M.A.); (T.C.-T.)
| | - Amaya Álvarez de Arcaya
- Neurology Department, Osakidetza Basque Health Service, Hospital Universitario Araba, 01009 Vitoria-Gasteiz, Spain;
| | - Idoia Mendiburu
- Biogipuzkoa Health Research Institute, Neuroimmunology Group, 20014 San Sebastián, Spain; (M.G.-A.); (I.R.); (A.O.-C.); (K.G.); (L.R.); (I.M.); (M.A.); (T.C.-T.)
- Neurology Department, Osakidetza Basque Health Service, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Maialen Arruti
- Biogipuzkoa Health Research Institute, Neuroimmunology Group, 20014 San Sebastián, Spain; (M.G.-A.); (I.R.); (A.O.-C.); (K.G.); (L.R.); (I.M.); (M.A.); (T.C.-T.)
- Neurology Department, Osakidetza Basque Health Service, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Tamara Castillo-Triviño
- Biogipuzkoa Health Research Institute, Neuroimmunology Group, 20014 San Sebastián, Spain; (M.G.-A.); (I.R.); (A.O.-C.); (K.G.); (L.R.); (I.M.); (M.A.); (T.C.-T.)
- Center for Biomedical Research Network in Neurodegenerative Diseases (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Neurology Department, Osakidetza Basque Health Service, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Laura Moles
- Biogipuzkoa Health Research Institute, Neuroimmunology Group, 20014 San Sebastián, Spain; (M.G.-A.); (I.R.); (A.O.-C.); (K.G.); (L.R.); (I.M.); (M.A.); (T.C.-T.)
- Center for Biomedical Research Network in Neurodegenerative Diseases (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
| | - David Otaegui
- Biogipuzkoa Health Research Institute, Neuroimmunology Group, 20014 San Sebastián, Spain; (M.G.-A.); (I.R.); (A.O.-C.); (K.G.); (L.R.); (I.M.); (M.A.); (T.C.-T.)
- Center for Biomedical Research Network in Neurodegenerative Diseases (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
| |
Collapse
|
3
|
Emami Nejad A, Mostafavi Zadeh SM, Nickho H, Sadoogh Abbasian A, Forouzan A, Ahmadlou M, Nedaeinia R, Shaverdi S, Manian M. The role of microRNAs involved in the disorder of blood-brain barrier in the pathogenesis of multiple sclerosis. Front Immunol 2023; 14:1281567. [PMID: 38193092 PMCID: PMC10773759 DOI: 10.3389/fimmu.2023.1281567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 01/10/2024] Open
Abstract
miRNAs are involved in various vital processes, including cell growth, development, apoptosis, cellular differentiation, and pathological cellular activities. Circulating miRNAs can be detected in various body fluids including serum, plasma, saliva, and urine. It is worth mentioning that miRNAs remain stable in the circulation in biological fluids and are released from membrane-bound vesicles called exosomes, which protect them from RNase activity. It has been shown that miRNAs regulate blood-brain barrier integrity by targeting both tight junction and adherens junction molecules and can also influence the expression of inflammatory cytokines. Some recent studies have examined the impact of certain commonly used drugs in Multiple Sclerosis on miRNA levels. In this review, we will focus on the recent findings on the role of miRNAs in multiple sclerosis, including their role in the cause of MS and molecular mechanisms of the disease, utilizing miRNAs as diagnostic and clinical biomarkers, using miRNAs as a therapeutic modality or target for Multiple Sclerosis and drug responses in patients, elucidating their importance as prognosticators of disease progression, and highlighting their potential as a future treatment for MS.
Collapse
Affiliation(s)
| | - Seyed Mostafa Mostafavi Zadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Nickho
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sadoogh Abbasian
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azim Forouzan
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Ahmadlou
- Department of Biostatistics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saham Shaverdi
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medicine, Islamic Azad University, Kermanshah, Iran
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Margiana R, Kzar HH, Hussam F, Hameed NM, Al-Qaim ZH, Al-Gazally ME, Kandee M, Saleh MM, Toshbekov BBU, Tursunbaev F, Karampoor S, Mirzaei R. Exploring the impact of miR-128 in inflammatory diseases: A comprehensive study on autoimmune diseases. Pathol Res Pract 2023; 248:154705. [PMID: 37499519 DOI: 10.1016/j.prp.2023.154705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
microRNAs (miRNAs) play a crucial role in various biological processes, including immune system regulation, such as cell proliferation, tolerance (central and peripheral), and T helper cell development. Dysregulation of miRNA expression and activity can disrupt immune responses and increase susceptibility to neuroimmune disorders. Conversely, miRNAs have been shown to have a protective role in modulating immune responses and preventing autoimmunity. Specifically, reducing the expression of miRNA-128 (miR-128) in an Alzheimer's disease (AD) mouse model has been found to improve cognitive deficits and reduce neuropathology. This comprehensive review focuses on the significance of miR-128 in the pathogenesis of neuroautoimmune disorders, including multiple sclerosis (MS), AD, Parkinson's disease (PD), Huntington's disease (HD), epilepsy, as well as other immune-mediated diseases such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). Additionally, we present compelling evidence supporting the potential use of miR-128 as a diagnostic or therapeutic biomarker for neuroimmune disorders. Collectively, the available literature suggests that targeting miR-128 could be a promising strategy to alleviate the behavioral symptoms associated with neuroimmune diseases. Furthermore, further research in this area may uncover new insights into the molecular mechanisms underlying these disorders and potentially lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | - Fadhil Hussam
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Iraq
| | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Iraq
| | | | | | - Mahmoud Kandee
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh 33516, Egypt
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | | | - Farkhod Tursunbaev
- MD, Independent Researcher, "Medcloud" educational centre, Tashkent, Uzbekistan
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Palacio PL, Pleet ML, Reátegui E, Magaña SM. Emerging role of extracellular vesicles in multiple sclerosis: From cellular surrogates to pathogenic mediators and beyond. J Neuroimmunol 2023; 377:578064. [PMID: 36934525 PMCID: PMC10124134 DOI: 10.1016/j.jneuroim.2023.578064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Multiple Sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system (CNS) driven by a complex interplay of genetic and environmental factors. While the therapeutic arsenal has expanded significantly for management of relapsing forms of MS, treatment of individuals with progressive MS is suboptimal. This treatment inequality is in part due to an incomplete understanding of pathomechanisms at different stages of the disease-underscoring the critical need for new biomarkers. Extracellular vesicles (EVs) and their bioactive cargo have emerged as endogenous nanoparticles with great theranostic potential-as diagnostic and prognostic biomarkers and ultimately as therapeutic candidates for precision nanotherapeutics. The goals of this review are to: 1) summarize the current data investigating the role of EVs and their bioactive cargo in MS pathogenesis, 2) provide a high level overview of advances and challenges in EV isolation and characterization for translational studies, and 3) conclude with future perspectives on this evolving field.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michelle L Pleet
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Setty M Magaña
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
6
|
Alshahrani SH, Alameri AA, Kahar F, Alexis Ramírez-Coronel A, Fadhel Obaid R, Alsaikhan F, Zabibah RS, Qasim QA, Altalbawy FMA, Fakri Mustafa Y, Mirzaei R, Karampoor S. Overview of the role and action mechanism of microRNA-128 in viral infections. Microb Pathog 2023; 176:106020. [PMID: 36746316 DOI: 10.1016/j.micpath.2023.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Recently in vivo and in vitro studies have provided evidence establishing the significance of microRNAs (miRNAs) in both physiological and pathological conditions. In this regard, the role of miRNA-128 (miR-128) in health and diseases has been found, and its critical regulatory role in the context of some viral diseases has been recently identified. For instance, it has been found that miR-128 can serve as an antiviral mediator and significantly limit the replication and dissemination of human immunodeficiency virus type 1 (HIV-1). Besides, it has been noted that poliovirus receptor-related 4 (PVRL4) is post-transcriptionally regulated by miR-128, representing possible miRNA targets that can modulate measles virus infection. Of note, the downregulation of seminal exosomes eca-miR-128 is associated with the long-term persistence of Equine arteritis virus (EAV) in the reproductive tract, and this particular miRNA is a putative regulator of chemokine ligand 16 (C-X-C motif) as determined by target prediction analysis. In this review, the latest information on the role and action mechanism of miR-128 in viral infections will be summarized and discussed in detail.
Collapse
Affiliation(s)
- Shadia Hamoud Alshahrani
- Medical Surgical Nursing Department, King Khalid University, Almahala, Khamis Mushate, Saudi Arabia
| | - Ameer A Alameri
- Department of Chemistry, University of Babylon, Babylon, Iraq
| | - Fitriani Kahar
- Medic Technology Laboratory, Poltekkes Kemenkes Semarang, Indonesia
| | - Andrés Alexis Ramírez-Coronel
- National University of Education, Azogues, Ecuador; Catholic University of Cuenca, Azogues Campus, Ecuador; University of Palermo, Buenos Aires, Argentina; CES University, Colombia, Azogues, Ecuador
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt; Department of Chemistry, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Cuomo-Haymour N, Bergamini G, Russo G, Kulic L, Knuesel I, Martin R, Huss A, Tumani H, Otto M, Pryce CR. Differential Expression of Serum Extracellular Vesicle miRNAs in Multiple Sclerosis: Disease-Stage Specificity and Relevance to Pathophysiology. Int J Mol Sci 2022; 23:ijms23031664. [PMID: 35163583 PMCID: PMC8836256 DOI: 10.3390/ijms23031664] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS). Its first clinical presentation (clinically isolated syndrome, CIS) is often followed by the development of relapsing–remitting MS (RRMS). The periphery-to-CNS transmission of inflammatory molecules is a major pathophysiological pathway in MS. This could include signalling via extracellular vesicle (EV) microRNAs (miRNAs). In this study, we investigated the serum EV miRNome in CIS and RRMS patients and matched controls, with the aims to identify MS stage-specific differentially expressed miRNAs and investigate their biomarker potential and pathophysiological relevance. miRNA sequencing was conducted on serum EVs from CIS-remission, RRMS-relapse, and viral inflammatory CNS disorder patients, as well as from healthy and hospitalized controls. Differential expression analysis was conducted, followed by predictive power and target-pathway analysis. A moderate number of dysregulated serum EV miRNAs were identified in CIS-remission and RRMS-relapse patients, especially relative to healthy controls. Some of these miRNAs were also differentially expressed between the two MS stages and had biomarker potential for patient-control and CIS–RRMS separations. For the mRNA targets of the RRMS-relapse-specific EV miRNAs, biological processes inherent to MS pathophysiology were identified using in silico analysis. Study findings demonstrate that specific serum EV miRNAs have MS stage-specific biomarker potential and contribute to the identification of potential targets for novel, efficacious therapies.
Collapse
Affiliation(s)
- Nagiua Cuomo-Haymour
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Luka Kulic
- Roche Innovation Center Basel, Neuroimmunology Division, Roche Pharma Research and Early Development, 4070 Basel, Switzerland
| | - Irene Knuesel
- Roche Innovation Center Basel, Neuroimmunology Division, Roche Pharma Research and Early Development, 4070 Basel, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, 8006 Zurich, Switzerland
| | - André Huss
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Halle, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
8
|
Mondello S, Kobeissy FH, Mechref Y, Zhao J, El Hayek S, Zibara K, Moresco M, Plazzi G, Cosentino FII, Ferri R. Searching for Novel Candidate Biomarkers of RLS in Blood by Proteomic Analysis. Nat Sci Sleep 2021; 13:873-883. [PMID: 34234594 PMCID: PMC8243594 DOI: 10.2147/nss.s311801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE We performed comparative proteomic analyses of blood of patients with RLS and healthy individuals aiming to identify potential biomarker and therapeutic target candidate for RLS. PATIENTS AND METHODS Blood serum samples from 12 patients with a clinical diagnosis of RLS (8 females and 4 males, with a mean age of 68.52 years) and 10 healthy controls (5 females and 5 males, with a mean age of 67.61 years) underwent proteomic profiling by liquid chromatography coupled with tandem mass spectrometry. Pathway analysis incorporating protein-protein interaction networks was carried out to identify pathological processes linked to the differentially expressed proteins. RESULTS We quantified 272 proteins in patients with RLS and healthy controls, of which 243 were shared. Five proteins - apolipoprotein C-II, leucine-rich alpha-2-glycoprotein 1, FLJ92374, extracellular matrix protein 1, and FLJ93143 - were substantially increased in RLS patients, whereas nine proteins - vitamin D-binding protein, FLJ78071, alpha-1-antitrypsin, CD5 antigen-like, haptoglobin, fibrinogen alpha chain, complement factor H-related protein 1, platelet factor 4, and plasma protease C1 inhibitor - were decreased. Bioinformatics analyses revealed that these proteins were linked to 1) inflammatory and immune response, and complement activation, 2) brain-related development, cell aging, and memory disorders, 3) pregnancy and associated complications, 4) myocardial infarction, and 5) reactive oxygen species generation and subsequent diabetes mellitus. CONCLUSION Our findings shed light on the multifactorial nature of RLS and identified a set of circulating proteins that may have clinical importance as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Firas H Kobeissy
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Samer El Hayek
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- Department of Biology, Faculty of Sciences-I, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Monica Moresco
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
9
|
Martinez B, Peplow PV. MicroRNAs in blood and cerebrospinal fluid as diagnostic biomarkers of multiple sclerosis and to monitor disease progression. Neural Regen Res 2020; 15:606-619. [PMID: 31638082 PMCID: PMC6975152 DOI: 10.4103/1673-5374.266905] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a chronic autoimmune disease of the central nervous system. It is the main cause of non-traumatic neurological disability in young adults. Multiple sclerosis mostly affects people aged 20-50 years; however, it can occur in young children and much older adults. Factors identified in the distribution of MS include age, gender, genetics, environment, and ethnic background. Multiple sclerosis is usually associated with progressive degrees of disability. The disease involves demyelination of axons of the central nervous system and causes brain and spinal cord neuronal loss and atrophy. Diagnosing multiple sclerosis is based on a patient's medical history including symptoms, physical examination, and various tests such as magnetic resonance imaging, cerebrospinal fluid and blood tests, and electrophysiology. The disease course of multiple sclerosis is not well correlated with the biomarkers presently used in clinical practice. Blood-derived biomarkers that can detect and distinguish the different phenotypes in multiple sclerosis may be advantageous in personalized treatment with disease-modifying drugs and to predict response to treatment. The studies reviewed have shown that the expression levels of a large number of miRNAs in peripheral blood, serum, exosomes isolated from serum, and cerebrospinal fluid are altered in multiple sclerosis and can distinguish the disease phenotypes from each other. Further studies are warranted to independently validate these findings so that individual or pairs of miRNAs in serum or cerebrospinal fluid can be used as potential diagnostic markers for adult and pediatric multiple sclerosis and for monitoring disease progression and response to therapy.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, Merced, CA, USA; Department of Medicine, St. Georges University School of Medicine, Grenada; Department of Physics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Mohamed Koriem KM. Corrigendum to ‘Multiple sclerosis: New insights and trends’. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Huang Q, Xiao B, Ma X, Qu M, Li Y, Nagarkatti P, Nagarkatti M, Zhou J. MicroRNAs associated with the pathogenesis of multiple sclerosis. J Neuroimmunol 2016; 295-296:148-61. [DOI: 10.1016/j.jneuroim.2016.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
|
12
|
|