1
|
Godefroy W, Faivre L, Sansac C, Thierry B, Allain JM, Bruneval P, Agniel R, Kellouche S, Monasson O, Peroni E, Jarraya M, Setterblad N, Braik M, Even B, Cheverry S, Domet T, Albanese P, Larghero J, Cattan P, Arakelian L. Development and qualification of clinical grade decellularized and cryopreserved human esophagi. Sci Rep 2023; 13:18283. [PMID: 37880340 PMCID: PMC10600094 DOI: 10.1038/s41598-023-45610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
Tissue engineering is a promising alternative to current full thickness circumferential esophageal replacement methods. The aim of our study was to develop a clinical grade Decellularized Human Esophagus (DHE) for future clinical applications. After decontamination, human esophagi from deceased donors were placed in a bioreactor and decellularized with sodium dodecyl sulfate (SDS) and ethylendiaminetetraacetic acid (EDTA) for 3 days. The esophagi were then rinsed in sterile water and SDS was eliminated by filtration on an activated charcoal cartridge for 3 days. DNA was removed by a 3-hour incubation with DNase. A cryopreservation protocol was evaluated at the end of the process to create a DHE cryobank. The decellularization was efficient as no cells and nuclei were observed in the DHE. Sterility of the esophagi was obtained at the end of the process. The general structure of the DHE was preserved according to immunohistochemical and scanning electron microscopy images. SDS was efficiently removed, confirmed by a colorimetric dosage, lack of cytotoxicity on Balb/3T3 cells and mesenchymal stromal cell long term culture. Furthermore, DHE did not induce lymphocyte proliferation in-vitro. The cryopreservation protocol was safe and did not affect the tissue, preserving the biomechanical properties of the DHE. Our decellularization protocol allowed to develop the first clinical grade human decellularized and cryopreserved esophagus.
Collapse
Affiliation(s)
- William Godefroy
- Service de Chirurgie Viscérale, Cancérologique et Endocrinienne, Hôpital Saint-Louis - Université Paris Cité, Paris, France.
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France.
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
| | - Caroline Sansac
- Banque de Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Briac Thierry
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
- Service d'ORL Pédiatrique, AP-HP, Hôpital Universitaire Necker, 75015, Paris, France
| | - Jean-Marc Allain
- LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Inria, Paris, France
| | - Patrick Bruneval
- Service d'Anatomie Pathologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy-Pontoise, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy-Pontoise, France
| | - Olivier Monasson
- CNRS, BioCIS, CY Cergy Paris Université, 95000, Cergy Pontoise, France
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Elisa Peroni
- CNRS, BioCIS, CY Cergy Paris Université, 95000, Cergy Pontoise, France
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Mohamed Jarraya
- Banque de Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Niclas Setterblad
- UMS Saint-Louis US53 / UAR2030, Institut de Recherche Saint-Louis Plateforme Technologique Centre, Université Paris Cité - Inserm - CNRS, Paris, France
| | - Massymissa Braik
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Benjamin Even
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Sophie Cheverry
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Thomas Domet
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
| | - Patricia Albanese
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Jérôme Larghero
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
- Centre MEARY de Thérapie Cellulaire Et Génique, AP-HP, Hôpital Saint-Louis, 75010, Paris, France
| | - Pierre Cattan
- Service de Chirurgie Viscérale, Cancérologique et Endocrinienne, Hôpital Saint-Louis - Université Paris Cité, Paris, France
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
| | - Lousineh Arakelian
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France.
| |
Collapse
|
2
|
Deguchi K, Zambaiti E, De Coppi P. Regenerative medicine: current research and perspective in pediatric surgery. Pediatr Surg Int 2023; 39:167. [PMID: 37014468 PMCID: PMC10073065 DOI: 10.1007/s00383-023-05438-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
The field of regenerative medicine, encompassing several disciplines including stem cell biology and tissue engineering, continues to advance with the accumulating research on cell manipulation technologies, gene therapy and new materials. Recent progress in preclinical and clinical studies may transcend the boundaries of regenerative medicine from laboratory research towards clinical reality. However, for the ultimate goal to construct bioengineered transplantable organs, a number of issues still need to be addressed. In particular, engineering of elaborate tissues and organs requires a fine combination of different relevant aspects; not only the repopulation of multiple cell phenotypes in an appropriate distribution but also the adjustment of the host environmental factors such as vascularisation, innervation and immunomodulation. The aim of this review article is to provide an overview of the recent discoveries and development in stem cells and tissue engineering, which are inseparably interconnected. The current status of research on tissue stem cells and bioengineering, and the possibilities for application in specific organs relevant to paediatric surgery have been specifically focused and outlined.
Collapse
Affiliation(s)
- Koichi Deguchi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Elisa Zambaiti
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- UOC Chirurgia Pediatrica, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK.
- NIHR BRC SNAPS Great Ormond Street Hospitals, London, UK.
- Stem Cells and Regenerative Medicine Section, Faculty of Population Health Sciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
3
|
Barbon S, Biccari A, Stocco E, Capovilla G, D’Angelo E, Todesco M, Sandrin D, Bagno A, Romanato F, Macchi V, De Caro R, Agostini M, Merigliano S, Valmasoni M, Porzionato A. Bio-Engineered Scaffolds Derived from Decellularized Human Esophagus for Functional Organ Reconstruction. Cells 2022; 11:cells11192945. [PMID: 36230907 PMCID: PMC9563623 DOI: 10.3390/cells11192945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Esophageal reconstruction through bio-engineered allografts that highly resemble the peculiar properties of the tissue extracellular matrix (ECM) is a prospective strategy to overcome the limitations of current surgical approaches. In this work, human esophagus was decellularized for the first time in the literature by comparing three detergent-enzymatic protocols. After decellularization, residual DNA quantification and histological analyses showed that all protocols efficiently removed cells, DNA (<50 ng/mg of tissue) and muscle fibers, preserving collagen/elastin components. The glycosaminoglycan fraction was maintained (70–98%) in the decellularized versus native tissues, while immunohistochemistry showed unchanged expression of specific ECM markers (collagen IV, laminin). The proteomic signature of acellular esophagi corroborated the retention of structural collagens, basement membrane and matrix–cell interaction proteins. Conversely, decellularization led to the loss of HLA-DR expression, producing non-immunogenic allografts. According to hydroxyproline quantification, matrix collagen was preserved (2–6 µg/mg of tissue) after decellularization, while Second-Harmonic Generation imaging highlighted a decrease in collagen intensity. Based on uniaxial tensile tests, decellularization affected tissue stiffness, but sample integrity/manipulability was still maintained. Finally, the cytotoxicity test revealed that no harmful remnants/contaminants were present on acellular esophageal matrices, suggesting allograft biosafety. Despite the different outcomes showed by the three decellularization methods (regarding, for example, tissue manipulability, DNA removal, and glycosaminoglycans/hydroxyproline contents) the ultimate validation should be provided by future repopulation tests and in vivo orthotopic implant of esophageal scaffolds.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Andrea Biccari
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Giovanni Capovilla
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Edoardo D’Angelo
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Deborah Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Marco Agostini
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-96-40-160
| | - Stefano Merigliano
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Michele Valmasoni
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| |
Collapse
|
4
|
Pien N, Palladino S, Copes F, Candiani G, Dubruel P, Van Vlierberghe S, Mantovani D. Tubular bioartificial organs: From physiological requirements to fabrication processes and resulting properties. A critical review. Cells Tissues Organs 2021; 211:420-446. [PMID: 34433163 DOI: 10.1159/000519207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Nele Pien
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sara Palladino
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
- GenT Lab, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
| | - Gabriele Candiani
- GenT Lab, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
| |
Collapse
|
5
|
Levenson G, Berger A, Demma J, Perrod G, Domet T, Arakelian L, Bruneval P, Broudin C, Jarraya M, Setterblad N, Rahmi G, Larghero J, Cattan P, Faivre L, Poghosyan T. Circumferential esophageal replacement by a decellularized esophageal matrix in a porcine model. Surgery 2021; 171:384-392. [PMID: 34392978 DOI: 10.1016/j.surg.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tissue engineering is an attractive alternative to conventional esophageal replacement techniques using intra-abdominal organs which are associated with a substantial morbidity. The objective was to evaluate the feasibility of esophageal replacement by an allogenic decellularized esophagus in a porcine model. Secondary objectives were to evaluate the benefit of decellularized esophagus recellularization with autologous bone marrow mesenchymal stromal cells and omental maturation of the decellularized esophagus. METHODS Eighteen pigs divided into 4 experimental groups according to mesenchymal stromal cells recellularization and omental maturation underwent a 5-cm long circumferential replacement of the thoracic esophagus. Turbo green florescent protein labelling was used for in vivo mesenchymal stromal cells tracking. The graft area was covered by a stent for 3 months. Clinical and histologic outcomes were analyzed over a 6-month period. RESULTS The median follow-up was 112 days [5; 205]. Two animals died during the first postoperative month, 2 experienced an anastomotic leakage, 13 experienced a graft area stenosis following stent migration of which 3 were sacrificed as initially planned after successful endoscopic treatment. The stent could be removed in 2 animals: the graft area showed a continuous mucosa without stenosis. After 3 months, the graft area showed a tissue specific regeneration with a mature epithelium and muscular cells. Clinical and histologic results were similar across experimental groups. CONCLUSION Circumferential esophageal replacement by a decellularized esophagus was feasible and allowed tissue remodeling toward an esophageal phenotype. We could not demonstrate any benefit provided by the omental maturation of the decellularized esophagus nor its recellularization with mesenchymal stromal cells.
Collapse
Affiliation(s)
- Guillaume Levenson
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Department de Chirurgie Viscérale, Oncologique, et Endocrinienne, Paris, France; INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France. https://twitter.com/Levenson_G
| | - Arthur Berger
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Gastroentérologie, Paris, France. https://twitter.com/bergerarthur7
| | - Jonathan Demma
- Hadassah Medical Center, Service de Chirurgie Générale, Université Hébraïque de Jerusalem, Jerusalem, Israel
| | - Guillaume Perrod
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Gastroentérologie, Paris, France
| | - Thomas Domet
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
| | - Lousineh Arakelian
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
| | - Patrick Bruneval
- Department of Pathology, Georges-Pompidou European hospital, AP-HP and Université de Paris, Paris, France
| | - Chloe Broudin
- Department of Pathology, Georges-Pompidou European hospital, AP-HP and Université de Paris, Paris, France
| | - Mohamed Jarraya
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Banque de Tissus Humains, Paris, France
| | - Niclas Setterblad
- Plateforme technologique de l'IRSL/ Technological Core Facility, Saint-Louis Research Institute, Saint-louis Hospital, Université de Paris
| | - Gabriel Rahmi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Gastroentérologie, Paris, France
| | - Jerome Larghero
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
| | - Pierre Cattan
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Department de Chirurgie Viscérale, Oncologique, et Endocrinienne, Paris, France; INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France.
| | - Lionel Faivre
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France. https://twitter.com/FaivreLionel1
| | - Tigran Poghosyan
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirugie Viscérale et Oncologique, Paris, France. https://twitter.com/PoghosyanTigra1
| |
Collapse
|
6
|
Goyal RP, Gangwar AK, Khangembam SD, Yadav VK, Kumar R, Verma RK, Kumar N. Decellularization of caprine esophagus using fruit pericarp extract of Sapindus mukorossi. Cell Tissue Bank 2021; 23:79-92. [PMID: 33768473 DOI: 10.1007/s10561-021-09916-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
Biological detergents like sodium deoxycholate, sodium dodecyl sulphate and Triton X-100 impairs the collagenous and non-collagenous proteins, glycosaminoglycans and growth factors. Further, certain chemical and enzymes are responsible for residual cytotoxicity in the decellularized extracellular matrix. The main focus of this study was to explore the decellularization property of soap nut pericarp extract (SPE) for development of decellularized tubular esophageal scaffold. For this 2.5, 5.0 and 10% concentrations of SPE were used for decellularization of caprine esophageal tissues. Histological analysis of hematoxylin and eosin and Masson's trichrome stained tissue samples confirmed decellularization with preservation of extracellular matrix microarchitecture. Scanning electron microscopic images of luminal surface of decellularized esophageal matrix showed randomly oriented collagen fibres with large interconnected pores and cells were absent. However, the external surface was more textured with fibrous structures and collagen fibres were well preserved. DAPI stained decellularized tissues revealed complete removal of nuclear components, verified by DNA content measurement and SDS-PAGE. The FTIR spectra of decellularized esophagus shows absorption peaks of amide A, B, I, II and III. Elastic modulus of the decellularized esophagus scaffolds increased (P > 0.05) as compared to native tissues. Histological and scanning electron microscopic evaluation of in vitro seeded scaffolds showed attachment and growth of primary chicken embryo fibroblasts over and within the decellularized scaffolds. It was concluded that 5% SPE is ideal for preparation of cytocompatible decellularized caprine esophageal scaffold with well-preserved extracellular matrix architecture and, may be used as an alternative to biological detergents and other chemicals.
Collapse
Affiliation(s)
- Ravi Prakash Goyal
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India
| | - Anil Kumar Gangwar
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India.
| | - Sangeeta Devi Khangembam
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India
| | - Vipin Kumar Yadav
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India
| | - Rabindra Kumar
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India
| | - Rajesh Kumar Verma
- Department of Veterinary Clinical Complex, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India
| | - Naveen Kumar
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243122, India
| |
Collapse
|
7
|
Wu Y, Kang YG, Kim IG, Kim JE, Lee EJ, Chung EJ, Shin JW. Mechanical stimuli enhance simultaneous differentiation into oesophageal cell lineages in a double-layered tubular scaffold. J Tissue Eng Regen Med 2019; 13:1394-1405. [PMID: 31066514 DOI: 10.1002/term.2881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/02/2023]
Abstract
The tissue-engineered oesophagus serves as an alternative and promising therapeutic approach for long-gap oesophageal replacement. This study proposes an advanced in vitro culture platform focused on construction of the oesophagus by combining an electrospun double-layered tubular scaffold, stem cells, biochemical reagents, and biomechanical factors. Human mesenchymal stem cells were seeded onto the inner and outer surfaces of the scaffold. Mechanical stimuli were applied with a hollow organ bioreactor along with different biochemical reagents inside and outside of the scaffold. Electrospun fibres in a tubular scaffold were found to be randomly and circumferentially oriented for the inner and outer surfaces, respectively. Amongst the two types of mechanical stimuli, the intermittent shear flow that can simultaneously cause circumferential stretching due to hydrostatic pressure, and shear stress caused by flow on the inner surface, was found to be more effective for simultaneous differentiation into epithelial and muscle lineage than steady shear flow. Under these conditions, the expression of epithelial markers on the inner surface was significantly observed, although it was minimal on the outer surface. Muscle differentiation showed the opposite expression pattern. Meanwhile, the mechanical tests showed that the strength of the scaffold was improved after incubation for 14 days. We have developed a potential platform for tissue-engineered oesophagus construction. Specifically, simultaneous differentiation into epithelial and muscle lineages can be achieved by utilizing the double-layered scaffold and appropriate mechanical stimulation.
Collapse
Affiliation(s)
- Yanru Wu
- Department of Health Science and Technology, Inje University, Gimhae, Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji Eun Kim
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Eun Jin Lee
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-Woog Shin
- Department of Health Science and Technology, Inje University, Gimhae, Republic of Korea.,Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea.,Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Inje University, Gimhae, Republic of Korea
| |
Collapse
|
8
|
Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors. Nat Commun 2018; 9:4286. [PMID: 30327457 PMCID: PMC6191423 DOI: 10.1038/s41467-018-06385-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
A tissue engineered oesophagus could overcome limitations associated with oesophageal substitution. Combining decellularized scaffolds with patient-derived cells shows promise for regeneration of tissue defects. In this proof-of-principle study, a two-stage approach for generation of a bio-artificial oesophageal graft addresses some major challenges in organ engineering, namely: (i) development of multi-strata tubular structures, (ii) appropriate re-population/maturation of constructs before transplantation, (iii) cryopreservation of bio-engineered organs and (iv) in vivo pre-vascularization. The graft comprises decellularized rat oesophagus homogeneously re-populated with mesoangioblasts and fibroblasts for the muscle layer. The oesophageal muscle reaches organised maturation after dynamic culture in a bioreactor and functional integration with neural crest stem cells. Grafts are pre-vascularised in vivo in the omentum prior to mucosa reconstitution with expanded epithelial progenitors. Overall, our optimised two-stage approach produces a fully re-populated, structurally organized and pre-vascularized oesophageal substitute, which could become an alternative to current oesophageal substitutes. Combining decellularised scaffolds with patient-derived cells holds promise for bioengineering of functional tissues. Here the authors develop a two-stage approach to engineer an oesophageal graft that retains the structural organisation of native oesophagus.
Collapse
|
9
|
Luc G, Charles G, Gronnier C, Cabau M, Kalisky C, Meulle M, Bareille R, Roques S, Couraud L, Rannou J, Bordenave L, Collet D, Durand M. Decellularized and matured esophageal scaffold for circumferential esophagus replacement: Proof of concept in a pig model. Biomaterials 2018; 175:1-18. [PMID: 29793088 DOI: 10.1016/j.biomaterials.2018.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Surgical resection of the esophagus requires sacrificing a long portion of it. Its replacement by the demanding gastric pull-up or colonic interposition techniques may be avoided by using short biologic scaffolds composed of decellularized matrix (DM). The aim of this study was to prepare, characterize, and assess the in vivo remodeling of DM and its clinical impact in a preclinical model. A dynamic chemical and enzymatic decellularization protocol of porcine esophagus was set up and optimized. The resulting DM was mechanically and biologically characterized by DNA quantification, histology, and histomorphometry techniques. Then, in vitro and in vivo tests were performed, such as DM recellularization with human or porcine adipose-derived stem cells, or porcine stromal vascular fraction, and maturation in rat omentum. Finally, the DM, matured or not, was implanted as a 5-cm-long esophagus substitute in an esophagectomized pig model. The developed protocol for esophageal DM fulfilled previously established criteria of decellularization and resulted in a scaffold that maintained important biologic components and an ultrastructure consistent with a basement membrane complex. In vivo implantation was compatible with life without major clinical complications. The DM's scaffold in vitro characteristics and in vivo implantation showed a pattern of constructive remodeling mimicking major native esophageal characteristics.
Collapse
Affiliation(s)
- Guillaume Luc
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France; CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Guillaume Charles
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Caroline Gronnier
- Univ. Bordeaux, F-33000, Bordeaux, France; CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Magali Cabau
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Charlotte Kalisky
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Mallory Meulle
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Reine Bareille
- Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France
| | - Samantha Roques
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Lionel Couraud
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; LAPVSO, F-31201, Toulouse Cedex 2, France
| | - Johanna Rannou
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Laurence Bordenave
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France
| | - Denis Collet
- CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Marlène Durand
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France.
| |
Collapse
|
10
|
Urbani L, Maghsoudlou P, Milan A, Menikou M, Hagen CK, Totonelli G, Camilli C, Eaton S, Burns A, Olivo A, De Coppi P. Long-term cryopreservation of decellularised oesophagi for tissue engineering clinical application. PLoS One 2017; 12:e0179341. [PMID: 28599006 PMCID: PMC5466304 DOI: 10.1371/journal.pone.0179341] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Oesophageal tissue engineering is a therapeutic alternative when oesophageal replacement is required. Decellularised scaffolds are ideal as they are derived from tissue-specific extracellular matrix and are non-immunogenic. However, appropriate preservation may significantly affect scaffold behaviour. Here we aim to prove that an effective method for short- and long-term preservation can be applied to tissue engineered products allowing their translation to clinical application. Rabbit oesophagi were decellularised using the detergent-enzymatic treatment (DET), a combination of deionised water, sodium deoxycholate and DNase-I. Samples were stored in phosphate-buffered saline solution at 4°C (4°C) or slow cooled in medium with 10% Me2SO at -1°C/min followed by storage in liquid nitrogen (SCM). Structural and functional analyses were performed prior to and after 2 and 4 weeks and 3 and 6 months of storage under each condition. Efficient decellularisation was achieved after 2 cycles of DET as determined with histology and DNA quantification, with preservation of the ECM. Only the SCM method, commonly used for cell storage, maintained the architecture and biomechanical properties of the scaffold up to 6 months. On the contrary, 4°C method was effective for short-term storage but led to a progressive distortion and degradation of the tissue architecture at the following time points. Efficient storage allows a timely use of decellularised oesophagi, essential for clinical translation. Here we describe that slow cooling with cryoprotectant solution in liquid nitrogen vapour leads to reliable long-term storage of decellularised oesophageal scaffolds for tissue engineering purposes.
Collapse
Affiliation(s)
- Luca Urbani
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
- * E-mail: (LU); (PDC)
| | | | - Anna Milan
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Maria Menikou
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Charlotte Klara Hagen
- Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| | - Giorgia Totonelli
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Carlotta Camilli
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Alan Burns
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
- * E-mail: (LU); (PDC)
| |
Collapse
|
11
|
Yekrang J, Semnani D, Karbasi S. Optimizing the mechanical properties of a bi-layered knitted/nanofibrous esophageal prosthesis using artificial intelligence. E-POLYMERS 2016. [DOI: 10.1515/epoly-2016-0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe esophagus is a tubular multi-layer organ that carries the food bolus and liquids from the mouth to the stomach. Esophageal prostheses and scaffolds should have the appropriate mechanical and strain properties in the longitudinal and circumferential directions. A novel bi-layered esophageal prosthesis was produced using knitted tubular silk fabric and a coating of polyurethane (PU) nanofibers. The optimization process was performed in two steps. First, 12 different tubular structures of knitted silk fabrics were produced and mechanical properties were measured in both directions. The mechanical properties were optimized using an artificial neural network (ANN) and a genetic algorithm (GA) and the optimum knitted structure was produced as a substrate for coating with PU nanofibers. In second step, 20 different samples were produced by electrospinning the PU nanofibers at different process conditions (collector speed, feeding rate) on the optimized structure of the knitted fabric. Finally, the elastic properties of the bi-layered tubular structures were measured and optimized by the ANN and GA methods. Results presented show that the optimized structure of the esophageal prosthesis had proper mechanical properties similar to the esophagus. Such a structure can be used as a substitute in esophageal disorders.
Collapse
Affiliation(s)
- Javad Yekrang
- 1Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran (Islamic Republic of)
| | - Dariush Semnani
- 1Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran (Islamic Republic of)
| | - Saeed Karbasi
- 2Department of Biomaterials and Tissue Engineering, School of Advance Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran (Islamic Republic of)
| |
Collapse
|
12
|
2015 4(th) TERMIS World Congress Boston, Massachusetts September 8-11, 2015. Tissue Eng Part A 2015; 21 Suppl 1:S1-S413. [PMID: 26317531 DOI: 10.1089/ten.tea.2015.5000.abstracts] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|