1
|
Shen S, Wang H, Qu Y, Huang K, Liu G, Chen Z, Ma C, Shao P, Hong J, Lemaillet P, Dong E, Xu RX. Simulating orientation and polarization characteristics of dense fibrous tissue by electrostatic spinning of polymeric fibers. BIOMEDICAL OPTICS EXPRESS 2019; 10:571-583. [PMID: 30800500 PMCID: PMC6377871 DOI: 10.1364/boe.10.000571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Phantoms simulating polarization characteristics of soft tissue play an important role in the development, calibration, and validation of diagnostic polarized imaging devices and of therapeutic strategy, in both laboratory and clinical settings. We propose to fabricate optical phantoms that simulate polarization characteristics of dense fibrous tissues by bonding electrospun polylactic acid (PLA) fibers between polydimethylsiloxane (PDMS) substrate with a groove. Increasing the rotational speed of an electrospinning collector helps improve the orientation of the electrospun fibers. The phantoms simulate the polarization characteristics of dense fibrous tissue of collagenous fibroma and healthy skin with high fidelity. Our experiments demonstrate the technical potential of using such phantoms for validation and calibration of polarimetric medical devices.
Collapse
Affiliation(s)
- Shuwei Shen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Haili Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yingjie Qu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Kuiming Huang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Guangli Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Zexin Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Canzhen Ma
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Pengfei Shao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jin Hong
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Paul Lemaillet
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Erbao Dong
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Ronald X. Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
St-Arnaud K, Aubertin K, Strupler M, Madore WJ, Grosset AA, Petrecca K, Trudel D, Leblond F. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales. Med Phys 2017; 45:328-339. [PMID: 29106741 DOI: 10.1002/mp.12657] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Raman spectroscopy is a promising cancer detection technique for surgical guidance applications. It can provide quantitative information relating to global tissue properties associated with structural, metabolic, immunological, and genetic biochemical phenomena in terms of molecular species including amino acids, lipids, proteins, and nucleic acid (DNA). To date in vivo Raman spectroscopy systems mostly included probes and biopsy needles typically limited to single-point tissue interrogation over a scale between 100 and 500 microns. The development of wider field handheld systems could improve tumor localization for a range of open surgery applications including brain, ovarian, and skin cancers. METHODS Here we present a novel Raman spectroscopy implementation using a coherent imaging bundle of fibers to create a probe capable of reconstructing molecular images over mesoscopic fields of view. Detection is performed using linear scanning with a rotation mirror and an imaging spectrometer. Different slits widths were tested at the entrance of the spectrometer to optimize spatial and spectral resolution while preserving sufficient signal-to-noise ratios to detect the principal Raman tissue features. The nonbiological samples, calcite and polytetrafluoroethylene (PTFE), were used to characterize the performance of the system. The new wide-field probe was tested on ex vivo samples of calf brain and swine tissue. Raman spectral content of both tissue types were validated with data from the literature and compared with data acquired with a single-point Raman spectroscopy probe. The single-point probe was used as the gold standard against which the new instrument was benchmarked as it has already been thoroughly validated for biological tissue characterization. RESULT We have developed and characterized a practical noncontact handheld Raman imager providing tissue information at a spatial resolution of 115 microns over a field of view >14 mm2 and a spectral resolution of 6 cm-1 over the whole fingerprint region. Typical integration time to acquire an entire Raman image over swine tissue was set to approximately 100 s. Spectra acquired with both probes (single-point and wide-field) showed good agreement, with a Pearson correlation factor >0.85 over different tissue categories. Protein and lipid content of imaged tissue were manifested into the measured spectra which correlated well with previous findings in the literature. An example of quantitative molecular map is presented for swine tissue and calf brain based on the ratio of protein-to-lipid content showing clear delineations between white and gray matter as well as between adipose and muscle tissue. CONCLUSION We presented the development of a Raman imaging probe with a field of view of a few millimeters and a spatial resolution consistent with standard surgical imaging methods using an imaging bundle. Spectra acquired with the newly developed system on swine tissue and calf brain correlated well with an establish single-point probe and observed spectral features agreed with previous finding in the literature. The imaging probe has demonstrated its ability to reconstruct molecular images of soft tissues. The approach presented here has a lot of potential for the development of surgical Raman imaging probe to guide the surgeon during cancer surgery.
Collapse
Affiliation(s)
- Karl St-Arnaud
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada.,Imaging & Engineering, Centre Hospitalier Universitaire de Montréal Research Center (CRCHUM), 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
| | - Kelly Aubertin
- Imaging & Engineering, Centre Hospitalier Universitaire de Montréal Research Center (CRCHUM), 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada.,CRCHUM/Montreal Cancer Institute, 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
| | - Mathias Strupler
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
| | - Wendy-Julie Madore
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada.,Imaging & Engineering, Centre Hospitalier Universitaire de Montréal Research Center (CRCHUM), 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
| | - Andrée-Anne Grosset
- CRCHUM/Montreal Cancer Institute, 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada.,Dept. of Pathology and Cellular Biology, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Dominique Trudel
- Dept. of Pathology, Centre Hospitalier Universitaire de Montréal (CHUM), Montreal, QC, H2X 3J4, Canada.,CRCHUM/Montreal Cancer Institute, 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada.,Dept. of Pathology and Cellular Biology, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Frédéric Leblond
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada.,Imaging & Engineering, Centre Hospitalier Universitaire de Montréal Research Center (CRCHUM), 900 Rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
| |
Collapse
|
3
|
Tran WT, Gangeh MJ, Sannachi L, Chin L, Watkins E, Bruni SG, Rastegar RF, Curpen B, Trudeau M, Gandhi S, Yaffe M, Slodkowska E, Childs C, Sadeghi-Naini A, Czarnota GJ. Predicting breast cancer response to neoadjuvant chemotherapy using pretreatment diffuse optical spectroscopic texture analysis. Br J Cancer 2017; 116:1329-1339. [PMID: 28419079 PMCID: PMC5482739 DOI: 10.1038/bjc.2017.97] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC. Methods: Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller–Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., ‘pretreatment’) to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers. Results: Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO2-homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%. Conclusions: This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.
Collapse
Affiliation(s)
- William T Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Centre for Health and Social Care Research, Sheffield Hallam University, 32 Collegiate Crescent, Sheffield S10 2BP, UK
| | - Mehrdad J Gangeh
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Lakshmanan Sannachi
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Lee Chin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Elyse Watkins
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Silvio G Bruni
- Department of Medical Imaging, Sunnybrook Hospital, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Rashin Fallah Rastegar
- Department of Medical Imaging, Sunnybrook Hospital, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Hospital, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Maureen Trudeau
- Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Sonal Gandhi
- Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Martin Yaffe
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Elzbieta Slodkowska
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Charmaine Childs
- Centre for Health and Social Care Research, Sheffield Hallam University, 32 Collegiate Crescent, Sheffield S10 2BP, UK
| | - Ali Sadeghi-Naini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
4
|
Zhang Z, Pei J, Wang D, Gan Q, Ye J, Yue J, Wang B, Povoski SP, Martin EW, Hitchcock CL, Yilmaz A, Tweedle MF, Shao P, Xu RX. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model. PLoS One 2016; 11:e0157854. [PMID: 27367051 PMCID: PMC4930179 DOI: 10.1371/journal.pone.0157854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 06/02/2016] [Indexed: 12/02/2022] Open
Abstract
Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)—fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting.
Collapse
Affiliation(s)
- Zeshu Zhang
- School of Engineering Science, University of Science and Technology of China, Hefei, China
| | - Jing Pei
- Department of Surgery, Anhui Medical University, Hefei, China
| | - Dong Wang
- School of Engineering Science, University of Science and Technology of China, Hefei, China
- College of Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Qi Gan
- School of Engineering Science, University of Science and Technology of China, Hefei, China
| | - Jian Ye
- School of Engineering Science, University of Science and Technology of China, Hefei, China
| | - Jian Yue
- Department of Surgery, Anhui Medical University, Hefei, China
| | - Benzhong Wang
- Department of Surgery, Anhui Medical University, Hefei, China
| | - Stephen P. Povoski
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- * E-mail: (SP); (PS); (RX)
| | - Edward W. Martin
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Charles L. Hitchcock
- Pathology Department, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Alper Yilmaz
- College of Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael F. Tweedle
- Radiology Department, Wright Center for Innovation, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Pengfei Shao
- School of Engineering Science, University of Science and Technology of China, Hefei, China
- * E-mail: (SP); (PS); (RX)
| | - Ronald X. Xu
- School of Engineering Science, University of Science and Technology of China, Hefei, China
- College of Engineering, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (SP); (PS); (RX)
| |
Collapse
|
5
|
Tran WT, Childs C, Chin L, Slodkowska E, Sannachi L, Tadayyon H, Watkins E, Wong SL, Curpen B, Kaffas AE, Al-Mahrouki A, Sadeghi-Naini A, Czarnota GJ. Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy. Oncotarget 2016; 7:19762-80. [PMID: 26942698 PMCID: PMC4991417 DOI: 10.18632/oncotarget.7844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE This study evaluated pathological response to neoadjuvant chemotherapy using quantitative ultrasound (QUS) and diffuse optical spectroscopy imaging (DOSI) biomarkers in locally advanced breast cancer (LABC). MATERIALS AND METHODS The institution's ethics review board approved this study. Subjects (n = 22) gave written informed consent prior to participating. US and DOSI data were acquired, relative to the start of neoadjuvant chemotherapy, at weeks 0, 1, 4, 8 and preoperatively. QUS parameters including the mid-band fit (MBF), 0-MHz intercept (SI), and the spectral slope (SS) were determined from tumor ultrasound data using spectral analysis. In the same patients, DOSI was used to measure parameters relating to tumor hemoglobin and composition. Discriminant analysis and receiver-operating characteristic (ROC) analysis was used to classify clinical and pathological response during treatment and to estimate the area under the curve (AUC). Additionally, multivariate analysis was carried out for pairwise QUS/DOSI parameter combinations using a logistic regression model. RESULTS Individual QUS and DOSI parameters, including the (SI), oxy-hemoglobin (HbO2), and total hemoglobin (HbT) were significant markers for response after one week of treatment (p < 0.01). Multivariate (pairwise) combinations increased the sensitivity, specificity and AUC at this time; the SI + HbO2 showed a sensitivity/specificity of 100%, and an AUC of 1.0. CONCLUSIONS QUS and DOSI demonstrated potential as coincident markers for treatment response and may potentially facilitate response-guided therapies. Multivariate QUS and DOSI parameters increased the sensitivity and specificity of classifying LABC patients as early as one week after treatment.
Collapse
Affiliation(s)
- William T. Tran
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
- Centre for Health and Social Care Research, Sheffield Hallam University, Sheffield, UK
| | - Charmaine Childs
- Centre for Health and Social Care Research, Sheffield Hallam University, Sheffield, UK
| | - Lee Chin
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
| | | | - Lakshmanan Sannachi
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Hadi Tadayyon
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Elyse Watkins
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
| | | | - Belinda Curpen
- Division of Radiology, Sunnybrook Hospital, Toronto, Canada
| | - Ahmed El Kaffas
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
| | - Azza Al-Mahrouki
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
| | - Ali Sadeghi-Naini
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Canada
| | - Gregory J. Czarnota
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Zaric B, Perin B. Use of narrow-band imaging bronchoscopy in detection of lung cancer. Expert Rev Med Devices 2014; 7:395-406. [DOI: 10.1586/erd.10.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Chao AH, Meyerson J, Povoski SP, Kocak E. A review of devices used in the monitoring of microvascular free tissue transfers. Expert Rev Med Devices 2013; 10:649-60. [PMID: 23972071 DOI: 10.1586/17434440.2013.827527] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of microvascular anastomoses to allow transfer of viable tissue is a fundamental technique of reconstructive surgery, and is used to treat a broad spectrum of clinical problems. The primary threat to this type of reconstructive surgery is anastomotic vascular thrombosis, which can lead to complete loss of tissue with potentially devastating consequences. Monitoring of tissue perfusion postoperatively is critical, since early recognition of vascular compromise and prompt surgical intervention is correlated with the ability for tissue salvage. Traditionally, physical examination was the primary means of monitoring, but possesses several limitations. Medical devices introduced for the purposes of flap monitoring address many of these deficiencies, and have greatly enhanced this critical aspect of the reconstructive surgery process.
Collapse
Affiliation(s)
- Albert H Chao
- Department of Plastic Surgery, The Ohio State University, Columbus, OH 43212, USA
| | | | | | | |
Collapse
|
8
|
Xu CT, Svenmarker P, Andersson-Engels S, Krohn J. Transscleral visible/near-infrared spectroscopy for quantitative assessment of haemoglobin in experimental choroidal tumours. Acta Ophthalmol 2012; 90:350-6. [PMID: 21155981 DOI: 10.1111/j.1755-3768.2010.02037.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To study the feasibility of using transscleral visible/near-infrared spectroscopy (Vis/NIRS) to estimate the content of haemoglobin in choroidal tumour phantoms of ex vivo porcine eyes. METHODS Thirty enucleated porcine eyes were prepared with a tumour phantom made by injecting a suspension of gelatine, titanium dioxide and human blood into the suprachoroidal space. The blood concentrations used were 2.5%, 25% and 50%, with 10 eyes in each group. Alternating Vis/NIRS measurements were taken over the phantom inclusion and on the opposite (normal) side of each eye. For statistical analysis, a genetic algorithm was utilized to suppress insignificant wavelengths in the spectra. The processed spectra were then used to build a regression model based on partial least squares regression and evaluated by twofold cross-validation. RESULTS Ultrasonography revealed that all phantoms were localized within the suprachoroidal space with no penetration through the retina. The largest mean diameters of the phantoms with 2.5%, 25% and 50% blood were 15.5, 15.2 and 15.7 mm, respectively (p > 0.05). The largest mean thicknesses were 4.5, 4.5 and 4.8 mm, respectively (p > 0.05). Statistical analysis of the spectral data showed that it was possible to correctly discriminate between the normal side and the tumour phantom side of the eyes in 99.88% of cases. The phantoms could be correctly classified according to their blood concentrations in 99.42% of cases. CONCLUSIONS This study demonstrates that transscleral Vis/NIRS is a feasible and accurate method for the detection of choroidal tumours and to assess the haemoglobin content in such lesions.
Collapse
Affiliation(s)
- Can T Xu
- Department of Physics, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
9
|
Flexman ML, Kim HK, Stoll R, Khalil MA, Fong CJ, Hielscher AH. A wireless handheld probe with spectrally constrained evolution strategies for diffuse optical imaging of tissue. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:033108. [PMID: 22462907 PMCID: PMC3360692 DOI: 10.1063/1.3694494] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/28/2012] [Indexed: 05/26/2023]
Abstract
We present a low-cost, portable, wireless diffuse optical imaging device. The handheld device is fast, portable, and can be applied to a wide range of both static and dynamic imaging applications including breast cancer, functional brain imaging, and peripheral artery disease. The continuous-wave probe has four near-infrared wavelengths and uses digital detection techniques to perform measurements at 2.3 Hz. Using a multispectral evolution algorithm for chromophore reconstruction, we can measure absolute oxygenated and deoxygenated hemoglobin concentration as well as scattering in tissue. Performance of the device is demonstrated using a series of liquid phantoms comprised of Intralipid(®), ink, and dye.
Collapse
Affiliation(s)
- M L Flexman
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Zhang X, Liu L, Zhang X, Ma K, Rao Y, Zhao Q, Li F. Analytical methods for brain targeted delivery system in vivo: perspectives on imaging modalities and microdialysis. J Pharm Biomed Anal 2011; 59:1-12. [PMID: 22088476 DOI: 10.1016/j.jpba.2011.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 01/05/2023]
Abstract
Since the introduction of microdialysis in 1974, the semi-invasive analytical method has grown exponentially. Microdialysis is one of the most potential analysis technologies of pharmacological drug delivery to the brain. In recent decades, analysis of chemicals targeting the brain has led to many improvements. It seems likely that fluorescence imaging was limited to ex vivo and in vitro applications with the exception of several intravital microscopy and photographic imaging approaches. X-ray computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) have been commonly utilized for visualization of distribution and therapeutic effects of drugs. The efficient analytical methods for studies of brain-targeting delivery system is a major challenge in detecting the disposition as well as the variances of the factors that regulate the substances delivery into the brain. In this review, we highlight some of the ongoing trends in imaging modalities and the most recent developments in the field of microdialysis of live animals and present insights into exploiting brain disease for therapeutic and diagnostics purpose.
Collapse
Affiliation(s)
- Xingguo Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Solomon M, Liu Y, Berezin MY, Achilefu S. Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med Princ Pract 2011; 20:397-415. [PMID: 21757928 PMCID: PMC7388590 DOI: 10.1159/000327655] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/16/2011] [Indexed: 01/19/2023] Open
Abstract
Accurate and rapid detection of diseases is of great importance for assessing the molecular basis of pathogenesis, preventing the onset of complications, and implementing a tailored therapeutic regimen. The ability of optical imaging to transcend wide spatial imaging scales ranging from cells to organ systems has rejuvenated interest in using this technology for medical imaging. Moreover, optical imaging has at its disposal diverse contrast mechanisms for distinguishing normal from pathologic processes and tissues. To accommodate these signaling strategies, an array of imaging techniques has been developed. Importantly, light absorption, and emission methods, as well as hybrid optical imaging approaches are amenable to both small animal and human studies. Typically, complex methods are needed to extract quantitative data from deep tissues. This review focuses on the development of optical imaging platforms, image processing techniques, and molecular probes, as well as their applications in cancer diagnosis, staging, and monitoring therapeutic response.
Collapse
Affiliation(s)
- Metasebya Solomon
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
| | - Yang Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
| | - Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Mo., USA
| |
Collapse
|
12
|
Xu RX, Povoski SP, Martin EW. Targeted delivery of microbubbles and nanobubbles for image-guided thermal ablation therapy of tumors. Expert Rev Med Devices 2010; 7:303-6. [PMID: 20420552 DOI: 10.1586/erd.10.9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Kukreti S, Cerussi AE, Tanamai W, Hsiang D, Tromberg BJ, Gratton E. Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy. Radiology 2010; 254:277-84. [PMID: 20032159 DOI: 10.1148/radiol.09082134] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE To develop a near-infrared spectroscopic method to identify breast cancer biomarkers and to retrospectively determine if benign and malignant breast lesions could be distinguished by using this method. MATERIALS AND METHODS The study was HIPAA compliant and was approved by the university institutional review board. Written informed consent was obtained. By using self-referencing differential spectroscopy (SRDS) analysis, the existence of specific spectroscopic signatures of breast lesions on images acquired by using diffuse optical spectroscopy imaging in the wavelength range (650-1000 nm) was established. The SRDS method was tested in 60 subjects (mean age, 38 years; age range, 22-74 years). There were 17 patients with benign breast tumors and 22 patients with malignant breast tumors. There were 21 control subjects. RESULTS Discrimination analysis helped separate malignant from benign tumors. A total of 40 lesions (22 malignant and 18 benign) were analyzed. Twenty were true-positive lesions, 17 were true-negative lesions, one was a false-positive lesion, and two were false-negative lesions (sensitivity, 91% [20 of 22]; specificity, 94% [17 of 18]; positive predictive value, 95% [20 of 21]; and negative predictive value, 89% [17 of 19]). CONCLUSION The SRDS method revealed localized tumor biomarkers specific to pathologic state.
Collapse
Affiliation(s)
- Shwayta Kukreti
- Beckman Laser Institute, University of California, Irvine, CA 92612, USA
| | | | | | | | | | | |
Collapse
|
14
|
El-Dahdah H, Wang B, He G, Xu RX. An automatic occlusion device for remote control of tumor tissue ischemia. Technol Cancer Res Treat 2010; 9:71-6. [PMID: 20082532 DOI: 10.1177/153303461000900108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We developed an automatic occlusion device for remote control of tumor tissue ischemia. The device consists of a flexible cannula encasing a shape memory alloy wire with its distal end connected to surgical suture. Regional tissue occlusion was tested on both the benchtop and the animal models. In the benchtop test, the occlusion device introduced quantitative and reproducible changes of blood flow in a tissue simulating phantom embedding a vessel simulator. In the animal test, the device generated a cyclic pattern of reversible ischemia in the right hinder leg tissue of a black male C57BL/6 mouse. We also developed a multimodal detector that integrates near infrared spectroscopy and electron paramagnetic resonance spectroscopy for continuous monitoring of tumor tissue oxygenation, blood content, and oxygen tension changes. The multimodal detector was tested on a cancer xenograft nude mouse undergoing reversible tumor ischemia. The automatic occlusion device and the multimodal detector can be potentially integrated for closed-loop feedback control of tumor tissue ischemia. Such an integrated occlusion device may be used in multiple clinical applications such as regional hypoperfusion control in tumor resection surgeries and thermal ablation processes. In addition, the proposed occlusion device can also be used as a research tool to understand tumor oxygen transport and hemodynamic characteristics.
Collapse
Affiliation(s)
- Hamid El-Dahdah
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
15
|
Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials 2009; 31:1716-22. [PMID: 20006382 DOI: 10.1016/j.biomaterials.2009.11.052] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/17/2009] [Indexed: 11/22/2022]
Abstract
Accurate assessment of tumor boundaries and recognition of occult disease are important oncologic principles in cancer surgeries. However, existing imaging modalities are not optimized for intraoperative cancer imaging applications. We developed a nanobubble (NB) contrast agent for cancer targeting and dual-mode imaging using optical and ultrasound (US) modalities. The contrast agent was fabricated by encapsulating the Texas Red dye in poly (lactic-co-glycolic acid) (PLGA) NBs and conjugating NBs with cancer-targeting ligands. Both one-step and three-step cancer-targeting strategies were tested on the LS174T human colon cancer cell line. For the one-step process, NBs were conjugated with the humanized HuCC49 Delta C(H)2 antibody to target the over-expressed TAG-72 antigen. For the three-step process, cancer cells were targeted by successive application of the biotinylated HuCC49 Delta C(H)2 antibody, streptavidin, and the biotinylated NBs. Both one-step and three-step processes successfully targeted the cancer cells with high binding affinity. NB-assisted dual-mode imaging was demonstrated on a gelatin phantom that embedded multiple tumor simulators at different NB concentrations. Simultaneous fluorescence and US images were acquired for these tumor simulators and linear correlations were observed between the fluorescence/US intensities and the NB concentrations. Our research demonstrated the technical feasibility of using the dual-mode NB contrast agent for cancer targeting and simultaneous fluorescence/US imaging.
Collapse
|
16
|
Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors. Neoplasia 2009; 11:889-900. [PMID: 19724683 DOI: 10.1593/neo.09580] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 12/31/2022] Open
Abstract
The feasibility of using quantitative diffuse reflectance spectroscopy to longitudinally monitor physiological response to cancer therapy was evaluated in a preclinical model. This study included two groups of nude mice bearing 4T1 flank tumors (N = 50), half of which were treated with a maximum tolerated dose of doxorubicin (DOX). Diffuse reflectance spectra were collected from tumors during a period of 2 weeks using a fiber-optic probe coupled to a spectrometer. These spectra were quantified using an inverse scalable Monte Carlo model of light transport in tissue to extract the concentrations of oxygenated, deoxygenated hemoglobin (dHb), and a wavelength mean reduced scattering coefficient (<micro(s)'>). The tumor growth rates of the treated and control groups were nearly identical, as were changes in the scattering parameter <micro(s)'> during this time frame. However, tumors treated with DOX showed a transient but significant increase in blood oxygen saturation. A comparison between the optically derived and immunohistochemical end points in a subset of the 50 animals showed that the temporal kinetics of dHb concentration and <micro(s)'> were highly concordant with those of hypoxic and necrotic fractions, respectively. In conclusion, optical methods could function as a "screening" technology in longitudinal studies of small animal tumor models to accelerate development and testing of new anticancer drugs. This technique could isolate specific landmark time points at which more expensive and sophisticated imaging methods or immunohistochemistry could be performed.
Collapse
|
17
|
Sakudo A, Kato YH, Kuratsune H, Ikuta K. Non-invasive prediction of hematocrit levels by portable visible and near-infrared spectrophotometer. Clin Chim Acta 2009; 408:123-7. [DOI: 10.1016/j.cca.2009.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 12/25/2022]
|
18
|
Zou P, Xu S, Povoski SP, Wang A, Johnson MA, Martin EW, Subramaniam V, Xu R, Sun D. Near-infrared fluorescence labeled anti-TAG-72 monoclonal antibodies for tumor imaging in colorectal cancer xenograft mice. Mol Pharm 2009; 6:428-40. [PMID: 19718796 DOI: 10.1021/mp9000052] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anti-TAG-72 monoclonal antibodies target the tumor-associated glycoprotein (TAG)-72 in various solid tumors. This study evaluated the use of anti-TAG-72 monoclonal antibodies, both murine CC49 and humanized CC49 (HuCC49deltaCH2), for near-infrared fluorescent (NIR) tumor imaging in colorectal cancer xenograft models. The murine CC49 and HuCC49deltaCH2 were conjugated with Cy7 monofunctional N-hydroxysuccinimide ester (Cy7-NHS). Both in vitro and in vivo anti-TAG-72 antibody binding studies were performed. The in vitro study utilized the human colon adenocarcinoma cell line LS174T that was incubated with Cy7, antibody-Cy7 conjugates, or excessive murine CC49 followed by the antibody-Cy7 conjugates and was imaged by fluorescence microscopy. The in vivo study utilized xenograft mice, bearing LS174T subcutaneous tumor implants, that received tail vein injections of Cy7, murine CC49-Cy7, HuCC49deltaCH2-Cy7, or nonspecific IgG-Cy7 and were imaged by the Xenogen IVIS 100 system from 15 min to 288 h. The biodistribution of the fluorescence labeled antibodies was determined by imaging the dissected tissues. The in vitro study revealed that the antibody-Cy7 conjugates bound to LS174T cells and were blocked by excessive murine CC49. The in vivo study demonstrated that murine CC49 achieved a tumor/blood ratio of 15 at 96 h postinjection. In comparison, HuCC49deltaCH2-Cy7 cleared much faster than murine CC49-Cy7 from the xenograft mice, and HuCC49deltaCH2-Cy7 achieved a tumor/blood ratio of 12 at 18 h postinjection. In contrast, Cy7 and Cy7 labeled nonspecific IgG resulted in no demonstrable tumor accumulation. When mice were injected with excessive unlabeled murine CC49 at 6 h before the injection of murine CC49-Cy7 or HuCC49deltaCH2-Cy7, both the intensity and retention time of the fluorescence from the tumor were reduced. In summary, the Cy7 labeled murine CC49 and HuCC49deltaCH2 demonstrate tumor-targeting capabilities in living colorectal cancer xenograft mice and provide an alternative modality for tumor imaging.
Collapse
Affiliation(s)
- Peng Zou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xu RX, Huang J, Xu JS, Sun D, Hinkle GH, Martin EW, Povoski SP. Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:034020. [PMID: 19566313 DOI: 10.1117/1.3147424] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We developed a novel dual-modal contrast agent for the structural and functional imaging of cancer. The contrast agent was fabricated by encapsulating indocyanine green (ICG) in poly(lactic-co-glycolic acid) (PLGA) microbubbles using a modified double-emulsion method. More stabilized absorption and fluorescence emission characteristics were observed for aqueous and plasma suspensions of ICG-encapsulated microbubbles. The technical feasibility of concurrent structural and functional imaging was demonstrated through a series of benchtop tests in which the aqueous suspension of ICG-encapsulated microbubbles was injected into a transparent tube embedded in an Intralipid phantom at different flow rates and concentrations. Concurrent fluorescence imaging and B-mode ultrasound imaging successfully captured the changes of microbubble flow rate and concentration with high linearity and accuracy. One potential application of the proposed ICG-encapsulated PLGA microbubbles is for the identification and characterization of peritumoral neovasculature for enhanced coregistration between tumor structural and functional boundaries in ultrasound-guided near-infrared diffuse optical tomography.
Collapse
Affiliation(s)
- Ronald X Xu
- The Ohio State University, Department of Biomedical Engineering, 270 Bevis Hall, 1080 Carmack Road, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Bhatia S, Ragheb J, Johnson M, Oh S, Sandberg DI, Lin WC. The role of optical spectroscopy in epilepsy surgery in children. Neurosurg Focus 2009; 25:E24. [PMID: 18759626 DOI: 10.3171/foc/2008/25/9/e24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Surgery is an important therapeutic modality for pediatric patients with intractable epilepsy. However, existing imaging and diagnostic technologies such as MR imaging and electrocochleography (ECoG) do not always effectively delineate the true resection margin of an epileptic cortical lesion because of limitations in their sensitivity. Optical spectroscopic techniques such as fluorescence and diffuse reflectance spectroscopy provide a nondestructive means of gauging the physiological features of the brain in vivo, including hemodynamics and metabolism. In this study, the authors investigate the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to assist epilepsy surgery in children. METHODS In vivo static fluorescence and diffuse reflectance spectra were acquired from the brain in children undergoing epilepsy surgery. Spectral measurements were obtained using a portable spectroscopic system in conjunction with a fiber optic probe. The optical investigations were conducted at the normal and abnormal cortex as defined by intraoperative ECoG and preoperative imaging studies. Biopsy samples were taken from the investigated sites located within the zone of resection. The optical spectra were classified into multiple subsets in accordance with the ECoG and histological study results. The authors used statistical comparisons between 2 given data subsets to identify unique spectral features. Empirical discrimination algorithms were developed using the identified spectral features to determine if the objective of the study was achieved. RESULTS Fifteen pediatric patients were enrolled in this pilot study. Elevated diffuse reflectance signals between 500 and 600 nm and/or between 650 and 850 nm were observed commonly in the investigated sites with abnormal ECoG and/or histological features in 10 patients. The appearance of a fluorescent peak at 400 nm was observed in both normal and abnormal cortex of 5 patients. These spectral alterations were attributed to changes in morphological and/or biochemical characteristics of the epileptic cortex. The sensitivities and specificities of the empirical discrimination algorithms, which were constructed using the identified spectral features, were all > 90%. CONCLUSIONS The results of this study demonstrate the feasibility of using static fluorescence and diffuse reflectance spectroscopy to differentiate normal from abnormal cortex on the basis of intraoperative assessment of ECoG and histological features. It is therefore possible to use fluorescence and diffuse reflectance spectroscopy as an aid in epilepsy surgery.
Collapse
Affiliation(s)
- Sanjiv Bhatia
- Brain Institute, Miami Children's Hospital, Miami, Florida 33131, USA
| | | | | | | | | | | |
Collapse
|
21
|
Xu RX, Ewing J, El-Dahdah H, Wang B, Povoski SP. Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions. Technol Cancer Res Treat 2009; 7:471-81. [PMID: 19044327 DOI: 10.1177/153303460800700609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have developed a portable, handheld, integrated, dynamic breast imaging system that integrates a near infrared tissue oximeter, clinical ultrasound, and two pressure sensors for noninvasive detection of pressure-induced structural and functional dynamics of suspicious breast lesions. A series of benchtop tests were conducted to validate multiple performance characteristics of the integrated dynamic near infrared/ultrasound breast imaging system (idNIRUS), including the reconstruction of the absorptive heterogeneities and the generation of the dynamic compression stimuli. In absorptive heterogeneity testing, we reconstructed the absorption coefficients of transparent polypropylene tubing circulated with a skim milk-India ink mixture and embedded in a gel wax tissue simulating phantom. High linear correlations (R(2) greater than 0.989) were observed between the reconstructed and the measured absorption coefficients of the embedded tubing. In dynamic compression testing, five volunteer operators generated ten successive compression sessions by compressing the idNIRUS imager on a breast self examination wearable model following the computer simulated pressure profile. The manually generated pressure profiles demonstrated an accuracy of 95.7% and operator-dependent variation of less than 5%. The results of the current benchtop tests will help to optimize the most appropriate testing conditions for our future planned clinical trial.
Collapse
Affiliation(s)
- R X Xu
- Department of Biomedical Engineering, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
22
|
Brown JQ, Vishwanath K, Palmer GM, Ramanujam N. Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer. Curr Opin Biotechnol 2009; 20:119-31. [PMID: 19268567 DOI: 10.1016/j.copbio.2009.02.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/05/2009] [Indexed: 11/29/2022]
Abstract
Methods of optical spectroscopy that provide quantitative, physically or physiologically meaningful measures of tissue properties are an attractive tool for the study, diagnosis, prognosis, and treatment of various cancers. Recent development of methodologies to convert measured reflectance and fluorescence spectra from tissue to cancer-relevant parameters such as vascular volume, oxygenation, extracellular matrix extent, metabolic redox states, and cellular proliferation have significantly advanced the field of tissue optical spectroscopy. The number of publications reporting quantitative tissue spectroscopy results in the UV-visible wavelength range has increased sharply in the past three years, and includes new and emerging studies that correlate optically measured parameters with independent measures such as immunohistochemistry, which should aid in increased clinical acceptance of these technologies.
Collapse
Affiliation(s)
- J Quincy Brown
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
23
|
Lin WC, Sandberg DI, Bhatia S, Johnson M, Morrison G, Ragheb J. Optical spectroscopy for in-vitro differentiation of pediatric neoplastic and epileptogenic brain lesions. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:014028. [PMID: 19256716 DOI: 10.1117/1.3080144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The objective of this in vitro tissue study is to investigate the feasibility of using optical spectroscopy to differentiate pediatric neoplastic and epileptogenic brain from normal brain. Specimens are collected from 17 patients with brain tumors, and from 26 patients with intractable epilepsy during surgical resection of epileptogenic cerebral cortex. Fluorescence spectra are measured at excitations of 337, 360, and 440 nm; diffuse reflectance spectra are measured between 400 and 900 nm from each specimen. Pathological analysis is performed to classify abnormalities in brain specimens, and its findings are correlated with spectral data. Statistically significant differences (p<0.01) are found for both raw and normalized diffuse reflectance and fluorescence spectra between 1. neoplastic brain and normal gray matter, 2. epileptogenic brain and normal gray matter, and 3. neoplastic brain and normal white matter. However, no distinct spectral features are identified that effectively separate epileptogenic brain from normal white matter. The outcomes of the study suggest that certain unique compositional and structural characteristics of pediatric neoplastic and epileptogenic brain can be detected using optical spectroscopy in vitro.
Collapse
Affiliation(s)
- Wei-Chiang Lin
- Miami Children's Hospital, Brain Institute and Florida International University, Department of Biomedical Engineering, 10555 West Flagler St, EAS 2673 Miami, Florida 33131, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Wang B, Povoski SP, Cao X, Sun D, Xu RX. Dynamic schema for near infrared detection of pressure-induced changes in solid tumors. APPLIED OPTICS 2008; 47:3053-63. [PMID: 18516127 DOI: 10.1364/ao.47.003053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Differentiation among malignant tumors, benign tumors, and normal tissue is highly important in the diagnosis and treatment of many malignancies. We have proposed a dynamic schema for noninvasive characterization of pressure-induced changes in solid tumors. Our hypothesis has been that the altered neovascularization processes within cancer-bearing tissues may significantly increase vascular resistance and cause a much slower response of hemoglobin concentration during a dynamic compression stimulus. This hypothesis was tested by the evaluation of data generated from human tumor clinical testing and from animal tumor model testing. In the human tumor clinical testing, a unified diagnostic criterion was derived that integrated the relative characteristics of tumor oxygen, hemoglobin, and hemoglobin dynamics. By applying such a unified criterion, we were able to differentiate benign breast lesions and malignant breast tumors with high sensitivity and specificity within a subset of 14 suspicious breast lesions with similar size and depth characteristics. In the animal testing, a stepped compression load was applied to the subcutaneous tumor deposit on an athymic NU/NU nude mouse model with subcutaneous xenograft BxPC-3 cancer. Characteristic differences were observed between the premortem tumor and the postmortem tumor in terms of pressure-induced tumor structural and functional changes.
Collapse
Affiliation(s)
- Bei Wang
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
25
|
Xu RX, Young DC, Mao JJ, Povoski SP. A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions. Breast Cancer Res 2008; 9:R88. [PMID: 18088411 PMCID: PMC2246191 DOI: 10.1186/bcr1837] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/07/2007] [Accepted: 12/18/2007] [Indexed: 12/27/2022] Open
Abstract
Introduction Characterizing and differentiating between malignant tumors, benign tumors, and normal breast tissue is increasingly important in the patient presenting with breast problems. Near-infrared diffuse optical imaging and spectroscopy is capable of measuring multiple physiologic parameters of biological tissue systems and may have clinical applications for assessing the development and progression of neoplastic processes, including breast cancer. The currently available application of near-infrared imaging technology for the breast, however, is compromised by low spatial resolution, tissue heterogeneity, and interpatient variation. Materials and methods We tested a dynamic near-infrared imaging schema for the characterization of suspicious breast lesions identified on diagnostic clinical ultrasound. A portable handheld near-infrared tissue imaging device (P-Scan; ViOptix Inc., Fremont, CA, USA) was utilized. An external mechanical compression force was applied to breast tissue. The tissue oxygen saturation and hemoglobin concentration were recorded simultaneously by the handheld near-infrared imaging device. Twelve categories of dynamic tissue parameters were derived based on real-time measurements of the tissue hemoglobin concentration and the oxygen saturation. Results Fifty suspicious breast lesions were evaluated in 48 patients. Statistical analyses were carried out on 36 out of 50 datasets that satisfied our inclusion criteria. Suspicious breast lesions identified on diagnostic clinical ultrasound had lower oxygenation and higher hemoglobin concentration than the surrounding normal breast tissue. Furthermore, histopathologic-proven malignant breast tumors had a lower differential hemoglobin contrast (that is, the difference of hemoglobin concentration variability between the suspicious breast lesion and the normal breast parenchyma located remotely elsewhere within the ipsilateral breast) as compared with histopathologic-proven benign breast lesions. Conclusion The proposed dynamic near-infrared imaging schema has the potential to differentiate benign processes from those of malignant breast tumors. Further development and refinement of the dynamic imaging device and additional subsequent clinical testing are necessary for optimizing the accuracy of detection.
Collapse
Affiliation(s)
- Ronald X Xu
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
26
|
Wolf M, Ferrari M, Quaresima V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:062104. [PMID: 18163807 DOI: 10.1117/1.2804899] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This review celebrates the 30th anniversary of the first in vivo near-infrared (NIR) spectroscopy (NIRS) publication, which was authored by Professor Frans Jobsis. At first, NIRS was utilized to experimentally and clinically investigate cerebral oxygenation. Later it was applied to study muscle oxidative metabolism. Since 1993, the discovery that the functional activation of the human cerebral cortex can be explored by NIRS has added a new dimension to the research. To obtain simultaneous multiple and localized information, a further major step forward was achieved by introducing NIR imaging (NIRI) and tomography. This review reports on the progress of the NIRS and NIRI instrumentation for brain and muscle clinical applications 30 years after the discovery of in vivo NIRS. The review summarizes the measurable parameters in relation to the different techniques, the main characteristics of the prototypes under development, and the present commercially available NIRS and NIRI instrumentation. Moreover, it discusses strengths and limitations and gives an outlook into the "bright" future.
Collapse
Affiliation(s)
- Martin Wolf
- University Hospital Zurich, Clinic of Neonatology, Biomedical Optics Research Laboratory, 8091 Zurich, Switzerland.
| | | | | |
Collapse
|
27
|
Kondepati VR, Heise HM, Backhaus J. Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy. Anal Bioanal Chem 2007; 390:125-39. [DOI: 10.1007/s00216-007-1651-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/22/2007] [Accepted: 09/21/2007] [Indexed: 11/29/2022]
|
28
|
Xu RX, Qiang B, Mao JJ, Povoski SP. Development of a handheld near-infrared imager for dynamic characterization of in vivo biological tissue systems. APPLIED OPTICS 2007; 46:7442-51. [PMID: 17952180 DOI: 10.1364/ao.46.007442] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A handheld near-infrared imager was developed for real-time monitoring of tissue physiologic changes in response to dynamic compression stimuli. Both 2D and 3D imaging schemas were developed for reconstruction of tissue heterogeneities based on optical measurements. The handheld imager and the dynamic imaging schema were validated on both benchtop phantoms and in vivo human tissues. The benchtop tests demonstrated that the imager was able to reconstruct absorption properties of the embedded heterogeneity with accuracy and repeatability. The tests on in vivo human tissues demonstrated that the imager was able to generate various dynamic loading profiles with reproducibility and to detect tissue optical, mechanical, and physiologic changes under the dynamic loading condition.
Collapse
Affiliation(s)
- Ronald X Xu
- Department of Biomedical Engineering, The Ohio State University, and Division of Surgical Oncology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Comprehensive Cancer Center, Columbus 43210, USA.
| | | | | | | |
Collapse
|