1
|
Yuan J, Jiang Q, Song L, Liu Y, Li M, Lin Q, Li Y, Su K, Ma Z, Wang Y, Liu D, Dong J. L-Carnitine Is Involved in Hyperbaric Oxygen-Mediated Therapeutic Effects in High Fat Diet-Induced Lipid Metabolism Dysfunction. Molecules 2020; 25:molecules25010176. [PMID: 31906305 PMCID: PMC6982999 DOI: 10.3390/molecules25010176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/14/2019] [Accepted: 12/25/2019] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism dysfunction and obesity are serious health issues to human beings. The current study investigated the effects of hyperbaric oxygen (HBO) against high fat diet (HFD)-induced lipid metabolism dysfunction and the roles of L-carnitine. C57/B6 mice were fed with HFD or normal chew diet, with or without HBO treatment. Histopathological methods were used to assess the adipose tissues, serum free fatty acid (FFA) levels were assessed with enzymatic methods, and the endogenous circulation and skeletal muscle L-carnitine levels were assessed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, western blotting was used to assess the expression levels of PPARα, CPT1b, pHSL/HSL, and UCP1. HFD treatment increased body/adipose tissue weight, serum FFA levels, circulation L-carnitines and decreased skeletal muscle L-carnitine levels, while HBO treatment alleviated such changes. Moreover, HFD treatment increased fatty acid deposition in adipose tissues and decreased the expression of HSL, while HBO treatment alleviated such changes. Additionally, HFD treatment decreased the expression levels of PPARα and increased those of CPT1b in skeletal muscle, while HBO treatment effectively reverted such changes as well. In brown adipose tissues, HFD increased the expression of UCP1 and the phosphorylation of HSL, which was abolished by HBO treatment as well. In summary, HBO treatment may alleviate HFD-induced fatty acid metabolism dysfunction in C57/B6 mice, which seems to be associated with circulation and skeletal muscle L-carnitine levels and PPARα expression.
Collapse
Affiliation(s)
- Junhua Yuan
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.J.); (J.D.); Tel.: +86-18300267138 (Q.J.); +86-0532-83780035 (J.D.)
| | - Limin Song
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Yuan Liu
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Manwen Li
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Qian Lin
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Yanrun Li
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Kaizhen Su
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Zhengye Ma
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Yifei Wang
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Defeng Liu
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Jing Dong
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.J.); (J.D.); Tel.: +86-18300267138 (Q.J.); +86-0532-83780035 (J.D.)
| |
Collapse
|