1
|
Wu Z, Zhan W, Wu L, Yu L, Xie X, Yu F, Kong W, Bi S, Liu S, Yin G, Zhou J. The Roles of Forkhead Box O3a (FOXO3a) in Bone and Cartilage Diseases - A Narrative Review. Drug Des Devel Ther 2025; 19:1357-1375. [PMID: 40034405 PMCID: PMC11874768 DOI: 10.2147/dddt.s494841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Bone and cartilage diseases are significantly associated with musculoskeletal disability. However, no effective drugs are available to cure them. FOXO3a, a member of the FOXO family, has been implicated in cell proliferation, ROS detoxification, autophagy, and apoptosis. The biological functions of FOXO3a can be modulated by post-translational modifications (PTMs), such as phosphorylation and acetylation. Several signaling pathways, such as MAPK, NF-κB, PI3K/AKT, and AMPK/Sirt1 pathways, have been implicated in the development of bone and cartilage diseases by mediating the expression of FOXO3a. In particular, FOXO3a acts as a transcriptional factor in mediating the expression of various genes, such as MnSOD, CAT, BIM, BBC3, and CDK6. FOXO3a plays a critical role in the metabolism of bone and cartilage. In this article, we mainly discussed the biological functions of FOXO3a in bone and cartilage diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis (AS), and intervertebral disc degeneration (IDD). FOXO3a can promote osteogenic differentiation, induce osteoblast proliferation, inhibit osteoclast activity, suppress chondrocyte apoptosis, and reduce inflammatory responses. Collectively, up-regulation of FOXO3a expression shows beneficial effects, and FOXO3a has become a potential target for bone and cartilage diseases.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Wang Zhan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Luhu Yu
- Department of Clinical Laboratory, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Fang Yu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Guoqiang Yin
- Department of Joint Surgery, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, 341000, People’s Republic of China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| |
Collapse
|
2
|
The Emerging Role of Sperm-Associated Antigen 6 Gene in the Microtubule Function of Cells and Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:101-107. [PMID: 31660426 PMCID: PMC6807308 DOI: 10.1016/j.omto.2019.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Accumulated evidence shows that sperm-associated antigen 6 (SPAG6) gene has multiple biological functions. It maintains the normal function of a variety of cells including ciliary/flagellar biogenesis and polarization, neurogenesis, and neuronal migration. Moreover, SPAG6 is found to be critically involved in auditory transduction and the fibroblast life cycle. Furthermore, SPAG6 plays an essential role in immuno-regulation. Notably, SPAG6 has been demonstrated to participate in the occurrence and progression of a variety of human cancers. New evidence shows that SPAG6 gene regulates tumor cell proliferation, apoptosis, invasion, and metastasis. Therefore, in this review, we describe the physiological function and mechanism of SPAG6 in human normal cells and cancer cells. We also highlight that SPAG6 gene may be an effective biomarker for the diagnosis of human cancer. Taken together, targeting SPAG6 could be a novel strategy for the treatment of human diseases including cancer.
Collapse
|
3
|
Nagel S, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF. Deregulated FOX genes in Hodgkin lymphoma. Genes Chromosomes Cancer 2014; 53:917-33. [PMID: 25043849 DOI: 10.1002/gcc.22204] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/18/2014] [Accepted: 06/29/2014] [Indexed: 12/27/2022] Open
Abstract
FOX genes encode transcription factors which regulate basic developmental processes during embryogenesis and in the adult. Several FOX genes show deregulated expression in particular malignancies, representing oncogenes or tumor suppressors. Here, we screened six Hodgkin lymphoma (HL) cell lines for FOX gene activity by comparative microarray profiling, revealing overexpression of FOXC1 and FOXD1, and reduced transcription of FOXN3, FOXO1, and FOXP1. In silico expression analyses of these FOX gene candidates in HL patient samples supported the cell line data. Chromosomal analyses demonstrated an amplification of the FOXC1 locus at 6p25 and a gain of the FOXR2 locus at Xp11, indicting genomic aberrations for their upregulation. Comparative expression profiling and ensuing stimulation experiments revealed implementation of the TGFβ- and WNT-signaling pathways in deregulation of FOXD1 and FOXN3. Functional analysis of FOXP1 implicated miR9 and miR34a as upstream regulators and PAX5, TCF3, and RAG2 as downstream targets. A similar exercise for FOXC1 revealed repression of MSX1 and activation of IPO7, both mediating inhibition of the B-cell specific homeobox gene ZHX2. Taken together, our data show that aberrantly expressed FOX genes and their downstream targets are involved in the pathogenesis of HL via deregulation of B-cell differentiation and may represent useful diagnostic markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
4
|
Chen H, Lu S, Zhou J, Bai Z, Fu H, Xu X, Yang S, Jiao B, Sun Y. An integrated approach for the identification of USF1-centered transcriptional regulatory networks during liver regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:415-23. [PMID: 24686121 DOI: 10.1016/j.bbagrm.2014.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/08/2014] [Accepted: 03/19/2014] [Indexed: 01/20/2023]
Abstract
Liver regeneration after partial hepatectomy (PH) is a synchronized process that is precisely controlled by system-wide transcriptional regulatory networks. To clarify the transcriptional changes and regulatory networks that involve transcription factors (TFs) and their target genes during the priming phase, an advanced mouse oligonucleotide array-based transcription factor assay (MOUSE OATFA), mRNA microarray analysis, bioinformatic analysis and ChIP-on-chip experiments were used. A total of 774 genes were upregulated or downregulated in PH liver samples compared with the sham operation (SH) group. Seventeen TFs showed significant changes in activity in the regenerating livers, some of which have not been extensively studied in previous reports, including upstream stimulatory transcription factor 1 (USF1). The TF signatures from MOUSE OATFA were combined with mRNA expression profiles and ChIP-on-chip analyses to construct experimental transcriptional regulatory networks in regenerating livers. USF1-centered regulatory networks were further confirmed by ChIP assays, revealing some of its target genes and novel coregulatory networks. The combination of MOUSE OATFA with transcriptome profiling and bioinformatic analysis represents a novel paradigm for the comprehensive prediction of transcriptional coregulatory networks during the early phase of liver regeneration.
Collapse
Affiliation(s)
- Huan Chen
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Shan Lu
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jiansheng Zhou
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Zihe Bai
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Hailong Fu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiaoping Xu
- School of Pharm. Sichuan University, 3-17 Ren-min-nan Road, Chengdu, Sichuan 610041, China
| | - Shengsheng Yang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | - Yimin Sun
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, China; National Engineering Research Center for Beijing Biochip Technology, 18 Life Science Parkway, Beijing 102206, China.
| |
Collapse
|