1
|
Hamdan S, Reddehase MJ, Holtappels R. Cytomegalovirus immune evasion sets the functional avidity threshold for protection by CD8 T cells. Med Microbiol Immunol 2023; 212:153-163. [PMID: 35364731 PMCID: PMC10085950 DOI: 10.1007/s00430-022-00733-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
Conflicting hallmarks are attributed to cytomegalovirus (CMV) infections. CMVs are viewed as being master tacticians in "immune evasion" by subverting essentially all pathways of innate and adaptive immunity. On the other hand, CMV disease is undeniably restricted to the immunologically immature or immunocompromised host, whereas an intact immune system prevents virus spread, cytopathogenic tissue infection, and thus pathological organ manifestations. Therefore, the popular term "immune evasion" is apparently incongruous with the control of CMV infections in the immunocompetent human host as well as in experimental non-human primate and rodent models. Here, we review recent work from the mouse model that resolves this obvious discrepancy for the example of the virus-specific CD8 T-cell response. Immune evasion proteins encoded by murine CMV (mCMV) interfere with the cell surface trafficking of antigenic peptide-loaded MHC class-I (pMHC-I) complexes and thereby reduce their numbers available for interaction with T-cell receptors of CD8 T cells; but this inhibition is incomplete. As a consequence, while CD8 T cells with low interaction avidity fail to receive sufficient signaling for triggering their antiviral effector function in the presence of immune evasion proteins in infected cells, a few pMHC-I complexes that escape to the cell surface are sufficient for sensitizing high-avidity CD8 T cells. It is thus proposed that the function of immune evasion proteins is to raise the avidity threshold for activation, so that in the net result, only high-avidity cells can protect. An example showing that immune evasion proteins can make the difference between life and death is the lacking control of infection in a mouse model of MHC-I histoincompatible hematopoietic cell transplantation (allogeneic-HCT). In this model, only low-avidity CD8 T cells become reconstituted by HCT and almost all infected HCT recipients die of multiple-organ CMV disease when immune evasion proteins are expressed. In contrast, lowering the avidity threshold for antigen recognition by deletion of immune evasion proteins allowed control of infection and rescued from death.
Collapse
Affiliation(s)
- Sara Hamdan
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus Am Augustusplatz, 55131, Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus Am Augustusplatz, 55131, Mainz, Germany
| | - Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus Am Augustusplatz, 55131, Mainz, Germany.
| |
Collapse
|
2
|
Purcarea A, Jarosch S, Barton J, Grassmann S, Pachmayr L, D'Ippolito E, Hammel M, Hochholzer A, Wagner KI, van den Berg JH, Buchholz VR, Haanen JBAG, Busch DH, Schober K. Signatures of recent activation identify a circulating T cell compartment containing tumor-specific antigen receptors with high avidity. Sci Immunol 2022; 7:eabm2077. [PMID: 35960818 DOI: 10.1126/sciimmunol.abm2077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cell receptor (TCR) avidity is assumed to be a major determinant of the spatiotemporal fate and protective capacity of tumor-specific T cells. However, monitoring polyclonal T cell responses with known TCR avidities in vivo over space and time remains challenging. Here, we investigated the fate and functionality of tumor neoantigen-specific T cells with TCRs of distinct avidities in a well-established, reductionist preclinical tumor model and human patients with melanoma. To this end, we used polyclonal T cell transfers with in-depth characterized TCRs together with flow cytometric phenotyping in mice inoculated with MC38 OVA tumors. Transfer of T cells from retrogenic mice harboring TCRs with high avidity resulted in best tumor protection. Unexpectedly, we found that both high- and low-avidity T cells are similarly abundant within the tumor and adopt concordant phenotypic signs of exhaustion. Outside the tumor, high-avidity TCR T cells were not generally overrepresented but, instead, selectively enriched in T cell populations with intermediate PD-1 protein expression. Single-cell sequencing of neoantigen-specific T cells from two patients with melanoma-combined with transgenic reexpression of identified TCRs by CRISPR-Cas9-mediated orthotopic TCR replacement-revealed high-functionality TCRs to be enriched in T cells with RNA signatures of recent activation. Furthermore, of 130 surface protein candidates, PD-1 surface expression was most consistently enriched in functional TCRs. Together, our findings show that tumor-reactive TCRs with high protective capacity circulating in peripheral blood are characterized by a signature of recent activation.
Collapse
Affiliation(s)
- Anna Purcarea
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Jack Barton
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Simon Grassmann
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Ludwig Pachmayr
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Anna Hochholzer
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Karolin I Wagner
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | | | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - John B A G Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany.,Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany.,Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie, und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Guedan S, Luu M, Ammar D, Barbao P, Bonini C, Bousso P, Buchholz CJ, Casucci M, De Angelis B, Donnadieu E, Espie D, Greco B, Groen R, Huppa JB, Kantari-Mimoun C, Laugel B, Mantock M, Markman JL, Morris E, Quintarelli C, Rade M, Reiche K, Rodriguez-Garcia A, Rodriguez-Madoz JR, Ruggiero E, Themeli M, Hudecek M, Marchiq I. Time 2EVOLVE: predicting efficacy of engineered T-cells - how far is the bench from the bedside? J Immunother Cancer 2022; 10:jitc-2021-003487. [PMID: 35577501 PMCID: PMC9115015 DOI: 10.1136/jitc-2021-003487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.
Collapse
Affiliation(s)
- Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Maik Luu
- 19 Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Germany
| | | | - Paula Barbao
- Department of Hematology and Oncology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Philippe Bousso
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Paris, France
| | | | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Biagio De Angelis
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Emmanuel Donnadieu
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France
| | - David Espie
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France.,CAR-T Cells Department, Invectys, Paris, France
| | - Beatrice Greco
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Richard Groen
- Amsterdam University Medical Centers at Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunolgy, Vienna, Austria
| | | | - Bruno Laugel
- Institut de Recherches internationales Servier (IRIS), Suresnes, France
| | | | - Janet L Markman
- Takeda Development Centers Americas, Inc. Lexington, Massachusetts, USA
| | - Emma Morris
- Institute of Immunity & Transplantation, University College London Medical School - Royal Free Campus, London, UK
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Michael Rade
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | | | | | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Themeli
- Amsterdam University Medical Centers at Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Michael Hudecek
- 19 Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Germany
| | - Ibtissam Marchiq
- Institut de Recherches internationales Servier (IRIS), Suresnes, France
| |
Collapse
|
4
|
Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Front Immunol 2020; 11:1689. [PMID: 33013822 PMCID: PMC7494743 DOI: 10.3389/fimmu.2020.01689] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed to harness T cell specificity and function to fight diseases. Based on the evidence that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating tumor-specific T cells. Although effective in a subset of cases, in the first ACT clinical trials several patients experienced disease progression, in some cases after temporary disease control. This evidence prompted researchers to improve ACT products by taking advantage of the continuously evolving gene engineering field and by improving manufacturing protocols, to enable the generation of effective and long-term persisting tumor-specific T cell products. Despite recent advances, several challenges, including prioritization of antigen targets, identification, and optimization of tumor-specific T cell receptors, in the development of tools enabling T cells to counteract the immunosuppressive tumor microenvironment, still need to be faced. This review aims at summarizing the major achievements, hurdles and possible solutions designed to improve the ACT efficacy and safety profile in the context of liquid and solid tumors.
Collapse
Affiliation(s)
- Francesco Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Fondazione Centro San Raffaele, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, University of Milano – Bicocca, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Biondi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Reverse TCR repertoire evolution toward dominant low-affinity clones during chronic CMV infection. Nat Immunol 2020; 21:434-441. [PMID: 32205883 DOI: 10.1038/s41590-020-0628-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Adaptive evolution is a key feature of T cell immunity. During acute immune responses, T cells harboring high-affinity T cell antigen receptors (TCRs) are preferentially expanded, but whether affinity maturation by clonal selection continues through the course of chronic infections remains unresolved. Here we investigated the evolution of the TCR repertoire and its affinity during the course of infection with cytomegalovirus, which elicits large T cell populations in humans and mice. Using single-cell and bulk TCR sequencing and structural affinity analyses of cytomegalovirus-specific T cells, and through the generation and in vivo monitoring of defined TCR repertoires, we found that the immunodominance of high-affinity T cell clones declined during the chronic infection phase, likely due to cellular senescence. These data showed that under conditions of chronic antigen exposure, low-affinity TCRs preferentially expanded within the TCR repertoire, with implications for immunotherapeutic strategies.
Collapse
|
6
|
Schober K, Buchholz VR, Busch DH. TCR repertoire evolution during maintenance of CMV-specific T-cell populations. Immunol Rev 2019; 283:113-128. [PMID: 29664573 DOI: 10.1111/imr.12654] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During infections and cancer, the composition of the T-cell receptor (TCR) repertoire of antigen-specific CD8+ T cells changes over time. TCR avidity is thought to be a major driver of this process, thereby interacting with several additional regulators of T-cell responses to form a composite immune response architecture. Infections with latent viruses, such as cytomegalovirus (CMV), can lead to large T-cell responses characterized by an oligoclonal TCR repertoire. Here, we review the current status of experimental studies and theoretical models of TCR repertoire evolution during CMV infection. We will particularly discuss the degree to which this process may be determined through structural TCR avidity. As engineered TCR-redirected T cells have moved into the spotlight for providing more effective immunotherapies, it is essential to understand how the key features of a given TCR influence T-cell expansion and maintenance in settings of infection or malignancy. Deeper insights into these mechanisms will improve our basic understanding of T-cell immunology and help to identify optimal TCRs for immunotherapy.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany.,Focus Group 'Clinical Cell Processing and Purification', Institute for Advanced Study, TUM, Munich, Germany.,National Centre for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
7
|
Tunger A, Wehner R, von Bonin M, Kühn D, Heidenreich F, Matko S, Nauerth M, Rücker-Braun E, Dietz S, Link CS, Eugster A, Odendahl M, Busch DH, Tonn T, Bonifacio E, Germeroth L, Schetelig J, Bachmann MP, Bornhäuser M, Schmitz M. Generation of high-avidity, WT1-reactive CD8+ cytotoxic T cell clones with anti-leukemic activity by streptamer technology. Leuk Lymphoma 2016; 58:1246-1249. [PMID: 27852136 DOI: 10.1080/10428194.2016.1233538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Antje Tunger
- a Institute of Immunology, Medical Faculty , TU Dresden , Dresden , Germany
| | - Rebekka Wehner
- a Institute of Immunology, Medical Faculty , TU Dresden , Dresden , Germany.,b National Center for Tumor Diseases , University Hospital Carl Gustav Carus, TU Dresden , Germany
| | - Malte von Bonin
- b National Center for Tumor Diseases , University Hospital Carl Gustav Carus, TU Dresden , Germany.,c Department of Medicine I , University Hospital of Dresden , Dresden , Germany.,d German Cancer Consortium (DKTK) , Dresden , Germany.,e German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Denise Kühn
- f Center for Regenerative Therapies Dresden (CRTD), Medical Faculty, TU Dresden , Dresden , Germany
| | - Falk Heidenreich
- c Department of Medicine I , University Hospital of Dresden , Dresden , Germany
| | - Sarah Matko
- g Institute of Transfusion Medicine, German Red Cross Blood Donation Service North-East , Dresden , Germany
| | - Magdalena Nauerth
- h Institute for Medical Microbiology, Immunology and Hygiene, TU Munich , Munich , Germany
| | - Elke Rücker-Braun
- c Department of Medicine I , University Hospital of Dresden , Dresden , Germany
| | - Sevina Dietz
- f Center for Regenerative Therapies Dresden (CRTD), Medical Faculty, TU Dresden , Dresden , Germany
| | - Cornelia S Link
- c Department of Medicine I , University Hospital of Dresden , Dresden , Germany.,f Center for Regenerative Therapies Dresden (CRTD), Medical Faculty, TU Dresden , Dresden , Germany
| | - Anne Eugster
- f Center for Regenerative Therapies Dresden (CRTD), Medical Faculty, TU Dresden , Dresden , Germany
| | - Marcus Odendahl
- g Institute of Transfusion Medicine, German Red Cross Blood Donation Service North-East , Dresden , Germany
| | - Dirk H Busch
- h Institute for Medical Microbiology, Immunology and Hygiene, TU Munich , Munich , Germany
| | - Torsten Tonn
- d German Cancer Consortium (DKTK) , Dresden , Germany.,e German Cancer Research Center (DKFZ) , Heidelberg , Germany.,f Center for Regenerative Therapies Dresden (CRTD), Medical Faculty, TU Dresden , Dresden , Germany.,g Institute of Transfusion Medicine, German Red Cross Blood Donation Service North-East , Dresden , Germany
| | - Ezio Bonifacio
- f Center for Regenerative Therapies Dresden (CRTD), Medical Faculty, TU Dresden , Dresden , Germany
| | | | - Johannes Schetelig
- c Department of Medicine I , University Hospital of Dresden , Dresden , Germany
| | - Michael P Bachmann
- b National Center for Tumor Diseases , University Hospital Carl Gustav Carus, TU Dresden , Germany.,d German Cancer Consortium (DKTK) , Dresden , Germany.,e German Cancer Research Center (DKFZ) , Heidelberg , Germany.,f Center for Regenerative Therapies Dresden (CRTD), Medical Faculty, TU Dresden , Dresden , Germany.,j Department of Radioimmunology , Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf , Dresden , Germany
| | - Martin Bornhäuser
- b National Center for Tumor Diseases , University Hospital Carl Gustav Carus, TU Dresden , Germany.,c Department of Medicine I , University Hospital of Dresden , Dresden , Germany.,d German Cancer Consortium (DKTK) , Dresden , Germany.,e German Cancer Research Center (DKFZ) , Heidelberg , Germany.,f Center for Regenerative Therapies Dresden (CRTD), Medical Faculty, TU Dresden , Dresden , Germany
| | - Marc Schmitz
- a Institute of Immunology, Medical Faculty , TU Dresden , Dresden , Germany.,b National Center for Tumor Diseases , University Hospital Carl Gustav Carus, TU Dresden , Germany.,d German Cancer Consortium (DKTK) , Dresden , Germany.,e German Cancer Research Center (DKFZ) , Heidelberg , Germany.,f Center for Regenerative Therapies Dresden (CRTD), Medical Faculty, TU Dresden , Dresden , Germany
| |
Collapse
|
8
|
Hebeisen M, Allard M, Gannon PO, Schmidt J, Speiser DE, Rufer N. Identifying Individual T Cell Receptors of Optimal Avidity for Tumor Antigens. Front Immunol 2015; 6:582. [PMID: 26635796 PMCID: PMC4649060 DOI: 10.3389/fimmu.2015.00582] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 02/02/2023] Open
Abstract
Cytotoxic T cells recognize, via their T cell receptors (TCRs), small antigenic peptides presented by the major histocompatibility complex (pMHC) on the surface of professional antigen-presenting cells and infected or malignant cells. The efficiency of T cell triggering critically depends on TCR binding to cognate pMHC, i.e., the TCR–pMHC structural avidity. The binding and kinetic attributes of this interaction are key parameters for protective T cell-mediated immunity, with stronger TCR–pMHC interactions conferring superior T cell activation and responsiveness than weaker ones. However, high-avidity TCRs are not always available, particularly among self/tumor antigen-specific T cells, most of which are eliminated by central and peripheral deletion mechanisms. Consequently, systematic assessment of T cell avidity can greatly help distinguishing protective from non-protective T cells. Here, we review novel strategies to assess TCR–pMHC interaction kinetics, enabling the identification of the functionally most-relevant T cells. We also discuss the significance of these technologies in determining which cells within a naturally occurring polyclonal tumor-specific T cell response would offer the best clinical benefit for use in adoptive therapies, with or without T cell engineering.
Collapse
Affiliation(s)
- Michael Hebeisen
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Philippe O Gannon
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Julien Schmidt
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland ; TCMetrix Sàrl , Epalinges , Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| |
Collapse
|