1
|
Megremis S, Constantinides B, Xepapadaki P, Yap CF, Sotiropoulos AG, Bachert C, Finotto S, Jartti T, Tapinos A, Vuorinen T, Andreakos E, Robertson DL, Papadopoulos NG. Respiratory eukaryotic virome expansion and bacteriophage deficiency characterize childhood asthma. Sci Rep 2023; 13:8319. [PMID: 37221274 PMCID: PMC10205716 DOI: 10.1038/s41598-023-34730-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Asthma development and exacerbation is linked to respiratory virus infections. There is limited information regarding the presence of viruses during non-exacerbation/infection periods. We investigated the nasopharyngeal/nasal virome during a period of asymptomatic state, in a subset of 21 healthy and 35 asthmatic preschool children from the Predicta cohort. Using metagenomics, we described the virome ecology and the cross-species interactions within the microbiome. The virome was dominated by eukaryotic viruses, while prokaryotic viruses (bacteriophages) were independently observed with low abundance. Rhinovirus B species consistently dominated the virome in asthma. Anelloviridae were the most abundant and rich family in both health and asthma. However, their richness and alpha diversity were increased in asthma, along with the co-occurrence of different Anellovirus genera. Bacteriophages were richer and more diverse in healthy individuals. Unsupervised clustering identified three virome profiles that were correlated to asthma severity and control and were independent of treatment, suggesting a link between the respiratory virome and asthma. Finally, we observed different cross-species ecological associations in the healthy versus the asthmatic virus-bacterial interactome, and an expanded interactome of eukaryotic viruses in asthma. Upper respiratory virome "dysbiosis" appears to be a novel feature of pre-school asthma during asymptomatic/non-infectious states and merits further investigation.
Collapse
Affiliation(s)
- Spyridon Megremis
- University of Manchester, Manchester, UK.
- University of Leicester, Leicester, UK.
| | | | | | | | | | | | - Susetta Finotto
- Friedrich Alexander University Erlangen-Nurnberg, Erlangen, Germany
| | - Tuomas Jartti
- University of Turku, Turku, Finland
- University of Oulu, Oulu, Finland
| | | | | | | | | | - Nikolaos G Papadopoulos
- University of Manchester, Manchester, UK.
- National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Cereta AD, Oliveira VR, Costa IP, Afonso JPR, Fonseca AL, de Souza ART, Silva GAM, Mello DACPG, de Oliveira LVF, da Palma RK. Emerging Cell-Based Therapies in Chronic Lung Diseases: What About Asthma? Front Pharmacol 2021; 12:648506. [PMID: 33959015 PMCID: PMC8094181 DOI: 10.3389/fphar.2021.648506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Asthma is a widespread disease characterized by chronic airway inflammation. It causes substantial disability, impaired quality of life, and avoidable deaths around the world. The main treatment for asthmatic patients is the administration of corticosteroids, which improves the quality of life; however, prolonged use of corticosteroids interferes with extracellular matrix elements. Therefore, cell-based therapies are emerging as a novel therapeutic contribution to tissue regeneration for lung diseases. This study aimed to summarize the advancements in cell therapy involving mesenchymal stromal cells, extracellular vesicles, and immune cells such as T-cells in asthma. Our findings provide evidence that the use of mesenchymal stem cells, their derivatives, and immune cells such as T-cells are an initial milestone to understand how emergent cell-based therapies are effective to face the challenges in the development, progression, and management of asthma, thus improving the quality of life.
Collapse
Affiliation(s)
- Andressa Daronco Cereta
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinícius Rosa Oliveira
- Department of Physical Therapy, EUSES University School, University of Barcelona/University of Girona (UB-UdG), Barcelona, Spain.,Research Group on Methodology, Methods, Models, and Outcomes of Health and Social Sciences (M3O), University of Vic - Central University of Catalonia, Vic, Spain
| | - Ivan Peres Costa
- Department of Master's and and Doctoral Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - João Pedro Ribeiro Afonso
- Department of Experimental Cardiorrespiratory Physiology, Postgraduate Program in Human Movement and Rehabilitation, School of Medicine, University Center of Anápolis (UniEVANGELICA), Anápolis, Brazil
| | - Adriano Luís Fonseca
- Department of Experimental Cardiorrespiratory Physiology, Postgraduate Program in Human Movement and Rehabilitation, School of Medicine, University Center of Anápolis (UniEVANGELICA), Anápolis, Brazil
| | - Alan Robson Trigueiro de Souza
- Department of Experimental Cardiorrespiratory Physiology, Postgraduate Program in Human Movement and Rehabilitation, School of Medicine, University Center of Anápolis (UniEVANGELICA), Anápolis, Brazil
| | - Guilherme Augusto Moreira Silva
- Department of Experimental Cardiorrespiratory Physiology, Postgraduate Program in Human Movement and Rehabilitation, School of Medicine, University Center of Anápolis (UniEVANGELICA), Anápolis, Brazil
| | - Diego A C P G Mello
- Department of Experimental Cardiorrespiratory Physiology, Postgraduate Program in Human Movement and Rehabilitation, School of Medicine, University Center of Anápolis (UniEVANGELICA), Anápolis, Brazil
| | - Luis Vicente Franco de Oliveira
- Department of Experimental Cardiorrespiratory Physiology, Postgraduate Program in Human Movement and Rehabilitation, School of Medicine, University Center of Anápolis (UniEVANGELICA), Anápolis, Brazil
| | - Renata Kelly da Palma
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.,Department of Physical Therapy, EUSES University School, University of Barcelona/University of Girona (UB-UdG), Barcelona, Spain.,Institute for Bioengineering of Catalonia, Barcelona, Spain
| |
Collapse
|
3
|
Megremis S, Niespodziana K, Cabauatan C, Xepapadaki P, Kowalski ML, Jartti T, Bachert C, Finotto S, West P, Stamataki S, Lewandowska-Polak A, Lukkarinen H, Zhang N, Zimmermann T, Stolz F, Neubauer A, Akdis M, Andreakos E, Valenta R, Papadopoulos NG. Rhinovirus Species-Specific Antibodies Differentially Reflect Clinical Outcomes in Health and Asthma. Am J Respir Crit Care Med 2020; 198:1490-1499. [PMID: 30134114 DOI: 10.1164/rccm.201803-0575oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rationale: Rhinoviruses (RVs) are major triggers of common cold and acute asthma exacerbations. RV species A, B, and C may have distinct clinical impact; however, little is known regarding RV species-specific antibody responses in health and asthma.Objectives: To describe and compare total and RV species-specific antibody levels in healthy children and children with asthma, away from an acute event.Methods: Serum samples from 163 preschool children with mild to moderate asthma and 72 healthy control subjects from the multinational Predicta cohort were analyzed using the recently developed PreDicta RV antibody chip.Measurements and Main Results: RV antibody levels varied, with RV-C and RV-A being higher than RV-B in both groups. Compared with control subjects, asthma was characterized by significantly higher levels of antibodies to RV-A and RV-C, but not RV-B. RV antibody levels positively correlated with the number of common colds over the previous year in healthy children, and wheeze episodes in children with asthma. Antibody levels also positively correlated with asthma severity but not with current asthma control.Conclusions: The variable humoral response to RV species in both groups suggests a differential infectivity pattern between RV species. In healthy preschoolers, RV antibodies accumulate with colds. In asthma, RV-A and RV-C antibodies are much higher and further increase with disease severity and wheeze episodes. Higher antibody levels in asthma may be caused by a compromised innate immune response, leading to increased exposure of the adaptive immune response to the virus. Importantly, there is no apparent protection with increasing levels of antibodies.
Collapse
Affiliation(s)
| | - Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Clarissa Cabauatan
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Marek L Kowalski
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Tuomas Jartti
- Department of Paediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter West
- Division of Infection, Immunity and Respiratory Medicine and
| | - Sofia Stamataki
- Athens General Children's Hospital "Pan & Aglaia Kyriakou," Athens, Greece
| | - Anna Lewandowska-Polak
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Heikki Lukkarinen
- Department of Paediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | - Nan Zhang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Theodor Zimmermann
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Zurich, Switzerland
| | | | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine and.,Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Ojwang V, Nwaru BI, Takkinen HM, Kaila M, Niemelä O, Haapala AM, Ilonen J, Toppari J, Hyöty H, Veijola R, Knip M, Virtanen SM. Early exposure to cats, dogs and farm animals and the risk of childhood asthma and allergy. Pediatr Allergy Immunol 2020; 31:265-272. [PMID: 31829464 DOI: 10.1111/pai.13186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Synergistic role of exposure to cats, dogs, and farm animals during infancy on the risk of childhood asthma and allergy remains unknown. OBJECTIVES To investigate independent and synergistic associations between exposure to indoor pets and farm animals during infancy and the risk of asthma and allergy by age 5. METHODS We studied 3781 children participating in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Nutrition Study. At age 5, a validated version of the International Study of Asthma and Allergies in Childhood questionnaire was administered to collect information on asthma and allergic disease, and exposure to indoor pets and farm animals during the first year of life. Allergen-specific IgE antibodies were analyzed from serum samples. Statistical analyses employed Cox proportional hazards and logistic regression. RESULTS Having a dog in the house was inversely associated with the risk of asthma (HR 0.60; 95% CI, 0.38-0.96), allergic rhinitis (OR 0.72; 95% CI, 0.53-0.97), and atopic sensitization (OR 0.77; 95% CI, 0.63-0.96). Having a cat was associated with a decreased risk of atopic eczema (OR 0.68; 95% CI, 0.51-0.92). Farm animals were neither independently nor in synergy with indoor pets associated with the outcomes. CONCLUSION Having a dog or cat in the house during the first year of life may protect against childhood asthma and allergy. We did not find a synergistic association between cat, dog, and farm animal exposure on the risk of childhood asthma and allergy. Future research should identify specific causative exposures conferred by indoor pets and whether they could be recommended for allergy prevention.
Collapse
Affiliation(s)
- Vincent Ojwang
- Faculty of Social Sciences/Health Sciences, Tampere University, Tampere, Finland.,Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Bright I Nwaru
- Faculty of Social Sciences/Health Sciences, Tampere University, Tampere, Finland.,Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Hanna-Mari Takkinen
- Faculty of Social Sciences/Health Sciences, Tampere University, Tampere, Finland.,Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Minna Kaila
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland.,Public Health Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Onni Niemelä
- Department of Laboratory Medicine, Medical Research Unit, Seinajoki Central Hospital, Tampere University, Tampere, Finland
| | | | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre of Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Heikki Hyöty
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland.,Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Mikael Knip
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere University, Tampere, Finland.,Science Center of Pirkanmaa Hospital District, Tampere, Finland.,Folkhalsan Research Center, Helsinki, Finland.,Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Suvi M Virtanen
- Faculty of Social Sciences/Health Sciences, Tampere University, Tampere, Finland.,Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere University, Tampere, Finland.,Science Center of Pirkanmaa Hospital District, Tampere, Finland.,Science Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|