1
|
Therapeutic Potential of Combining IL-6 and TNF Blockade in a Mouse Model of Allergic Asthma. Int J Mol Sci 2022; 23:ijms23073521. [PMID: 35408882 PMCID: PMC8998171 DOI: 10.3390/ijms23073521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Combined anti-cytokine therapy is a promising therapeutic approach for uncontrolled steroid-resistant asthma. In this regard, simultaneous blockade of IL-4 and IL-13 signaling by Dupilumab (anti-IL-4Ra monoclonal antibody) was recently approved for severe eosinophilic asthma. However, no therapeutic options for neutrophilic asthma are currently available. Recent advances in our understanding of asthma pathogenesis suggest that both IL-6 and TNF may represent potential targets for treatment of severe neutrophilic asthma. Nevertheless, the efficacy of simultaneous pharmacological inhibition of TNF and IL-6 in asthma was not yet studied. To evaluate the potency of combined cytokine inhibition, we simultaneously administrated IL-6 and TNF inhibitors to BALB/c mice with HDM-induced asthma. Combined IL-6/TNF inhibition, but not individual blockade of these two cytokines, led to complex anti-inflammatory effects including reduced Th2-induced eosinophilia and less prominent Th17/Th1-mediated neutrophilic infiltrate in the airways. Taken together, our results provide evidence for therapeutic potential of combined IL-6/TNF inhibition in severe steroid-resistant asthma.
Collapse
|
2
|
Kefaloyianni E. Soluble forms of cytokine and growth factor receptors: Mechanisms of generation and modes of action in the regulation of local and systemic inflammation. FEBS Lett 2022; 596:589-606. [PMID: 35113454 DOI: 10.1002/1873-3468.14305] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Abstract
Cytokine and growth factor receptors are usually transmembrane proteins but they can also exist in soluble forms, either through cleavage and release of their ligand-binding extracellular domain, or through secretion of a soluble isoform. As an extension of this concept, transmembrane receptors on exosomes released into the circulation may act similarly to circulating soluble receptors. These soluble receptors add to the complexity of cytokine and growth factor signalling: they can function as decoy receptor that compete for ligand binding with their respective membrane-bound forms thereby attenuating signalling, or stabilize their ligands, or activate additional signalling events through interactions with other cell-surface proteins. Their soluble nature allows for a functional role away from the production sites, in remote cell types and organs. Accumulating evidence demonstrates that soluble receptors participate in the regulation and orchestration of various key cellular processes, particularly inflammatory responses. In this review, we will discuss release mechanisms of soluble cytokine and growth factor receptors, their mechanisms of action, as well as strategies for targeting their pathways in disease.
Collapse
Affiliation(s)
- Eirini Kefaloyianni
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
3
|
Ghilardi N, Pappu R, Arron JR, Chan AC. 30 Years of Biotherapeutics Development-What Have We Learned? Annu Rev Immunol 2021; 38:249-287. [PMID: 32340579 DOI: 10.1146/annurev-immunol-101619-031510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the birth of biotechnology, hundreds of biotherapeutics have been developed and approved by the US Food and Drug Administration (FDA) for human use. These novel medicines not only bring significant benefit to patients but also represent precision tools to interrogate human disease biology. Accordingly, much has been learned from the successes and failures of hundreds of high-quality clinical trials. In this review, we discuss general and broadly applicable themes that have emerged from this collective experience. We base our discussion on insights gained from exploring some of the most important target classes, including interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), IL-6, IL-12/23, IL-17, IL-4/13, IL-5, immunoglobulin E (IgE), integrins and B cells. We also describe current challenges and speculate about how emerging technological capabilities may enable the discovery and development of the next generation of biotherapeutics.
Collapse
Affiliation(s)
- Nico Ghilardi
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Rajita Pappu
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Joseph R Arron
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Andrew C Chan
- Research-Biology, Genentech, South San Francisco, California 94080, USA;
| |
Collapse
|
4
|
Gubernatorova EO, Namakanova OA, Gorshkova EA, Medvedovskaya AD, Nedospasov SA, Drutskaya MS. Novel Anti-Cytokine Strategies for Prevention and Treatment of Respiratory Allergic Diseases. Front Immunol 2021; 12:601842. [PMID: 34084159 PMCID: PMC8167041 DOI: 10.3389/fimmu.2021.601842] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a heterogeneous inflammatory disease characterized by airflow obstruction, wheezing, eosinophilia and neutrophilia of the airways. Identification of distinct inflammatory patterns characterizing asthma endotypes led to the development of novel therapeutic approaches. Cytokine or cytokine receptor targeting by therapeutic antibodies, such as anti-IL-4 and anti-IL-5, is now approved for severe asthma treatment. However, the complexity of cytokine networks in asthma should not be underestimated. Inhibition of one pro-inflammatory cytokine may lead to perturbed expression of another pro-inflammatory cytokine. Without understanding of the underlying mechanisms and defining the molecular predictors it may be difficult to control cytokine release that accompanies certain disease manifestations. Accumulating evidence suggests that in some cases a combined pharmacological inhibition of pathogenic cytokines, such as simultaneous blockade of IL-4 and IL-13 signaling, or blockade of upstream cytokines, such as TSLP, are more effective than single cytokine targeting. IL-6 and TNF are the important inflammatory mediators in the pathogenesis of asthma. Preliminary data suggests that combined pharmacological inhibition of TNF and IL-6 during asthma may be more efficient as compared to individual neutralization of these cytokines. Here we summarize recent findings in the field of anti-cytokine therapy of asthma and discuss immunological mechanisms by which simultaneous targeting of multiple cytokines as opposed to targeting of a single cytokine may improve disease outcomes.
Collapse
Affiliation(s)
- Ekaterina O Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Namakanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina A Gorshkova
- Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra D Medvedovskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sochi, Russia
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Schneider AL, Schleimer RP, Tan BK. Targetable pathogenic mechanisms in nasal polyposis. Int Forum Allergy Rhinol 2021; 11:1220-1234. [PMID: 33660425 DOI: 10.1002/alr.22787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) represents a challenging disease entity with significant rates of recurrence following appropriate medical and surgical therapy. Recent approval of targeted biologics in CRSwNP compels deeper understanding of underlying disease pathophysiology. Both of the approved biologics for CRSwNP modulate the type 2 inflammatory pathway, and the majority of drugs in the clinical trials pathway are similarly targeted. However, there remain multiple other pathogenic mechanisms relevant to CRSwNP for which targeted therapeutics already exist in other inflammatory diseases that have not been studied directly. In this article we summarize pathogenic mechanisms of interest in CRSwNP and discuss the results of ongoing clinical studies of targeted therapeutics in CRSwNP and other related human inflammatory diseases.
Collapse
Affiliation(s)
| | - Robert P Schleimer
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce K Tan
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Quinnell SP, Leifer BS, Nestor ST, Tan K, Sheehy DF, Ceo L, Doyle SK, Koehler AN, Vegas AJ. A Small-Molecule Inhibitor to the Cytokine Interleukin-4. ACS Chem Biol 2020; 15:2649-2654. [PMID: 32902255 DOI: 10.1021/acschembio.0c00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interleukin-4 (IL-4) is a multifunctional cytokine and an important regulator of inflammation. When deregulated, IL-4 activity is associated with asthma, allergic inflammation, and multiple types of cancer. While antibody-based inhibitors targeting the soluble cytokine have been evaluated clinically, they failed to achieve their end points in trials. Small-molecule inhibitors are an attractive alternative, but identifying effective chemotypes that inhibit the protein-protein interactions between cytokines and their receptors remains an active area of research. As a result, no small-molecule inhibitors to the soluble IL-4 cytokine have yet been reported. Here, we describe the first IL-4 small-molecule inhibitor identified and characterized through a combination of binding-based approaches and cell-based activity assays. The compound features a nicotinonitrile scaffold with micromolar affinity and potency for the cytokine and disrupts type II IL-4 signaling in cells. Small-molecule inhibitors of these important cell-signaling proteins have implications for numerous immune-related disorders and inform future drug discovery and design efforts for these challenging protein targets.
Collapse
Affiliation(s)
- Sean P. Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Becky S. Leifer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen T. Nestor
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Kelly Tan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Daniel F. Sheehy
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Luke Ceo
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Shelby K. Doyle
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Angela N. Koehler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| | - Arturo J. Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
7
|
Hynes G, Pavord ID. Targeted biologic therapy for asthma. Br Med Bull 2020; 133:16-35. [PMID: 32318701 DOI: 10.1093/bmb/ldaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Asthma is a common and potentially serious condition affecting 300 million people worldwide. For many years, we have relied on a one-size-fits-all approach to its management, using corticosteroids and bronchodilators for all symptomatic patients. However, with more recent advances, it has become clear that asthma is a heterogeneous condition with multiple different underlying pathways. Understanding the different subtypes will be a key to giving us the ability to intervene in a targeted way to personalize care for patients with asthma. SOURCES OF DATA Key published literature, guidelines and trials from clinicaltrials.gov. AREAS OF AGREEMENT The most widely studied of these subtypes is T2 high eosinophilic asthma, for which there are an increasing number of biologic therapies available. T2 high asthma is associated with the cytokines interleukin (IL)-4, IL-5 and IL-13, for each of which biologics have been developed. AREAS OF CONTROVERSY It is currently unclear which of the available biologics provides superior efficacy. It is also unclear how to select which biologic for which patient. GROWING POINTS Head-to-head trials of the available T2 biologics will be important to determine superiority, and a suggested order for trialling biologics. Going further than this, we would like to see further analyses of available biologics to allow us to predict responders from non-responders in advance of administering therapy. AREAS TIMELY FOR DEVELOPING RESEARCH Non-eosinophilic T2 low asthma is an area that is under-researched and for which there are few treatments available. It is likely that there are different subtypes in this category of asthma and unravelling what these are will be crucial to developing effective treatments.
Collapse
Affiliation(s)
- Gareth Hynes
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| |
Collapse
|
8
|
|
9
|
Bagnasco D, Ferrando M, Varricchi G, Passalacqua G, Canonica GW. A Critical Evaluation of Anti-IL-13 and Anti-IL-4 Strategies in Severe Asthma. Int Arch Allergy Immunol 2016; 170:122-31. [PMID: 27637004 DOI: 10.1159/000447692] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Asthma is a high-prevalence disease, still accounting for mortality and high direct and indirect costs. It is now recognized that, despite the implementation of guidelines, a large proportion of cases remain not controlled. Certainly, adherence to therapy and the education of patients remain the primary objective, but the increasingly detailed knowledge about the pathogenic mechanisms and new biotechnologies offer the opportunity to better address and treat the disease. Interleukin (IL)-13 and IL-4 appear as the most suitable targets to treat the T helper 2 (TH2)-mediated forms (endotypes) of asthma. IL-13 and IL-4 partly share the same receptor and signaling pathways and both are deeply involved in immunoglobulin E (IgE) synthesis, eosinophil activation, mucus secretion and airways remodeling. Several anti-IL-13 strategies have been proposed (anrukinzumab, lebrikizunab and tralokinumab), with relevant clinical results reported with lebrikizumab. Such studies facilitate better definition of the possible predictive markers of response to a specific treatment (e.g. eosinophils, total IgE, fraction of exhaled nitric oxide and periostin). In parallel, anti-IL-4 strategies have been attempted (pascolizumab, pitakinra and dupilumab). So far, dupilumab was reported capable of reducing the severity of asthma and the rate of exacerbations. IL-13 and IL-4 are crucial in TH2-mediated inflammation in asthma, but it remains clear that only specific endotypes respond to these treatments. Although the use of anti-IL-14 and anti-IL-13 strategies is promising, the search for appropriate predictive biomarkers is urgently needed to better apply biological treatments.
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, DIMI Department of Internal Medicine, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | | | | | | |
Collapse
|