1
|
Strzalka-Mrozik B, Paprzycka O, Gruszka O, Madej M, Kruszniewska-Rajs C, Gola JM, Turek A. Ranibizumab Modifies the Expression of Metalloproteinases and Their Tissue Inhibitors in Peripheral Blood Mononuclear Cells in Patients with Exudative Age-Related Macular Degeneration. J Clin Med 2024; 13:295. [PMID: 38202302 PMCID: PMC10780024 DOI: 10.3390/jcm13010295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of vision loss in people over 60 years of age. Despite research, the causes of AMD remain unclear. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are known to be involved in AMD development, and anti-vascular endothelial growth factor therapy has revolutionized its treatment. This study aims to analyze the changes in gene expression in MMPs and TIMPS in patients with neovascular AMD before and after three doses of ranibizumab. METHODS The study involved 29 patients with neovascular AMD treated with ranibizumab. Peripheral blood mononuclear cells were collected before treatment and 24 h after the third dose of ranibizumab. We assessed MMP and TIMP gene expression profiles through oligonucleotide microarrays and validated selected differential genes using RT-qPCR. RESULTS A statistically significant change in the expression of six MMP- and TIMP-related genes was observed using oligonucleotide microarray. The mRNA levels of the two genes with the most significant fold changes, MMP15 and TIMP2, were then quantified using RT-qPCR. The results confirmed a statistically significant increase in MMP15 expression and a decrease in TIMP2 levels, although this change was not statistically significant in the group before and after the third dose of ranibizumab. CONCLUSION Ranibizumab affects the systemic expression of MMP and TIMP-related genes in patients with neovascular AMD. Results from our exploratory study suggest that MMP15, in particular, may play a role in the treatment response, but further research is necessary.
Collapse
Affiliation(s)
- Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
| | - Olga Paprzycka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
| | - Oliwia Gruszka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (O.G.); (M.M.); (C.K.-R.); (J.M.G.)
| | - Artur Turek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
2
|
The Protective Effects of Flavonoids in Cataract Formation through the Activation of Nrf2 and the Inhibition of MMP-9. Nutrients 2020; 12:nu12123651. [PMID: 33261005 PMCID: PMC7759919 DOI: 10.3390/nu12123651] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cataracts account for over half of global blindness. Cataracts formations occur mainly due to aging and to the direct insults of oxidative stress and inflammation to the eye lens. The nuclear factor-erythroid-2-related factor 2 (Nrf2), a transcriptional factor for cell cytoprotection, is known as the master regulator of redox homeostasis. Nrf2 regulates nearly 600 genes involved in cellular protection against contributing factors of oxidative stress, including aging, disease, and inflammation. Nrf2 was reported to disrupt the oxidative stress that activates Nuclear factor-κB (NFκB) and proinflammatory cytokines. One of these cytokines is matrix metalloproteinase 9 (MMP-9), which participates in the decomposition of lens epithelial cells (LECs) extracellular matrix and has been correlated with cataract development. Thus, during inflammatory processes, MMP production may be attenuated by the Nrf2 pathway or by the Nrf2 inhibition of NFκB pathway activation. Moreover, plant-based polyphenols have garnered attention due to their presumed safety and efficacy, nutritional, and antioxidant effects. Polyphenol compounds can activate Nrf2 and inhibit MMP-9. Therefore, this review focuses on discussing Nrf2's role in oxidative stress and cataract formation, epigenetic effect in Nrf2 activity, and the association between Nrf2 and MMP-9 in cataract development. Moreover, we describe the protective role of flavonoids in cataract formation, targeting Nrf2 activation and MMP-9 synthesis inhibition as potential molecular targets in preventing cataracts.
Collapse
|
3
|
Ardalan Khales S, Abbaszadegan MR, Majd A, Forghanifard MM. TWIST1 upregulates matrix metalloproteinase (MMP) genes family in esophageal squamous carcinoma cells. Gene Expr Patterns 2020; 37:119127. [PMID: 32711119 DOI: 10.1016/j.gep.2020.119127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022]
Abstract
Twist-related protein 1 (TWIST1), a highly conserved basic helix-loop-helix transcription factor, stimulates epithelial-mesenchymal transition (EMT) and plays a crucial role in the regulation of the extracellular matrix (ECM) and cell-cell adhesion. Our aim in this study was to evaluate the functional correlation between TWIST1 and MMP genes in human ESCC cell lines, KYSE-30 and YM-1. To generate recombinant retroviral particles, the Pruf-IRES-GFP-hTWIST1 was co-transfected into HEK293T along with pGP and pMD2. G as well as Pruf-IRES-GFP control plasmid. Stably transduced high-expressing GFP-hTWIST1 and GFP-control KYSE-30 cells were generated. The produced retroviral particles were transduced into the KYSE-30 and YM-1 ESCC cells. Ectopic expression of TWIST1 mRNA and expression of the MMP genes (MMP-2, MMP-3, MMP-7, MMP-9, and MMP-10) were examined by relative comparative real-time PCR. In silico analysis of the MMP markers and their promoter elements was explored. Moreover, the scratch wound assay was used to evaluate the migration of TWIST1-induced cells. TWIST1 level was up-regulated by nearly 5-fold and 7.4-fold in GFP-hTWIST1 KYSE-30 and YM-1 cells compared to GFP control cells, respectively. Interestingly, this enforced expression of TWIST1 subsequently caused significant overexpression of transcripts for selected MMP genes in GFP-hTWIST1 in comparison with GFP control cells in both ESCC cell lines. Also, the scratch assay indicated that TWIST1 expression effectively increased the migration of GFP-TWIST1 KYSE-30 cells against GFP KYSE-30 control cells in vitro. The present findings illuminate that TWIST1 may contribute broadly to ESCC development in concert with up-regulation of MMPs expression and further suggest the potential advantage of exerting TWIST1/MMPs signaling axis as a framework from which to expand our understanding about the mechanisms of ESCC tumorigenesis.
Collapse
Affiliation(s)
- Sima Ardalan Khales
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran.
| | | | - Ahmad Majd
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
4
|
Miyata Y, Tatsuzaki J, Yang J, Kosano H. Potential Therapeutic Agents, Polymethoxylated Flavones Isolated from Kaempferia parviflora for Cataract Prevention through Inhibition of Matrix Metalloproteinase-9 in Lens Epithelial Cells. Biol Pharm Bull 2020; 42:1658-1664. [PMID: 31582653 DOI: 10.1248/bpb.b19-00244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural flavonoids have powerful antioxidant activity and have been reported to show promising protective effects against cataracts. The plant Kaempferia parviflora (K. parviflora) is indigenous to southeast Asia, including Thailand, and typically contains polymethoxylated flavones. The flavones in K. parviflora are reported to have various biological properties. Recently, polymethoxylated flavones of K. parviflora (KPMFs) were shown to have potent Sirtuin 1 enzyme-stimulating and anti-glycation activities that led to the suppression of cataract formation. Matrix metalloproteinases (MMPs) are upregulated in several pathologic ocular diseases, including cataracts, and have been established as an attractive target for the prevention and/or treatment of specific cataract phenotypes, such as anterior subcapsular cataract (ASC) and posterior capsular opacification (PCO). In the present study, we investigated the effect of KPMFs on MMP (gelatinase) activity in the human lens epithelial cell line, SRA01/04. We demonstrated that KPMFs inhibited the phorbol ester-induced MMP-9 activity and the mRNA expression through the suppression of mitogen-activated protein kinases (MAPKs) phosphorylation in human lens epithelial cells; 5,7-dimethoxyflavone was found to exert the most potent inhibition, but 3,5,7,4'-tetramethoxyflavone and 3,5,7,3',4'-pentamethoxyflavone also resulted in considerable inhibition. Our results suggested that the consumption of PMFs isolated from K. parviflora, may be an effective strategy to delay the development of cataracts, such as ASC and PCO.
Collapse
|
5
|
Clinical Aspects of Pterygium in the Presence of Cataract. CURRENT HEALTH SCIENCES JOURNAL 2019; 45:263-271. [PMID: 32042453 PMCID: PMC6993772 DOI: 10.12865/chsj.45.03.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022]
Abstract
Two of the most common UV-induced eye affections are pterygium and cataract. They are both defined as progressive diseases that impair patients’ vision and share some common elements in their evolution process. The purpose of this study was to determine whether the presence of cataract influences the clinical signs and symptoms of patients with pterygium. Therefore, we have analyzed 84 patients with pterygium, among which 23 also presented cataract, as an overall study lot, as well as divided by age decades. We have determined that almost all patients with both pterygium and cataract declared extensive UV exposure in antecedents and have also reported a blurred vision. We found no correlation between the presence of cataract and the size of pterygium lesions, or symptoms like foreign body sensation, tearing or symblepharon.
Collapse
|
6
|
HPV16-E6 Oncoprotein Activates TGF- β and Wnt/ β-Catenin Pathways in the Epithelium-Mesenchymal Transition of Cataracts in a Transgenic Mouse Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2847873. [PMID: 29888254 PMCID: PMC5977056 DOI: 10.1155/2018/2847873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 11/18/2022]
Abstract
Objective This work aimed to determine if cataractous changes associated with EMT occurring in the K14E6 mice lenses are associated with TGF-β and Wnt/β-catenin signaling activation. Materials and Methods Cataracts of K14E6 mice were analysed histologically; and components of TGF-β and Wnt/β-catenin signaling were evaluated by Western blot, RT-qPCR, in situ RT-PCR, IHC, or IF technics. Metalloproteinases involved in EMT were also assayed using zymography. The endogenous stabilisation of Smad7 protein was also assessed using an HDAC inhibitor. Results The K14E6 mice, which displayed binocular cataracts in 100% of the animals, exhibited loss of tissue organisation, cortical liquefaction, and an increase in the number of hyperproliferative-nucleated cells with mesenchymal-like characteristics in the lenses. Changes in lenses' cell morphology were due to actin filaments reorganisation, activation of TGF-β and Wnt/β-catenin pathways, and the accumulation of MTA1 protein. Finally, the stabilisation of Smad7 protein diminishes cell proliferation, as well as MTA1 protein levels. Conclusion The HPV16-E6 oncoprotein induces EMT in transgenic mice cataracts. The molecular mechanism may involve TGF-β and Wnt/β-catenin pathways, suggesting that the K14E6 transgenic mouse could be a useful model for the study or treatment of EMT-induced cataracts.
Collapse
|
7
|
Wojciechowski MC, Shu DY, Lovicu FJ. ERK1/2-Dependent Gene Expression Contributing to TGFβ-Induced Lens EMT. Curr Eye Res 2018; 43:986-997. [PMID: 29652528 DOI: 10.1080/02713683.2018.1464193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE This study aims to highlight some of the genes that are differentially regulated by ERK1/2 signaling in TGFβ-induced EMT in lens, and their potential contribution to this pathological process. MATERIALS AND METHODS Rat lens epithelial explants were cultured with or without TGFβ over a 3-day-culture period to induce EMT, in the presence or absence of UO126 (ERK1/2 signaling inhibitor), both prior to TGFβ-treatment, or 24 or 48 hours after TGFβ treatment. Smad2/3-nuclear immunolabeling was used to indicate active TGFβ signaling, and quantitative RT-PCR was used to analyze changes in the different treatment groups in expression of the following representative genes: TGFβ signaling (Smad7, Smurf1, and Rnf111), epithelial markers (Pax6, Cdh1, Zeb1, and Zeb2), cell survival/death regulators (Bcl2, Bax, and Bad) and lens mesenchymal markers (Mmp9, Fn1, and Col1a1), over the 3 days of culture. RESULTS ERK1/2 was found to regulate the expression of Smurf1, Smad7, Rnf11, Cdh1, Pax6, Zeb1, Bcl2, Bax, and Bad genes in lens cells. TGFβ signaling was evident by nuclear localization of Smad2/3 and this was effectively blocked by pre-treatment with UO126, but not by post-treatment with this ERK1/2 signaling inhibitor. TGFβ induced the expression of its signaling partners (Smad7, Smurf1, and Rnf111), as well as lens mesenchymal genes (Mmp9, Fn1, and Col1a1), consistent with its role in inducing an EMT. These TGFβ-responsive signaling genes, as well as the mesenchymal markers, were all positively regulated by ERK1/2-activity. The expression levels of the lens epithelial genes we examined, and genes that were associated with cell death/survival, were not directly impacted by TGFβ. CONCLUSIONS TGFβ-mediated ERK1/2 signaling positively modulates the expression of mesenchymal genes in lens epithelial explants undergoing EMT, in addition to regulating TGFβ-mediated regulatory genes. Independent of TGFβ, ERK1/2 activity can also regulate the expression of endogenous lens epithelial genes, highlighting its potential key role in regulation of both normal and pathological lens cellular processes.
Collapse
Affiliation(s)
| | - Daisy Y Shu
- a Discipline of Anatomy and Histology , Bosch Institute, University of Sydney , Sydney , Australia.,b Save Sight Institute , University of Sydney , Sydney , Australia
| | - Frank J Lovicu
- a Discipline of Anatomy and Histology , Bosch Institute, University of Sydney , Sydney , Australia.,b Save Sight Institute , University of Sydney , Sydney , Australia
| |
Collapse
|
8
|
Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC. Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer. J Cell Biochem 2017; 118:3531-3548. [PMID: 28585723 PMCID: PMC5621753 DOI: 10.1002/jcb.26185] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that cleave nearly all components of the extracellular matrix as well as many other soluble and cell-associated proteins. MMPs have been implicated in normal physiological processes, including development, and in the acquisition and progression of the malignant phenotype. Disappointing results from a series of clinical trials testing small molecule, broad spectrum MMP inhibitors as cancer therapeutics led to a re-evaluation of how MMPs function in the tumor microenvironment, and ongoing research continues to reveal that these proteins play complex roles in cancer development and progression. It is now clear that effective targeting of MMPs for therapeutic benefit will require selective inhibition of specific MMPs. Here, we provide an overview of the MMP family and its biological regulators, the tissue inhibitors of metalloproteinases (TIMPs). We then summarize recent research from model systems that elucidate how specific MMPs drive the malignant phenotype of breast cancer cells, including acquisition of cancer stem cell features and induction of the epithelial-mesenchymal transition, and we also outline clinical studies that implicate specific MMPs in breast cancer outcomes. We conclude by discussing ongoing strategies for development of inhibitors with therapeutic potential that are capable of selectively targeting the MMPs most responsible for tumor promotion, with special consideration of the potential of biologics including antibodies and engineered proteins based on the TIMP scaffold. J. Cell. Biochem. 118: 3531-3548, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| | | | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| |
Collapse
|
9
|
Ho WT, Chang JS, Su CC, Chang SW, Hu FR, Jou TS, Wang IJ. Inhibition of Matrix Metalloproteinase Activity Reverses Corneal Endothelial-Mesenchymal Transition. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [DOI: 10.1016/j.ajpath.2015.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Radisky ES, Radisky DC. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci (Landmark Ed) 2015; 20:1144-63. [PMID: 25961550 DOI: 10.2741/4364] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Members of the matrix metalloproteinase (MMP) family have been identified as poor prognosis markers for breast cancer patients and as drivers of many facets of the tumor phenotype in experimental models. Early enthusiasm for MMPs as therapeutic targets was tempered following disappointing clinical trials that utilized broad spectrum, small molecule catalytic site inhibitors. However, subsequent research has continued to define key roles for MMPs as breast cancer promoters, to elucidate the complex roles that that these proteins play in breast cancer development and progression, and to identify how these roles are linked to specific and unique biochemical features of individual members of the MMP family. Here, we provide an overview of the structural features of the MMPs, then discuss clinical studies identifying which MMP family members are linked with breast cancer development and new experimental studies that reveal how these specific MMPs may play unique roles in the breast cancer microenvironment. We conclude with a discussion of the most promising avenues for development of therapeutic agents capable of targeting the tumor-promoting properties of MMPs.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224,
| | | |
Collapse
|
11
|
Pintwala R, Postnikoff C, Molladavoodi S, Gorbet M. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells. J Biomater Appl 2014; 29:1119-32. [PMID: 25281645 DOI: 10.1177/0885328214552711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p < 0.03) versus control (no intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p < 0.03) and increased expression of α-smooth muscle actin in HLE B-3 after six days, although only poly(2-hydroxyethyl methacrylate) induced a significant difference versus control (p < 0.01). Our results imply that-contrary to prior uveal biocompatibility understanding-macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal biocompatibility, specifically through the quantification of cell-surface markers of leukocyte activation.
Collapse
Affiliation(s)
- Robert Pintwala
- Faculty of Engineering, Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Cameron Postnikoff
- Faculty of Engineering, Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sara Molladavoodi
- Faculty of Engineering, Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maud Gorbet
- Faculty of Engineering, Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
12
|
Korol A, Pino G, Dwivedi D, Robertson JV, Deschamps PA, West-Mays JA. Matrix metalloproteinase-9-null mice are resistant to TGF-β-induced anterior subcapsular cataract formation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2001-12. [PMID: 24814605 DOI: 10.1016/j.ajpath.2014.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 03/05/2014] [Accepted: 03/25/2014] [Indexed: 01/21/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with fibrotic diseases in the lens, such as anterior subcapsular cataract (ASC) formation. Often mediated by transforming growth factor (TGF)-β, EMT in the lens involves the transformation of lens epithelial cells into a multilayering of myofibroblasts, which manifest as plaques beneath the lens capsule. TGF-β-induced EMT and ASC have been associated with the up-regulation of two matrix metalloproteinases (MMPs): MMP-2 and MMP-9. The current study used MMP-2 and MMP-9 knockout (KO) mice to further determine their unique roles in TGF-β-induced ASC formation. Adenoviral injection of active TGF-β1 into the anterior chamber of all wild-type and MMP-2 KO mice led to the formation of distinct ASC plaques that were positive for α-smooth muscle actin, a marker of EMT. In contrast, only a small proportion of the MMP-9 KO eyes injected with adenovirus-expressing TGF-β1 exhibited ASC plaques. Isolated lens epithelial explants from wild-type and MMP-2 KO mice that were treated with TGF-β exhibited features indicative of EMT, whereas those from MMP-9 KO mice did not acquire a mesenchymal phenotype. MMP-9 KO mice were further bred onto a TGF-β1 transgenic mouse line that exhibits severe ASC formation, but shows a resistance to ASC formation in the absence of MMP-9. These findings suggest that MMP-9 expression is more critical than MMP-2 in mediating TGF-β-induced ASC formation.
Collapse
Affiliation(s)
- Anna Korol
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Giuseppe Pino
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Dhruva Dwivedi
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Jennifer V Robertson
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Paula A Deschamps
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada.
| |
Collapse
|
13
|
Mamuya FA, Wang Y, Roop VH, Scheiblin DA, Zajac JC, Duncan MK. The roles of αV integrins in lens EMT and posterior capsular opacification. J Cell Mol Med 2014; 18:656-70. [PMID: 24495224 PMCID: PMC4000117 DOI: 10.1111/jcmm.12213] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/18/2013] [Indexed: 12/23/2022] Open
Abstract
Posterior capsular opacification (PCO) is the major complication arising after cataract treatment. PCO occurs when the lens epithelial cells remaining following surgery (LCs) undergo a wound healing response producing a mixture of α-smooth muscle actin (α-SMA)-expressing myofibroblasts and lens fibre cells, which impair vision. Prior investigations have proposed that integrins play a central role in PCO and we found that, in a mouse fibre cell removal model of cataract surgery, expression of αV integrin and its interacting β-subunits β1, β5, β6, β8 are up-regulated concomitant with α-SMA in LCs following surgery. To test the hypothesis that αV integrins are functionally important in PCO pathogenesis, we created mice lacking the αV integrin subunit in all lens cells. Adult lenses lacking αV integrins are transparent and show no apparent morphological abnormalities when compared with control lenses. However, following surgical fibre cell removal, the LCs in control eyes increased cell proliferation, and up-regulated the expression of α-SMA, β1-integrin, fibronectin, tenascin-C and transforming growth factor beta (TGF-β)-induced protein within 48 hrs, while LCs lacking αV integrins exhibited much less cell proliferation and little to no up-regulation of any of the fibrotic markers tested. This effect appears to result from the known roles of αV integrins in latent TGF-β activation as αV integrin null lenses do not exhibit detectable SMAD-3 phosphorylation after surgery, while this occurs robustly in control lenses, consistent with the known roles for TGF-β in fibrotic PCO. These data suggest that therapeutics antagonizing αV integrin function could be used to prevent fibrotic PCO following cataract surgery.
Collapse
Affiliation(s)
- Fahmy A Mamuya
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | | | | | | | | |
Collapse
|
14
|
Shimada A, Miyata Y, Kosano H. Type I collagen accelerates the spreading of lens epithelial cells through the expression and activation of matrix metalloproteinases. Curr Eye Res 2014; 39:460-71. [PMID: 24400880 DOI: 10.3109/02713683.2013.853194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Matrix metalloproteinases (MMPs) are involved in posterior capsule opacification (PCO), but the mechanisms that promote MMP expression are yet to be determined. In this study, we investigated whether type I collagen, which is only detected in aged or cataractous lens capsules, affects the expression and activation of MMPs in primary-cultured chicken lens epithelial cells (LECs). MATERIALS AND METHODS Chicken LECs were isolated from chicken embryos and cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum (FBS) on type I collagen-coated dishes. The activity of secreted MMPs was examined using gelatin zymography, and cell spreading was determined as the average area of randomly distributed cells. For some experiments, LECs were cultured in the presence of the broad-spectrum MMP inhibitor, GM6001. LECs cultured on uncoated dishes were used as controls. To examine the involvement of MMP in cell migration, a wound-healing assay was performed in the presence of the MMP inhibitor. RESULTS Chicken LECs constitutively express the pro-form of MMP-2. When LECs were cultured on type I collagen-coated dishes, they expressed the active form of MMP-2 and the pro-form of MMP-9. This expression and activation by type I collagen was also observed in the human LEC line SRA-01/04, but not the human Müller glial cell line, MIO-M1. Type I collagen enhanced cell spreading, which was suppressed by the MMP inhibitor. Type I collagen also accelerated α-smooth muscle actin expression. In addition, LEC migration was inhibited by the MMP inhibitor in a dose-dependent manner in the wound-healing assay. CONCLUSION Type I collagen promotes the expression and activation of MMPs in a LEC-specific manner. These results suggest that type I collagen may play a role in PCO development.
Collapse
Affiliation(s)
- Arata Shimada
- Faculty of Pharmaceutical Science, Teikyo University , Itabashi-ku, Tokyo , Japan
| | | | | |
Collapse
|
15
|
Amoozgar B, Morarescu D, Sheardown H. Sulfadiazine modified PDMS as a model material with the potential for the mitigation of posterior capsule opacification (PCO). Colloids Surf B Biointerfaces 2013; 111:15-23. [DOI: 10.1016/j.colsurfb.2013.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 05/01/2013] [Accepted: 05/05/2013] [Indexed: 10/26/2022]
|
16
|
Gupta M, Korol A, West-Mays JA. Nuclear translocation of myocardin-related transcription factor-A during transforming growth factor beta-induced epithelial to mesenchymal transition of lens epithelial cells. Mol Vis 2013; 19:1017-28. [PMID: 23687438 PMCID: PMC3654857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/04/2013] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Transforming growth factor beta (TGFβ) is a known inducer of epithelial to mesenchymal transition (EMT), and studies in other systems have shown that nuclear localization of the myocardin-related transcription factor (MRTF) is downstream of TGFβ. In the following study, we investigated whether nuclear translocation of MRTF-A or MRTF-B is involved in TGFβ-induced EMT of lens epithelial cells (LECs). We further investigated the relationship between matrix metalloproteinase-2 and -9 (MMP-2/9) and MRTF in the EMT of LECs. METHODS Rat lens explant cultures were used as the model system. Explants were treated with TGFβ, an MMP-2/9 inhibitor, or actin binding drugs and immunostained for alpha smooth muscle actin (αSMA), MRTF-A, and MRTF-B. Cytoplasmic and nuclear intensities of cells were measured using ImageJ. Production of αSMA was measured using western blot analysis and ImageJ. RESULTS Untreated explant cells exhibited little αSMA expression, and MRTF-A and B were found to reside primarily in the cytosol. However, when stimulated with TGFβ, a significantly greater number of cells exhibited nuclear expression of MRTF-A, accompanied by an increase in αSMA expression. However, MRTF-B remained in the cytoplasm following TGFβ treatment. Cotreatment with an MMP-2/9 inhibitor and TGFβ resulted in reduced MRTF-A nuclear localization and αSMA expression compared to cells treated with TGFβ alone. CONCLUSIONS Our results are the first to demonstrate the expression of MRTF-A in LECs and that its nuclear translocation can be stimulated by TGFβ. Our data further suggest that MMP-2 and -9 are involved in the translocation of MRTF-A in LECs during TGFβ-induced EMT.
Collapse
|
17
|
Sousounis K, Tsonis PA. Patterns of gene expression in microarrays and expressed sequence tags from normal and cataractous lenses. Hum Genomics 2012; 6:14. [PMID: 23244575 PMCID: PMC3563465 DOI: 10.1186/1479-7364-6-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022] Open
Abstract
In this contribution, we have examined the patterns of gene expression in normal and cataractous lenses as presented in five different papers using microarrays and expressed sequence tags. The purpose was to evaluate unique and common patterns of gene expression during development, aging and cataracts.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| | | |
Collapse
|
18
|
Bao XL, Song H, Chen Z, Tang X. Wnt3a promotes epithelial-mesenchymal transition, migration, and proliferation of lens epithelial cells. Mol Vis 2012; 18:1983-90. [PMID: 22876125 PMCID: PMC3413413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/15/2012] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Posterior capsular opacification (PCO) is caused mainly by the epithelial-mesenchymal transition (EMT), proliferation, and migration of human lens epithelial (HLE) cells. wingless (Wnt) signaling has been implicated in the fibrotic process by inducing EMT and increasing the proliferation of epithelial cells. This study investigated the role of Wnt3a in PCO formation. METHODS Wnt3a was overexpressed in the HLE B-3 cell line by transfected Wnt3a-pcDNA3 plasmid. The expressions of Wnt/β-catenin signaling component proteins, including β-catenin, E-cadherin, fibronectin, c-Myc, and cyclin D1, were detected by western blot analysis and immunocytofluorescence to confirm the efficiency of transfection efficiency and analyze the effects of overexpression. HLE migration ability was evaluated by transwell migration and wound healing assays, whereas HLE proliferation was analyzed by MTT [3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide] assay and flow cytometry. RESULTS Overexpression of Wnt3a resulted in upregulated expression of β-catenin, c-Myc, and cyclin D1. Expression of the lens epithelial marker E-cadherin was down-regulated in Wnt3a-overexpressing HLE B-3 cells, whereas that of the mesenchymal marker fibronectin was upregulated. In addition, the morphology of HLE B-3 cells changed from the classic spindle shape to an irregular form. Overexpression of Wnt3a could enhance the ability of migration as determined by transwell migration and wound healing assays as well as promoted the proliferation of HLE B-3 cells by MTT assay and flow cytometry analysis. CONCLUSIONS Wnt3a can induce EMT, migration, and proliferation of HLE cells and may be a valuable therapeutic target for the prevention and treatment of PCO.
Collapse
|
19
|
Nisticò P, Bissell MJ, Radisky DC. Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol 2012; 4:4/2/a011908. [PMID: 22300978 DOI: 10.1101/cshperspect.a011908] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological process in which epithelial cells acquire the motile and invasive characteristics of mesenchymal cells. Although EMT in embryonic development is a coordinated, organized process involving interaction between many different cells and tissue types, aspects of the EMT program can be inappropriately activated in response to microenvironmental alterations and aberrant stimuli, and this can contribute to disease conditions including tissue fibrosis and cancer progression. Here we will outline how EMT functions in normal development, how it could be activated in pathologic conditions-especially by matrix metalloproteinases-and how it may be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Paola Nisticò
- Laboratory of Immunology, Regina Elena National Cancer Institute, Rome, Italy
| | | | | |
Collapse
|
20
|
Alapure BV, Praveen MR, Gajjar DU, Vasavada AR, Parmar TJ, Arora AI. Matrix metalloproteinase-2 and -9 activities in the human lens epithelial cells and serum of steroid induced posterior subcapsular cataracts. Mol Vis 2012; 18:64-73. [PMID: 22259225 PMCID: PMC3260085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 01/07/2012] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To evaluate the level of matrix metalloproteinase (MMP)-2 and MMP-9 activities in patients with steroid induced posterior subcapsular cataract (PSC). METHODS This prospective, observational study comprised of 156 patients having either steroid induced PSC (n=50) or non-steroidal PSC (n=106) were performed to evaluate the level of MMP-2 and MMP-9 activities in the lens epithelial cells (LECs) and the serum. Anterior lens capsules harboring LECs were obtained during phacoemulsification and peripheral blood was collected from patients before administration of anesthesia. Serum was separated by centrifugation at 10,000× g for 15 min at 4 °C. The LECs and serum samples were processed to analyze MMP-2 and MMP-9 activities using succinylated gelatin assay. Quantitative real time-PCR (qRT-PCR) was performed to determine the mRNA levels of MMP-2 and MMP-9 in LECs. The mRNA levels were expressed as a ratio, using the delta-delta method for comparing the relative expression results between cases with steroid induced PSC and cases with non-steroidal PSC. MMP-2 and MMP-9 levels were also compared in the two groups using immunolocalization. RESULTS The level of MMP-2 and MMP-9 activity was found to be high in LECs and serum of cases with steroid induced PSC. Further in all steroid induced cases, a 1.4 fold increase was observed in MMP-2 activity in LECs and a 1.4 fold increase in MMP-9 activity in the serum. Both qRT-PCR and immunolocalization showed increased expression of MMP-2 and MMP-9 activity. CONCLUSIONS MMP-2 and MMP-9 activity in both LECs and serum was significantly higher in cases with steroid induced PSC. The possible use of MMP-9 as a non-invasive biomarker in ascertaining the presence of steroid induced PSC should be evaluated using a larger sample size.
Collapse
|
21
|
The non-antibiotic properties of tetracyclines: Clinical potential in ophthalmic disease. Pharmacol Res 2011; 64:614-23. [DOI: 10.1016/j.phrs.2011.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/27/2011] [Accepted: 04/15/2011] [Indexed: 01/15/2023]
|
22
|
Gao Y, Wu Q, Wu ZS, Zhang GH, Zhang AL. Effects of an Engineered Anti-HER2 Antibody chA21 on Invasion of Human Ovarian Carcinoma Cell In Vitro. Chin J Cancer Res 2011; 23:147-52. [PMID: 23482689 DOI: 10.1007/s11670-011-0147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/11/2011] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE HER-2 plays an important role in the development and progression of ovarian carcinoma. A number of monoclonal antibodies (MAbs) and engineered antibody fragments (such as scFvs) against the subdomain II or IV of HER-2 extracellular domain (ECD) have been developed. We investigated the effect of chA21, an engineered anti-HER-2 antibody that bind primarily to subdomain I, on ovarian carcinoma cell invasion in vitro, and explored its possible mechanisms. METHODS Growth inhibition of SK-OV-3 cells was assessed using a Methyl thiazolyl tetrazolium (MTT) assay. The invasion ability of SK-OV-3 was determined by a Transwell invasion assay. The expression of matrix metalloproteinase-2 (MMP-2) and its tissue inhibitors (TIMP-2) was detected by immunocytochemical staining, and the expression of p38 and the phosphorylation of p38 were assayed by both immunocytochemistry and Western blot. RESULTS After treatment with chA21, the invasion of human ovarian cancer SK-OV-3 cells was inhibited in dose- and time-dependent manners. Simultaneously the expression of p38, phospho-p38, MMP-2 and the MMP-2/TIMP-2 ratio decreased, while TIMP-2 expression increased. Additionally, the decrease in phospho-p38 was much greater than that of p38. CONCLUSION chA21 may inhibit SK-OV-3 cell invasion via the signal transduction pathway involving MMP-2, TIMP-2, p38 and the activation of p38MAPK.
Collapse
Affiliation(s)
- Yi Gao
- Department of Pathology, Anhui Medical University, Hefei 230032, China
| | | | | | | | | |
Collapse
|
23
|
Mao M, Hedberg-Buenz A, Koehn D, John SWM, Anderson MG. Anterior segment dysgenesis and early-onset glaucoma in nee mice with mutation of Sh3pxd2b. Invest Ophthalmol Vis Sci 2011; 52:2679-88. [PMID: 21282566 DOI: 10.1167/iovs.10-5993] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Mutations in SH3PXD2B cause Frank-Ter Haar syndrome, a rare condition characterized by congenital glaucoma, as well as craniofacial, skeletal, and cardiac anomalies. The nee strain of mice carries a spontaneously arising mutation in Sh3pxd2b. The purpose of this study was to test whether nee mice develop glaucoma. METHODS Eyes of nee mutants and strain-matched controls were comparatively analyzed at multiple ages by slit lamp examination, intraocular pressure recording, and histologic analysis. Cross sections of the optic nerve were analyzed to confirm glaucomatous progression. RESULTS Slit lamp examination showed that, from an early age, nee mice uniformly exhibited severe iridocorneal adhesions around the entire circumference of the eye. Presumably as a consequence of aqueous humor outflow blockage, they rapidly developed multiple indices of glaucoma. By 3 to 4 months of age, they exhibited high intraocular pressure (30.8 ± 12.5 mm Hg; mean ± SD), corneal opacity, and enlarged anterior chambers. Although histologic analyses at P17 did not reveal any indices of damage, similar analysis at 3 to 4 months of age revealed a course of progressive retinal ganglion cell loss, optic nerve head excavation, and axon loss. CONCLUSIONS Eyes of nee mice exhibit anterior segment dysgenesis and early-onset glaucoma. Because SH3PXD2B is predicted to be a podosome adaptor protein, these findings implicate podosomes in normal development of the iridocorneal angle and the genes influencing podosomes as candidates in glaucoma. Because of the early-onset, high-penetrance glaucoma, nee mice offer many potential advantages as a new mouse model of the disease.
Collapse
Affiliation(s)
- Mao Mao
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
24
|
Radisky ES, Radisky DC. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:201-12. [PMID: 20440544 PMCID: PMC2886087 DOI: 10.1007/s10911-010-9177-x] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 04/26/2010] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) degrade and modify the extracellular matrix (ECM) as well as cell-ECM and cell-cell contacts, facilitating detachment of epithelial cells from the surrounding tissue. MMPs play key functions in embryonic development and mammary gland branching morphogenesis, but they are also upregulated in breast cancer, where they stimulate tumorigenesis, cancer cell invasion and metastasis. MMPs have been investigated as potential targets for cancer therapy, but clinical trials using broad-spectrum MMP inhibitors yielded disappointing results, due in part to lack of specificity toward individual MMPs and specific stages of tumor development. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells take on the characteristics of invasive mesenchymal cells, and activation of EMT has been implicated in tumor progression. Recent findings have implicated MMPs as promoters and mediators of developmental and pathogenic EMT processes in the breast. In this review, we will summarize recent studies showing how MMPs activate EMT in mammary gland development and in breast cancer, and how MMPs mediate breast cancer cell motility, invasion, and EMT-driven breast cancer progression. We also suggest approaches to inhibit these MMP-mediated malignant processes for therapeutic benefit.
Collapse
Affiliation(s)
- Evette S. Radisky
- Mayo Clinic Cancer Center, Griffin Building, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Derek C. Radisky
- Mayo Clinic Cancer Center, Griffin Building, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
25
|
West-Mays JA, Pino G, Lovicu FJ. Development and use of the lens epithelial explant system to study lens differentiation and cataractogenesis. Prog Retin Eye Res 2010; 29:135-43. [PMID: 20006728 PMCID: PMC2964862 DOI: 10.1016/j.preteyeres.2009.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over the last two decades much progress has been made in identifying and characterizing many of the molecules involved in understanding normal lens biology and its pathology. Much of this has been made possible through the establishment and use of the lens epithelial explant system. This simplistic tissue culture model, comprised of a sheet of lens epithelium on its native substratum, has been used effectively to study many cellular processes, including lens epithelial cell proliferation, fiber cell differentiation, cell apoptosis as well as epithelial-to-mesenchymal transformation of cells. In doing so, a number of key growth factors and cytokines, including members of the FGF, Wnt and TGFbeta family have been shown to play essential roles in many of these cellular events. This has led to further studies exploring the signaling pathways downstream of these molecules in the lens, paving the way for the development of a number of in situ models (primarily transgenic mouse lines) to further explore in more detail the nature of these molecular and cellular interactions. To reciprocate, the lens epithelial explant system is increasingly being used to further characterize the nature of many complex phenotypes and pathologies observed in these in situ models, allowing us to selectively isolate and examine the direct impact of an individual molecule on a specific cellular response in lens cells. There is no question that the lens epithelial explant system has served as a powerful tool to further our understanding of lens biology and pathology, and there is no doubt that it will continue to serve in such a capacity, as new developments are realized and putative treatments for aberrant lens cell behavior are to be trialed.
Collapse
Affiliation(s)
- Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| | | | | |
Collapse
|
26
|
Henderson MA, Valluri S, Garrett J, Lopez JT, Caperell-Grant A, Mendonca MS, Rusek A, Bigsby RM, Dynlacht JR. Effects of estrogen and gender on cataractogenesis induced by high-LET radiation. Radiat Res 2010; 173:191-6. [PMID: 20095851 DOI: 10.1667/rr1917.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Planning for long-duration manned lunar and interplanetary missions requires an understanding of radiation-induced cataractogenesis. Previously, it was demonstrated that low-linear energy transfer (LET) irradiation with 10 Gy of (60)Co gamma rays resulted in an increased incidence of cataracts in male rats compared to female rats. This gender difference was not due to differences in estrogen, since male rats treated with the major secreted estrogen 17-beta-estradiol (E2) showed an identical increase compared to untreated males. We now compare the incidence and rate of progression of cataracts induced by high-LET radiation in male and female Sprague-Dawley rats. Rats received a single dose of 1 Gy of 600 MeV (56)Fe ions. Lens opacification was measured at 2-4-week intervals with a slit lamp. The incidence and rate of progression of radiation-induced cataracts was significantly increased in the animals in which estrogen was available from endogenous or exogenous sources. Male rats with E2 capsules implanted had significantly higher rates of progression compared to male rats with empty capsules implanted (P = 0.025) but not compared to the intact female rats. These results contrast with data obtained after low-LET irradiation and suggest the possibility that the different types of damage caused by high- and low-LET radiation may be influenced differentially by steroid sex hormones.
Collapse
Affiliation(s)
- Mark A Henderson
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin X, Jo H, Ishii TM, Fujita M, Fu M, Tambara K, Yamamoto M, Tabata Y, Komeda M, Matsuoka S. Controlled Release of Matrix Metalloproteinase-1 Plasmid DNA Prevents Left Ventricular Remodeling in Chronic Myocardial Infarction of Rats. Circ J 2009; 73:2315-21. [DOI: 10.1253/circj.cj-09-0379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue Lin
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
- Human Health Sciences, Graduate School of Medicine, Kyoto University
| | - Hikari Jo
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University
| | - Takahiro M Ishii
- Department of Physiology, Neurobiology, Graduate School of Medicine, Kyoto University
| | - Masatoshi Fujita
- Human Health Sciences, Graduate School of Medicine, Kyoto University
| | - Michael Fu
- Department of Cardiovascular Research, Sahlgrenska University Hospital/Sahlgrenska, University of Göteborg
| | - Keiichi Tambara
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Masaya Yamamoto
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University
| | - Masashi Komeda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
- Department of Cardiovascular Surgery, Nagoya Heart Center
| | - Satoshi Matsuoka
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University
| |
Collapse
|
28
|
Temporal changes in MMP mRNA expression in the lens epithelium during anterior subcapsular cataract formation. Exp Eye Res 2008; 88:323-30. [PMID: 18809398 DOI: 10.1016/j.exer.2008.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 08/13/2008] [Accepted: 08/13/2008] [Indexed: 11/24/2022]
Abstract
Transforming growth factor beta (TGFbeta) has been known to play a role in anterior subcapsular cataract (ASC) formation and posterior capsule opacification (PCO), both of which are fibrotic pathologies of the lens. Several models have been utilized to study ASC formation, including the TGFbeta1 transgenic mouse model and the ex-vivo rat lens model. A distinct characteristic of ASC development within these models includes the formation of isolated fibrotic plaques or opacities which form beneath the lens capsule. A hallmark feature of ASC formation is the epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) into myofibroblasts. Recently, the matrix metalloproteinases (MMPs) have been implicated in the formation of these cataracts through their involvement in EMT. In the present study, we sought to further investigate the role of MMPs in subcapsular cataract formation in a time course manner, through the examination of gene expression and morphological changes which occur during this process. RT-QPCR and immunohistochemical analysis was carried out on lenses treated with TGFbeta for a period of 2, 4 and 6 days. Laser capture microdissection (LCM) was utilized to specifically isolate cells within the plaque region and cells from the adjacent epithelium in lenses treated for a 6 day period. Multilayering of LECs was observed as early as day 2, which preceded the presence of alpha smooth muscle actin (alpha-SMA) immunoreactivity that was evident following 4 days of treatment with TGFbeta. A slight reduction in E-cadherin mRNA was detected at day 2, although this was not significant until the day 4 time point. Importantly, our results also indicate an early induction of MMP-9 mRNA following 2 days of TGFbeta treatment, whereas MMP-2 was found to be upregulated at the later 4 day time point. Further experiments using FHL 124 cells show an induction in MMP-2 protein levels following treatment with recombinant MMP-9. Together these findings suggest an upstream role for MMP-9 in ASC formation.
Collapse
|