1
|
Zhuo L, Guo M, Zhang S, Wu J, Wang M, Shen Y, Peng X, Wang Z, Jiang W, Huang W. Structure-activity relationship study of 1,6-naphthyridinone derivatives as selective type II AXL inhibitors with potent antitumor efficacy. Eur J Med Chem 2024; 265:116090. [PMID: 38169272 DOI: 10.1016/j.ejmech.2023.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The role of AXL in various oncogenic processes has made it an attractive target for cancer therapy. Currently, kinase selectivity profiles, especially circumventing MET inhibition, remain a scientific issue of great interest in the discovery of selective type II AXL inhibitors. Starting from a dual MET/AXL-targeted lead structure from our previous work, we optimized a 1,6-naphthyridinone series using molecular modeling-assisted compound design to improve AXL potency and selectivity over MET, resulting in the potent and selective type II AXL-targeted compound 25c. This showed excellent AXL inhibitory activity (IC50 = 1.1 nM) and 343-fold selectivity over the highly homologous kinase MET in biochemical assays. Moreover, compound 25c significantly inhibited AXL-driven cell proliferation, dose-dependently suppressed 4T1 cell migration and invasion, and induced apoptosis. Compound 25c also showed noticeable antitumor efficacy in a BaF3/TEL-AXL xenograft model at well-tolerated doses. Overall, this study presented a potent and selective type II AXL-targeted lead compound for further drug discovery.
Collapse
Affiliation(s)
- Linsheng Zhuo
- Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Mengqin Guo
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Siyi Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Junbo Wu
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang, Hunan, 421001, China
| | - Mingshu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yang Shen
- Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Malvankar C, Kumar D. AXL kinase inhibitors- A prospective model for medicinal chemistry strategies in anticancer drug discovery. Biochim Biophys Acta Rev Cancer 2022; 1877:188786. [PMID: 36058379 DOI: 10.1016/j.bbcan.2022.188786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Deviant expressions of the tyrosine kinase AXL receptor are strongly correlated with a plethora of malignancies. Henceforth, the topic of targeting AXL is beginning to gain prominence due to mounting evidence of the protein's substantial connection to poor prognosis and treatment resistance. This year marked a milestone in clinical testing for AXL as an anti-carcinogenic target, with the start of the first AXL-branded inhibitor study. It is critical to emphasize that AXL is a primary and secondary target in various kinase inhibitors that have been approved or are on the verge of being approved while interpreting the present benefits and future potential effects of AXL suppression in the clinical setting. Several research arenas across the globe resolutely affirm the crucial significance of AXL receptors in the case study of several pathophysiologies including AML, prostate cancer, and breast cancer. This review endeavors to delve deeply into the biological, chemical, and structural features of AXL kinase; primary AXL inhibitors that target the enzyme (either purposefully or unintentionally); and the prospects and barriers for turning AXL inhibitors into a feasible treatment alternative. Furthermore, we analyse the co-crystal structure of AXL, which remains extensively unexplored, as well as the mutations of AXL that may be valuable in the development of novel inhibitors in the upcoming future and take a comprehensive look at the medicinal chemistry of AXL inhibitors of recent years.
Collapse
Affiliation(s)
- Chinmay Malvankar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India; Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Deng J, Fleming JB. Inflammation and Myeloid Cells in Cancer Progression and Metastasis. Front Cell Dev Biol 2022; 9:759691. [PMID: 35127700 PMCID: PMC8814460 DOI: 10.3389/fcell.2021.759691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
To date, the most immunotherapy drugs act upon T cell surface proteins to promote tumoricidal T cell activity. However, this approach has to date been unsuccessful in certain solid tumor types including pancreatic, prostate cancer and glioblastoma. Myeloid-related innate immunity can promote tumor progression through direct and indirect effects on T cell activity; improved understanding of this field may provide another therapeutic avenue for patients with these tumors. Myeloid cells can differentiate into both pro-inflammatory and anti-inflammatory mature form depending upon the microenvironment. Most cancer type exhibit oncogenic activating point mutations (ex. P53 and KRAS) that trigger cytokines production. In addition, tumor environment (ex. Collagen, Hypoxia, and adenosine) also regulated inflammatory signaling cascade. Both the intrinsic and extrinsic factor driving the tumor immune microenvironment and regulating the differentiation and function of myeloid cells, T cells activity and tumor progression. In this review, we will discuss the relationship between cancer cells and myeloid cells-mediated tumor immune microenvironment to promote cancer progression and immunotherapeutic resistance. Furthermore, we will describe how cytokines and chemokines produced by cancer cells influence myeloid cells within immunosuppressive environment. Finally, we will comment on the development of immunotherapeutic strategies with respect to myeloid-related innate immunity.
Collapse
Affiliation(s)
- Jenying Deng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason B. Fleming
- H. Lee Moffitt Cancer Center, Department of Gastrointestinal Oncology, Tampa, FL, United States
- *Correspondence: Jason B. Fleming,
| |
Collapse
|
4
|
Chew S, Mackey MC, Jabbour E. Gilteritinib in the treatment of relapsed and refractory acute myeloid leukemia with a FLT3 mutation. Ther Adv Hematol 2020; 11:2040620720930614. [PMID: 32547718 PMCID: PMC7271272 DOI: 10.1177/2040620720930614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy of uncontrolled proliferation of immature myeloid blasts characterized by clonal evolution and genetic heterogeneity. FMS-like tyrosine kinase 3 (FLT3) mutations occur in up to a third of AML cases and are associated with highly proliferative disease, shorter duration of remission, and increased rates of disease relapse. The known impact of activating mutations in FLT3 in AML on disease pathogenesis, prognosis, and response to therapy has led to the development of tyrosine kinase inhibitors targeting FLT3. Gilteritinib is a potent, second generation inhibitor of both FLT3 and AXL, designed to address the limitations of other FLT3 inhibitors, particularly in targeting mechanisms of resistance to other drugs. In this review, we present comprehensive data on recent and ongoing studies evaluating the role of gilteritinib in the relapsed and refractory FLT3 mutated AML setting.
Collapse
Affiliation(s)
- Serena Chew
- University of Texas, MD Anderson Cancer Center,
Houston, TX, USA
| | | | - Elias Jabbour
- Department of Leukemia, The University of Texas
MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 428, Houston, TX
77030, USA
| |
Collapse
|
5
|
Bumm CV, Folwaczny M, Wölfle UC. Necrotizing periodontitis or medication-related osteonecrosis of the jaw (MRONJ) in a patient receiving Bemcentinib-a case report. Oral Maxillofac Surg 2020; 24:353-358. [PMID: 32440898 PMCID: PMC7413899 DOI: 10.1007/s10006-020-00851-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Bemcentinib is a newly developed AXL inhibitor that is currently under investigation in phase II trails for the treatment of acute myeloblastic leukemia (AML). Clinical and radiographic findings in this case were very similar to cases of MRONJ in patients receiving Sunitinib or other anti-angiogenetic substances, assuming that Bemcentinib may cause similar oral side effects. We present a male 81-year-old patient with a manifestation of alveolar bone necrosis at the central upper incisors following a 2-month regimen with the AXL-inhibitor Bemcentinib, administered for the treatment of secondary acute myeloblastic leukemia (sAML). Due to the duration of less than 8 weeks, the osteonecrosis was diagnosed as necrotizing periodontitis, but the intraoral clinical and radiographic findings were also compatible with the differential diagnosis of medication-related osteonecrosis of the jaw (MRONJ, stage II). Following to discontinuation of Bemcentinib, the affected bone was surgically revised including the removal of a demarcated bone sequester under preventive antibiotic treatment (metronidazole 400 mg t.i.d.). We hypothesize that Bemcentinib might increase the susceptibility for osteonecrosis of the jaw, probably related to its antiangiogenic effects and the resulting modulation of host immune response. Based on the current observations, it can be assumed that oro-dental health might be significant also prior and during treatment with Bemcentinib for the prevention of MRONJ.
Collapse
Affiliation(s)
- Caspar V Bumm
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU, Goethestraße 70, 80336, Munich, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU, Goethestraße 70, 80336, Munich, Germany
| | - Uta C Wölfle
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU, Goethestraße 70, 80336, Munich, Germany.
| |
Collapse
|
6
|
Yuan T, Qi B, Jiang Z, Dong W, Zhong L, Bai L, Tong R, Yu J, Shi J. Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade. Eur J Med Chem 2019; 178:468-483. [PMID: 31207462 DOI: 10.1016/j.ejmech.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 06/02/2019] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease characterized by abnormal growth and differentiation of hematopoietic stem cells. Although the pathogenesis has not been fully elucidated, many specific gene mutations have been found in AML. Fms-like tyrosine kinase 3 (FLT3) is recognized as a drug target for the treatment of AML, and the activation mutations of FLT3 were found in about 30% of AML patients. Targeted inhibition of FLT3 receptor tyrosine kinase has shown promising results in the treatment of FLT3 mutation AML. Unfortunately, the therapeutic effects of FLT3 tyrosine kinase inhibitors used as AML monotherapy are usually accompanied by the high risk of resistance development within a few months after treatment. FLT3 dual inhibitors were generated with the co-inhibition of FLT3 and another target, such as CDK4, JAK2, MEK, Mer, Pim, etc., to solve the problems mentioned above. As a result, the therapeutic effect of the drug is significantly improved, while the toxic and side effects are reduced. Besides, the life quality of AML patients with FLT3 mutation has been effectively improved. In this paper, we reviewed the studies of dual FLT3 inhibitors that have been discovered in recent years for the treatment of AML.
Collapse
Affiliation(s)
- Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Baowen Qi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Wenjuan Dong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jiying Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
7
|
Ahmadi R, Sepehri B, Ghavami R. Development linear and non-linear QSAR models for predicting AXL kinase inhibitory activity of N-[4-(quinolin-4-yloxy)phenyl]benzenesulfonamides. J Recept Signal Transduct Res 2019; 39:264-275. [PMID: 31538847 DOI: 10.1080/10799893.2019.1660898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
In this research, we used CoMFA, LSSVM and FFANN for creating QSAR models for predicting AXL Kinase inhibitory activity of N-[4-(Quinolin-4-yloxy)phenyl]benzenesulfonamides. A CoMFA model with three components was developed and CoMFA contour maps were interpreted to extract chemical features that influence the inhibitory activity of these molecules. R2 for train and test set of CoMFA model were 0.8900 and 0.8171, respectively. Model created by five Dragon descriptors and LSSVM model showed slightly better predictive power with respect to CoMFA model. R2 for train, test set of created LSSVM model were 0.0.8477 and 0.8218, respectively. Also, a FFANN model, using the same five descriptors, was developed with 2 neurons in its hidden layer and R2 for its train and test sets were 0.8314 and 0.8522, respectively. All created models were validated by calculating several statistical parameters and their applicability domain were investigated by calculating leverage. Furthermore, a homology model was built for Axl structure and molecules with the lowest and the greatest activity were docked to it and their interactions with Axl were investigated.
Collapse
Affiliation(s)
- Roya Ahmadi
- Department of Chemistry, Faculty of Science, University of Kurdistan , Sanandaj , Iran
| | - Bakhtyar Sepehri
- Department of Chemistry, Faculty of Science, University of Kurdistan , Sanandaj , Iran
| | - Raouf Ghavami
- Department of Chemistry, Faculty of Science, University of Kurdistan , Sanandaj , Iran
| |
Collapse
|
8
|
ssExpression level of GAS6-mRNA influences the prognosis of acute myeloid leukemia patients with allogeneic hematopoietic stem cell transplantation. Biosci Rep 2019; 39:BSR20190389. [PMID: 31028135 PMCID: PMC6527924 DOI: 10.1042/bsr20190389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022] Open
Abstract
As high expression level of growth arrest-specific 6 (GAS6) had an adverse effect on prognosis in acute myeloid leukemia (AML) patients, it is interesting to reveal the relationship between GAS6-mRNA level and the survival condition of AML patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). We screened The Cancer Genome Atlas database and found 71 AML patients with GAS6-mRNA expression and received allo-HSCT treatments. We divided them into two groups based on the median expression of GAS6-mRNA. Patients with GAS6-mRNAhigh (n=36) seemed to have lower bone marrow (BM) blast (P=0.022), lower percentage of type M5 (P=0.034), lower percentage of inv(16)/CBFβ-MYH11 karyotype (P=0.020), and lower rate of good risk classification (P=0.005) than the group GAS6-mRNAlow (n= 35). Higher expression level of GAS6-mRNA also brought higher RUNX1 mutations (P=0.003), MLL-PTD mutations (P=0.042), TP53 mutations (P=0.042), and lower NRAS/KRAS mutations (P=0.042). Univariate analyses showed that GAS6-mRNA was unfavorable for overall survival (OS) (P=0.044), as RUNX1 and WT1 also gave negative influences. Multivariate analyses confirmed that GAS6-mRNA cut down the event-free servival (EFS) and OS of AML patients with HSCT (P=0.029, P=0.025). Our study indicated that higher expression of GAS6-mRNA related with adverse effects in AML patients with HSCT treatment.
Collapse
|
9
|
Landolt L, Furriol J, Babickova J, Ahmed L, Eikrem Ø, Skogstrand T, Scherer A, Suliman S, Leh S, Lorens JB, Gausdal G, Marti H, Osman T. AXL targeting reduces fibrosis development in experimental unilateral ureteral obstruction. Physiol Rep 2019; 7:e14091. [PMID: 31134766 PMCID: PMC6536582 DOI: 10.14814/phy2.14091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
The AXL receptor tyrosine kinase (RTK) is involved in partial epithelial-to-mesenchymal transition (EMT) and inflammation - both main promoters of renal fibrosis development. The study aim was to investigate the role of AXL inhibition in kidney fibrosis due to unilateral ureteral obstruction (UUO). Eight weeks old male C57BL/6 mice underwent UUO and were treated with oral AXL inhibitor bemcentinib (n = 22), Angiotensin-converting enzyme inhibitor (ACEI, n = 10), ACEI and bemcentinib (n = 10) or vehicle alone (n = 22). Mice were sacrificed after 7 or 15 days and kidney tissues were analyzed by immunohistochemistry (IHC), western blot, ELISA, Sirius Red (SR) staining, and hydroxyproline (Hyp) quantification. RNA was extracted from frozen kidney tissues and sequenced on an Illumina HiSeq4000 platform. After 15 days the ligated bemcentinib-treated kidneys showed less fibrosis compared to the ligated vehicle-treated kidneys in SR analyses and Hyp quantification. Reduced IHC staining for Vimentin (VIM) and alpha smooth muscle actin (αSMA), as well as reduced mRNA abundance of key regulators of fibrosis such as transforming growth factor (Tgfβ), matrix metalloproteinase 2 (Mmp2), Smad2, Smad4, myofibroblast activation (Aldh1a2, Crlf1), and EMT (Snai1,2, Twist), in ligated bemcentinib-treated kidneys was compatible with reduced (partial) EMT induction. Furthermore, less F4/80 positive cells, less activity of pathways related to the immune system and lower abundance of MCP1, MCP3, MCP5, and TARC in ligated bemcentinib-treated kidneys was compatible with reduction in inflammatory infiltrates by bemcentinib treatment. The AXL RTK pathway represents a promising target for pharmacologic therapy of kidney fibrosis.
Collapse
Affiliation(s)
- Lea Landolt
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Jessica Furriol
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Janka Babickova
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | | | - Øystein Eikrem
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Trude Skogstrand
- Department of MedicineHaukeland University HospitalBergenNorway
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Andreas Scherer
- SpheromicsKontiolahtiFinland
- Institute for Molecular Medicine Finland FIMMHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Salwa Suliman
- Department of Clinical DentistryCenter for Clinical Dental ResearchUniversity of BergenBergenNorway
| | - Sabine Leh
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - James B. Lorens
- Department of BiomedicineCenter for Cancer BiomarkersUniversity of BergenBergenNorway
| | | | - Hans‐Peter Marti
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Tarig Osman
- Department of Clinical MedicineUniversity of BergenBergenNorway
| |
Collapse
|
10
|
Affiliation(s)
- Kiran Naqvi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Huang R, Liao X, Li J, Wei J, Su X, Lai X, Liu B, Zhu F, Huang Y, Li Q. Genome-scale integrated analysis to identify prospective molecular mechanisms and therapeutic targets in isocitrate dehydrogenase 2 R140Q-mutated acute myeloid leukemia. Oncol Rep 2019; 41:2876-2888. [PMID: 30896832 PMCID: PMC6448125 DOI: 10.3892/or.2019.7075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/07/2019] [Indexed: 01/16/2023] Open
Abstract
The aim of the present study was to identify potential molecular mechanisms and therapeutic targets in regards to isocitrate dehydrogenase 2 (IDH2) R140Q-mutated acute myeloid leukemia (AML). An RNA sequencing dataset of IDH2 wild-type and R140Q-mutated adult de novo AML bone marrow samples was obtained from The Cancer Genome Atlas (TCGA) database. The edgeR package was used to screen for the differentially expressed genes (DEGs), and the potential molecular mechanisms and therapeutic targets were identified using Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.8, Biological Networks Gene Ontology tool, Connectivity Map (CMap), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and GeneMANIA. A total of 230 DEGs were identified between the bone marrow tissues of IDH2 R140Q-mutated and wild-type AML patients, of which 31 were significantly associated with overall survival (OS). Functional assessment of DEGs showed significant enrichment in multiple biological processes, including angiogenesis and cell differentiation. STRING and GeneMANIA were used to identify the hub genes of these DEGs. CMap analysis identified 13 potential small-molecule drugs against IDH2 R140Q-mutated adult de novo AML. Genome-wide co-expression network analysis identified several IDH2 R140Q co-expressed genes, of which 56 were significantly associated with AML OS. The difference in IDH2 mRNA expression levels and OS between the IDH2 R140Q-mutated and wild-type AML were not statistically significant in our cohort. In conclusion, we identified several co-expressing genes and potential molecular mechanisms that are instrumental in IDH2 R140Q-mutated adult de novo AML, along with 13 candidate targeted therapeutic drugs.
Collapse
Affiliation(s)
- Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021
| | - Jing Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiemin Wei
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiayun Su
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaoxuan Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Beicai Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Fangxiao Zhu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yumei Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
12
|
Kumar R, Godavarthy PS, Krause DS. The bone marrow microenvironment in health and disease at a glance. J Cell Sci 2018; 131:131/4/jcs201707. [PMID: 29472498 DOI: 10.1242/jcs.201707] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bone marrow microenvironment (BMM) is the 'domicile' of hematopoietic stem cells, as well as of malignant processes that can develop there. Multiple and complex interactions with the BMM influence hematopoietic stem cell (HSC) physiology, but also the pathophysiology of hematological malignancies. Reciprocally, hematological malignancies alter the BMM, in order to render it more hospitable for malignant progression. In this Cell Science at a Glance article and accompanying poster, we highlight concepts of the normal and malignant hematopoietic stem cell niches. We present the intricacies of the BMM in malignancy and provide approaches for targeting the interactions between malignant cells and their BMM. This is done in an effort to augment existing treatment strategies in the future.
Collapse
Affiliation(s)
- Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| | - P Sonika Godavarthy
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Myers SH, Temps C, Houston DR, Brunton VG, Unciti-Broceta A. Development of Potent Inhibitors of Receptor Tyrosine Kinases by Ligand-Based Drug Design and Target-Biased Phenotypic Screening. J Med Chem 2018; 61:2104-2110. [PMID: 29466002 PMCID: PMC5851644 DOI: 10.1021/acs.jmedchem.7b01605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Pyrazolopyrimidines with potent antiproliferative
properties were
developed by an adaptive strategy that applies ligand-based design
and phenotypic screening iteratively and is informed by biochemical
assays. To drive development toward specific oncopathways, compounds
were tested against cancer cells that overexpress, or not, AXL kinase.
Identified phenotypic hits were found to inhibit oncotargets AXL,
RET, and FLT3. Subsequent optimization generated antiproliferative
lead compounds with unique selectivity profiles, including selective
AXL inhibitors and a highly potent inhibitor of FLT3.
Collapse
Affiliation(s)
- Samuel H Myers
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , U.K
| | - Carolin Temps
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , U.K
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology , University of Edinburgh , Edinburgh EH9 3BF , U.K
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , U.K
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , U.K
| |
Collapse
|
14
|
Wu G, Ma Z, Cheng Y, Hu W, Deng C, Jiang S, Li T, Chen F, Yang Y. Targeting Gas6/TAM in cancer cells and tumor microenvironment. Mol Cancer 2018; 17:20. [PMID: 29386018 PMCID: PMC5793417 DOI: 10.1186/s12943-018-0769-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Growth arrest-specific 6, also known as Gas6, is a human gene encoding the Gas6 protein, which was originally found to be upregulated in growth-arrested fibroblasts. Gas6 is a member of the vitamin K-dependent family of proteins expressed in many human tissues and regulates several biological processes in cells, including proliferation, survival and migration, by binding to its receptors Tyro3, Axl and Mer (TAM). In recent years, the roles of Gas6/TAM signalling in cancer cells and the tumour microenvironment have been studied, and some progress has made in targeted therapy, providing new potential directions for future investigations of cancer treatment. In this review, we introduce the Gas6 and TAM receptors and describe their involvement in different cancers and discuss the roles of Gas6 in cancer cells, the tumour microenvironment and metastasis. Finally, we introduce recent studies on Gas6/TAM targeting in cancer therapy, which will assist in the experimental design of future analyses and increase the potential use of Gas6 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Guiling Wu
- 0000 0004 1761 5538grid.412262.1Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi’an, 710069 China ,0000 0004 1761 4404grid.233520.5Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032 China
| | - Zhiqiang Ma
- 0000 0004 1791 6584grid.460007.5Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 China
| | - Yicheng Cheng
- 0000 0004 1765 1045grid.410745.3Department of Stomatology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002 China
| | - Wei Hu
- 0000 0004 1761 4404grid.233520.5Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032 China
| | - Chao Deng
- grid.452438.cDepartment of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi 710061 China
| | - Shuai Jiang
- 0000 0004 1761 4404grid.233520.5Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032 China
| | - Tian Li
- 0000 0004 1765 1045grid.410745.3Department of Stomatology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002 China
| | - Fulin Chen
- 0000 0004 1761 5538grid.412262.1Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi’an, 710069 China
| | - Yang Yang
- 0000 0004 1761 5538grid.412262.1Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi’an, 710069 China ,0000 0004 1761 4404grid.233520.5Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032 China
| |
Collapse
|
15
|
Naqvi K, Konopleva M, Ravandi F. Targeted therapies in Acute Myeloid Leukemia: a focus on FLT-3 inhibitors and ABT199. Expert Rev Hematol 2017; 10:863-874. [PMID: 28799432 DOI: 10.1080/17474086.2017.1366852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) remains a therapeutic challenge. Despite ongoing research, the standard therapy for AML has not changed significantly in the past four decades. With the identification of cytogenetic and molecular abnormalities, several promising therapeutic agents are currently being investigated. FLT3 mutation is a well-recognized target seen in 30% of the cytogenetically normal AML. More recently, the BCL2 family of anti-apoptotic proteins have also generated great interest as a therapeutic target. Areas covered: This review will cover the role of FLT3 inhibitors in AML, discussing trials in relapsed/refractory AML and in the frontline setting, including the young and elderly patient population. Toxicities and potential mechanism of resistance will also be covered. In addition, most current studies demonstrating the role of BCL-2 inhibitors namely ABT-199/venetoclax in AML will also be discussed. Expert commentary: AML is one of the most heterogeneous group of hematological malignancies. It remains a therapeutic challenge with limited therapeutic progress despite ongoing research. With the identification of different mutations in AML, several drugs are being evaluated in clinical trials. Targeted agents such as FLT3 inhibitors and BH3 mimetics so far have shown promising results in terms of response and toxicity profile.
Collapse
Affiliation(s)
- Kiran Naqvi
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Marina Konopleva
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Farhad Ravandi
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
16
|
Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest New Drugs 2017; 35:556-565. [PMID: 28516360 PMCID: PMC5613053 DOI: 10.1007/s10637-017-0470-z] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/21/2017] [Indexed: 01/08/2023]
Abstract
Advances in the understanding of the molecular basis for acute myeloid leukemia (AML) have generated new potential targets for treatment. Fms-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes in AML and mutations in this gene are associated with poor overall survival. AXL plays a role in the activation of FLT3 and has been implicated in the pathogenesis of AML. The studies reported here evaluated the ability of a novel FLT3/AXL inhibitor, gilteritinib, to block mutated FLT3 in cellular and animal models of AML. Initial kinase studies showed that gilteritinib, a type I tyrosine kinase inhibitor, was highly selective for both FLT3 and AXL while having weak activity against c-KIT. Gilteritinib demonstrated potent inhibitory activity against the internal tandem duplication (FLT3-ITD) and FLT3-D835Y point mutations in cellular assays using MV4-11 and MOLM-13 cells as well as Ba/F3 cells expressing mutated FLT3. Gilteritinib also inhibited FLT3-F691 mutations, although to a lesser degree, in these assays. Furthermore, gilteritinib decreased the phosphorylation levels of FLT3 and its downstream targets in both cellular and animal models. In vivo, gilteritinib was distributed at high levels in xenografted tumors after oral administration. The decreased FLT3 activity and high intratumor distribution of gilteritinib translated to tumor regression and improved survival in xenograft and intra-bone marrow transplantation models of FLT3-driven AML. No overt toxicity was seen in mouse models treated with gilteritinib. These results indicate that gilteritinib may be an important next-generation FLT3 inhibitor for use in the treatment of FLT3 mutation-positive AML.
Collapse
|
17
|
Wu G, Ma Z, Hu W, Wang D, Gong B, Fan C, Jiang S, Li T, Gao J, Yang Y. Molecular insights of Gas6/TAM in cancer development and therapy. Cell Death Dis 2017; 8:e2700. [PMID: 28333143 PMCID: PMC5386520 DOI: 10.1038/cddis.2017.113] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/09/2017] [Accepted: 01/30/2017] [Indexed: 12/13/2022]
Abstract
Since growth arrest-specific gene 6 (Gas6) was discovered in 1988, numerous studies have highlighted the role of the Gas6 protein and its receptors Tyro3, Axl and Mer (collectively referred to as TAM), in proliferation, apoptosis, efferocytosis, leukocyte migration, sequestration and platelet aggregation. Gas6 has a critical role in the development of multiple types of cancers, including pancreatic, prostate, oral, ovarian and renal cancers. Acute myelocytic leukaemia (AML) is a Gas6-dependent cancer, and Gas6 expression predicts poor prognosis in AML. Interestingly, Gas6 also has a role in establishing tumour dormancy in the bone marrow microenvironment and in suppressing intestinal tumorigenesis. Numerous studies regarding cancer therapy have targeted Gas6 and TAM receptors with good results. However, some findings have suggested that Gas6 is associated with the development of resistance to cancer therapies. Concerning these significant effects of Gas6 in numerous cancers, we discuss the roles of Gas6 in cancer development in this review. First, we introduce basic knowledge on Gas6 and TAM receptors. Next, we describe and discuss the involvement of Gas6 and TAM receptors in cancers from different organ systems. Finally, we highlight the progress in therapies targeting Gas6 and TAM receptors. This review presents the significant roles of Gas6 in cancers from different systems and may contribute to the continued promotion of Gas6 as a therapeutic target.
Collapse
Affiliation(s)
- Guiling Wu
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.,Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Bing Gong
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Chongxi Fan
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| |
Collapse
|
18
|
Bernasconi P, Farina M, Boni M, Dambruoso I, Calvello C. Therapeutically targeting SELF-reinforcing leukemic niches in acute myeloid leukemia: A worthy endeavor? Am J Hematol 2016; 91:507-17. [PMID: 26822317 DOI: 10.1002/ajh.24312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/21/2015] [Accepted: 01/16/2016] [Indexed: 12/17/2022]
Abstract
A tight relationship between the acute myeloid leukemia (AML) population and the bone marrow (BM) microenvironment has been convincingly established. The AML clone contains leukemic stem cells (LSCs) that compete with normal hematopoietic stem cells (HSCs) for niche occupancy and remodel the niche; whereas, the BM microenvironment might promote AML development and progression not only through hypoxia and homing/adhesion molecules, but also through genetic defects. Although it is still unknown whether the niche influences treatment results or contains any potential target for treatment, this dynamic AML-niche interaction might be a promising therapeutic objective to significantly improve the AML cure rate.
Collapse
Affiliation(s)
- Paolo Bernasconi
- Division of Hematology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Mirko Farina
- Division of Hematology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Marina Boni
- Division of Hematology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Irene Dambruoso
- Division of Hematology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Celeste Calvello
- Division of Hematology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| |
Collapse
|
19
|
Daver N, Cortes J, Kantarjian H, Ravandi F. Acute myeloid leukemia: advancing clinical trials and promising therapeutics. Expert Rev Hematol 2016; 9:433-45. [PMID: 26910051 DOI: 10.1586/17474086.2016.1158096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress in understanding the biology of acute myeloid leukemia (AML) and the identification of targetable driver mutations, leukemia specific antigens and signal transduction pathways has ushered in a new era of therapy. In many circumstances the response rates with such targeted or antibody-based therapies are superior to those achieved with standard therapy and with decreased toxicity. In this review we discuss novel therapies in AML with a focus on two major areas of unmet need: (1) single agent and combination strategies to improve frontline therapy in elderly patients with AML and (2) molecularly targeted therapies in the frontline and salvage setting in all patients with AML.
Collapse
Affiliation(s)
- Naval Daver
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , Texas , USA
| | - Jorge Cortes
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , Texas , USA
| | - Hagop Kantarjian
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , Texas , USA
| | - Farhad Ravandi
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , Texas , USA
| |
Collapse
|
20
|
Cheng P, Phillips E, Kim SH, Taylor D, Hielscher T, Puccio L, Hjelmeland AB, Lichter P, Nakano I, Goidts V. Kinome-wide shRNA screen identifies the receptor tyrosine kinase AXL as a key regulator for mesenchymal glioblastoma stem-like cells. Stem Cell Reports 2015; 4:899-913. [PMID: 25921812 PMCID: PMC4437464 DOI: 10.1016/j.stemcr.2015.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma is a highly lethal cancer for which novel therapeutics are urgently needed. Two distinct subtypes of glioblastoma stem-like cells (GSCs) were recently identified: mesenchymal (MES) and proneural (PN). To identify mechanisms to target the more aggressive MES GSCs, we combined transcriptomic expression analysis and kinome-wide short hairpin RNA screening of MES and PN GSCs. In comparison to PN GSCs, we found significant upregulation and phosphorylation of the receptor tyrosine kinase AXL in MES GSCs. Knockdown of AXL significantly decreased MES GSC self-renewal capacity in vitro and inhibited the growth of glioblastoma patient-derived xenografts. Moreover, inhibition of AXL with shRNA or pharmacologic inhibitors also increased cell death significantly more in MES GSCs. Clinically, AXL expression was elevated in the MES GBM subtype and significantly correlated with poor prognosis in multiple cancers. In conclusion, we identified AXL as a potential molecular target for novel approaches to treat glioblastoma and other solid cancers. shRNA screen identified kinases that alter GSC viability in a subtype-dependent manner AXL is highly expressed in mesenchymal GSCs Targeting AXL decreases mesenchymal GSC self-renewal, viability, and tumorigenicity AXL expression predicts poor prognosis in several tumor types
Collapse
Affiliation(s)
- Peng Cheng
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA; Department of Neurosurgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Emma Phillips
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg 69120, Germany
| | - Sung-Hak Kim
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - David Taylor
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center, Heidelberg 69120, Germany
| | - Laura Puccio
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg 69120, Germany
| | - Anita B Hjelmeland
- Department of Cell, Developmental, and Integrative Biology (CDIB), University of Alabama, Birmingham, AL 35294, USA
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg 69120, Germany
| | - Ichiro Nakano
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Violaine Goidts
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg 69120, Germany.
| |
Collapse
|
21
|
Reikvam H, Hauge M, Brenner AK, Hatfield KJ, Bruserud Ø. Emerging therapeutic targets for the treatment of human acute myeloid leukemia (part 1) - gene transcription, cell cycle regulation, metabolism and intercellular communication. Expert Rev Hematol 2015; 8:299-313. [PMID: 25835070 DOI: 10.1586/17474086.2015.1032935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human acute myeloid leukemia is a heterogeneous disease and the effect of therapeutic targeting of specific molecular mechanisms will probably vary between patient subsets. Cell cycle regulators are among the emerging targets (e.g., aurora and polo-like kinases, cyclin-dependent kinases). Inhibition of communication between acute myeloid leukemia and stromal cells is also considered; among the most promising of these strategies are inhibition of hedgehog-initiated, CXCR4-CXCL12 and Axl-Gas6 signaling. Finally, targeting of energy and protein metabolism is considered, the most promising strategy being inhibition of isocitrate dehydrogenase in patients with IDH mutations. Thus, several strategies are now considered, and a major common challenge for all of them is to clarify how they should be combined with each other or with conventional chemotherapy, and whether their use should be limited to certain subsets of patients.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|