1
|
Gao J, Dong M, Tian W, Xia J, Qian Y, Jiang Z, Chen Z, Shen Y. The role of CISD1 reduction in macrophages in promoting COPD development through M1 polarization and mitochondrial dysfunction. Eur J Med Res 2024; 29:541. [PMID: 39533441 PMCID: PMC11559132 DOI: 10.1186/s40001-024-02146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The mitochondrial dysfunction and oxidative stress imbalance caused by macrophage polarization play a role in the progression of COPD, with CDGSH iron-sulfur domain-containing protein 1 (CISD1) playing a key role. This study revealed the role and mechanism of CISD1 in smoke-induced macrophages. METHODS Using a pure cigarette smoke exposure-induced COPD mouse model, stimulation of Raw264.7 macrophages with cigarette smoke extract mimics the COPD environment. Knocking down CISD1 expression in macrophages and combining it with high-throughput sequencing to obtain subsequent differentially expressed genes and pathways. Macrophage polarization tendency under different treatments was determined using flow cytometry. Meanwhile, Mitosox, JC-1, DCFH-DA fluorescence intensity was measured to detect mitochondrial function and cellular oxidative stress levels. Western Blot technique was employed to validate autophagy (mitochondrial autophagy) pathway-related proteins. In addition, Elisa technique was used to measure inflammatory factors (IL-6, TNF-a) in the cell supernatant after co-culturing macrophages (Raw264.7) with epithelial cells (MLE12). RESULTS CISD1 is underexpressed in peripheral blood monocytes of COPD patients. Under in vitro conditions, we verified that cigarette smoke (smoke extract) indeed inhibits CISD1 expression in macrophages. Subsequently, we found that macrophages with knocked-down CISD1 tend to polarize towards M1 phenotype, and exhibit signs of mitochondrial dysfunction and oxidative stress imbalance. In addition, we observed significant activation of the autophagy pathway in CISD1-inhibited macrophages, with upregulation of LC3A/B and downregulation of p62 protein, as well as increased expression of mitochondrial autophagy-related proteins (PINK1, PARKN). Furthermore, co-culturing CISD1-knockdown macrophages (Raw264.7) with epithelial cells (MLE12) resulted in upregulation of inflammatory factors in the supernatant. CONCLUSIONS Smoke-induced reduction of CISD1 in macrophages promotes M1 polarization and mitochondrial dysfunction by activating the autophagy pathway, thereby promoting the occurrence and development of COPD.
Collapse
Affiliation(s)
- Jiameng Gao
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China
| | - Meiyuan Dong
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Weibin Tian
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Junyi Xia
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Yuhao Qian
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China
| | - Zhilong Jiang
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China.
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China.
| |
Collapse
|
2
|
Zhang F, Cui Y, Zhang T, Yin W. Epigenetic regulation of macrophage activation in chronic obstructive pulmonary disease. Front Immunol 2024; 15:1445372. [PMID: 39206196 PMCID: PMC11349576 DOI: 10.3389/fimmu.2024.1445372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages in the innate immune system play a vital role in various lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury and pulmonary fibrosis. Macrophages involved in the process of immunity need to go through a process of activation, including changes in gene expression and cell metabolism. Epigenetic modifications are key factors of macrophage activation including DNA methylation, histone modification and non-coding RNA regulation. Understanding the role and mechanisms of epigenetic regulation of macrophage activation can provide insights into the function of macrophages in lung diseases and help identification of potential therapeutic targets. This review summarizes the latest progress in the epigenetic changes and regulation of macrophages in their development process and in normal physiological states, and the epigenetic regulation of macrophages in COPD as well as the influence of macrophage activation on COPD development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yachao Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Tiejun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Li CL, Liu SF. Exploring Molecular Mechanisms and Biomarkers in COPD: An Overview of Current Advancements and Perspectives. Int J Mol Sci 2024; 25:7347. [PMID: 39000454 PMCID: PMC11242201 DOI: 10.3390/ijms25137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) plays a significant role in global morbidity and mortality rates, typified by progressive airflow restriction and lingering respiratory symptoms. Recent explorations in molecular biology have illuminated the complex mechanisms underpinning COPD pathogenesis, providing critical insights into disease progression, exacerbations, and potential therapeutic interventions. This review delivers a thorough examination of the latest progress in molecular research related to COPD, involving fundamental molecular pathways, biomarkers, therapeutic targets, and cutting-edge technologies. Key areas of focus include the roles of inflammation, oxidative stress, and protease-antiprotease imbalances, alongside genetic and epigenetic factors contributing to COPD susceptibility and heterogeneity. Additionally, advancements in omics technologies-such as genomics, transcriptomics, proteomics, and metabolomics-offer new avenues for comprehensive molecular profiling, aiding in the discovery of novel biomarkers and therapeutic targets. Comprehending the molecular foundation of COPD carries substantial potential for the creation of tailored treatment strategies and the enhancement of patient outcomes. By integrating molecular insights into clinical practice, there is a promising pathway towards personalized medicine approaches that can improve the diagnosis, treatment, and overall management of COPD, ultimately reducing its global burden.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Alharbi KS, Alshehri SM, Alenezi SK. Epigenetic Optimization in Chronic Obstructive Pulmonary Disease (COPD). TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:99-110. [DOI: 10.1007/978-981-99-4780-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Zhao J, Cheng W, He X, Liu Y, Li J, Sun J, Li J, Wang F, Gao Y. Chronic Obstructive Pulmonary Disease Molecular Subtyping and Pathway Deviation-Based Candidate Gene Identification. CELL JOURNAL 2018; 20:326-332. [PMID: 29845785 PMCID: PMC6004990 DOI: 10.22074/cellj.2018.5412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/27/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study was to identify the molecular subtypes of chronic obstructive pulmonary disease (COPD) and to prioritize COPD candidate genes using bioinformatics methods. MATERIALS AND METHODS In this bioinformatics study, the gene expression dataset GSE76705 (including 229 COPD samples) and known COPD-related genes (candidate genes) were downloaded from the Gene Expression Omnibus (GEO) and the Online Mendelian Inheritance in Man (OMIM) databases respectively. Based on the expression values of the candidate genes, COPD samples were divided into molecular subtypes through hierarchical clustering analysis. Candidate genes were accordingly allocated into the defined molecular subtypes and functional enrichment analysis was undertaken. Pathway deviation scores were then analyzed, followed by the analysis of clinical indicators (FEV1, FEV1/FVC, age and gender) of COPD patients in each subtype, and prediction models were constructed. Furthermore, the gene expression dataset GSE71220 was used to bioinformatically validate our results. RESULTS A total of 213 COPD-related genes were identified, which divided samples into three subtypes based on the gene expression values. After intersection analysis, 160 common genes including transforming growth factor β1 (TGFB1), epidermal growth factor receptor (EGFR) and interleukin 13 (IL13) were obtained. Functional enrichment analysis identified 22 pathways such as 'hsa04060: cytokine-cytokine receptor interaction pathways, 'hsa04110: cell cycle' and 'hsa05222: small cell lung cancer'. Pathways in subtype 2 had higher deviation scores. Furthermore, three receiver operating characteristic (ROC) curves (accuracies >80%) were constructed. The three subtypes in COPD samples were also identified in the validation dataset GSE71220. CONCLUSION COPD may be further subdivided into several molecular subtypes, which may be useful in improving COPD therapy based on the molecular subtype of a patient.
Collapse
Affiliation(s)
- Jingming Zhao
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Cheng
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xigang He
- Department of Respiratory Medicine, People's Hospital of RizhaoLanshan, Rizhao, China
| | - Yanli Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ji Li
- Department of Pharmacy, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jiaxing Sun
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinfeng Li
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fangfang Wang
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yufang Gao
- Department of President's Office, The Affiliated Hospital of Qingdao University, Qingdao, China.Electronic Address:
| |
Collapse
|
6
|
Miravitlles M, D'Urzo A, Singh D, Koblizek V. Pharmacological strategies to reduce exacerbation risk in COPD: a narrative review. Respir Res 2016; 17:112. [PMID: 27613392 PMCID: PMC5018159 DOI: 10.1186/s12931-016-0425-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/20/2016] [Indexed: 01/17/2023] Open
Abstract
Identifying patients at risk of exacerbations and managing them appropriately to reduce this risk represents an important clinical challenge. Numerous treatments have been assessed for the prevention of exacerbations and their efficacy may differ by patient phenotype. Given their centrality in the treatment of COPD, there is strong rationale for maximizing bronchodilation as an initial strategy to reduce exacerbation risk irrespective of patient phenotype. Therefore, in patients assessed as frequent exacerbators (>1 exacerbation/year) we propose initial bronchodilator treatment with a long-acting muscarinic antagonist (LAMA)/ long-acting β2-agonist (LABA). For those patients who continue to experience >1 exacerbation/year despite maximal bronchodilation, we advocate treating according to patient phenotype. Based on currently available data on adding inhaled corticosteroids (ICS) to a LABA, ICS might be added to a LABA/LAMA combination in exacerbating patients who have an asthma-COPD overlap syndrome or high blood eosinophil counts, while in exacerbators with chronic bronchitis, consideration should be given to treating with a phosphodiesterase (PDE)-4 inhibitor (roflumilast) or high-dose mucolytic agents. For those patients who experience frequent bacterial exacerbations and/or bronchiectasis, addition of mucolytic agents or a macrolide antibiotic (e.g. azithromycin) should be considered. In all patients at risk of exacerbations, pulmonary rehabilitation should be included as part of a comprehensive management plan.
Collapse
Affiliation(s)
- Marc Miravitlles
- Pneumology Department, Hospital General Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Anthony D'Urzo
- Department of Family and Community Medicine, University of Toronto, 1670 Dufferin Street, Suite 107, Toronto, ON, M6H 3M2, Canada
| | - Dave Singh
- University of Manchester, Medicines Evaluation Unit, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester, M23 9QZ, UK
| | - Vladimir Koblizek
- Department of Pneumology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Simkova 870, Hradec Kralove 1, 500 38, Czech Republic
| |
Collapse
|
7
|
Yang IA, Shaw JG, Goddard JR, Clarke MS, Reid DW. Use of inhaled corticosteroids in COPD: improving efficacy. Expert Rev Respir Med 2016; 10:339-50. [DOI: 10.1586/17476348.2016.1151789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Lim TK, Ko FWS, Thomas PS, Grainge C, Yang IA. Year in review 2014: Chronic obstructive pulmonary disease, asthma and airway biology. Respirology 2015; 20:510-8. [PMID: 25682705 DOI: 10.1111/resp.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Tow Keang Lim
- Department of Medicine, National University Hospital, Singapore
| | | | | | | | | |
Collapse
|
9
|
Shaw JG, Vaughan A, Dent AG, O'Hare PE, Goh F, Bowman RV, Fong KM, Yang IA. Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J Thorac Dis 2014; 6:1532-47. [PMID: 25478195 DOI: 10.3978/j.issn.2072-1439.2014.11.33] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/21/2014] [Indexed: 01/02/2023]
Abstract
Disease progression of chronic obstructive pulmonary disease (COPD) is variable, with some patients having a relatively stable course, while others suffer relentless progression leading to severe breathlessness, frequent acute exacerbations of COPD (AECOPD), respiratory failure and death. Radiological markers such as CT emphysema index, bronchiectasis and coronary artery calcification (CAC) have been linked with increased mortality in COPD patients. Molecular changes in lung tissue reflect alterations in lung pathology that occur with disease progression; however, lung tissue is not routinely accessible. Cell counts (including neutrophils) and mediators in induced sputum have been associated with lung function and risk of exacerbations. Examples of peripheral blood biological markers (biomarkers) include those associated with lung function (reduced CC-16), emphysema severity (increased adiponectin, reduced sRAGE), exacerbations and mortality [increased CRP, fibrinogen, leukocyte count, IL-6, IL-8, and tumor necrosis factor α (TNF-α)] including increased YKL-40 with mortality. Emerging approaches to discovering markers of gene-environment interaction include exhaled breath analysis [volatile organic compounds (VOCs), exhaled breath condensate], cellular and systemic responses to exposure to air pollution, alterations in the lung microbiome, and biomarkers of lung ageing such as telomere length shortening and reduced levels of sirtuins. Overcoming methodological challenges in sampling and quality control will enable more robust yet easily accessible biomarkers to be developed and qualified, in order to optimise personalised medicine in patients with COPD.
Collapse
Affiliation(s)
- Janet G Shaw
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Annalicia Vaughan
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Annette G Dent
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Phoebe E O'Hare
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Felicia Goh
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Rayleen V Bowman
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Kwun M Fong
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| | - Ian A Yang
- 1 Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia ; 2 UQ Thoracic Research Centre, School of Medicine, the University of Queensland, Brisbane, Australia
| |
Collapse
|
10
|
Ko FWS, Lim TK, Hancox RJ, Yang IA. Year in review 2013: Chronic obstructive pulmonary disease, asthma and airway biology. Respirology 2014; 19:438-47. [PMID: 24708033 DOI: 10.1111/resp.12252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 12/27/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Fanny W S Ko
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|