1
|
Hong L, Chen G, Cai Z, Liu H, Zhang C, Wang F, Xiao Z, Zhong J, Wang L, Wang Z, Cui W. Balancing Microthrombosis and Inflammation via Injectable Protein Hydrogel for Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200281. [PMID: 35524641 PMCID: PMC9284187 DOI: 10.1002/advs.202200281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/01/2022] [Indexed: 05/17/2023]
Abstract
Emerging evidence indicates that a vicious cycle between inflammation and microthrombosis catalyzes the pathogenesis of inflammatory bowel disease (IBD). Over-stimulated inflammation triggers a coagulation cascade and leads to microthrombosis, which further complicates the injury through tissue hypoxia and ischemia. Herein, an injectable protein hydrogel with anti-thrombosis and anti-inflammation competency is developed to impede this cycle, cross-linked by silver ion mediated metal-ligand coordination and electronic interaction with sulfhydryl functionalized bovine serum albumin and heparin, respectively. The ex vivo experiments show that the hydrogel, HEP-Ag-BSA, exhibits excellent self-healing ability, injectability, biocompatibility, and sustained drug release. HEP-Ag-BSA also demonstrates anti-coagulation and anti-inflammation abilities via coagulation analysis and lipopolysaccharide stimulation assay. The in vivo imaging confirms the longer retention time of HEP-Ag-BSA at inflammatory sites than in normal mucosa owing to electrostatic interactions. The in vivo study applying a mouse model with colitis also reveals that HEP-Ag-BSA can robustly inhibit inflammatory microthrombosis with reduced bleeding risk. This versatile protein hydrogel platform can definitively hinder the "inflammation and microthrombosis" cycle, providing a novel integrated approach against IBD.
Collapse
Affiliation(s)
- Liwen Hong
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Gaoxian Chen
- Department of Pharmacology and Chemical BiologyInstitute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Hua Liu
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Chen Zhang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Fei Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical BiologyInstitute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Jie Zhong
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lei Wang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Department of GeriatricsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengting Wang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
2
|
Atractylenolide III Improves Mitochondrial Function and Protects Against Ulcerative Colitis by Activating AMPK/SIRT1/PGC-1α. Mediators Inflamm 2022; 2022:9129984. [PMID: 35431653 PMCID: PMC9012613 DOI: 10.1155/2022/9129984] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis (UC) is a complex inflammatory bowel disease (IBD) associated with mitochondrial function. Atractylenolide III (AT III) is a natural product with anti-inflammatory effects. The aim of this work is to investigate the protective effect of AT III on UC and its underlying mechanisms. Herein, dextran sulfate sodium- (DSS-) induced mice and lipopolysaccharide- (LPS-) stimulated intestinal epithelial cells (IEC-6) were employed to mimic UC pathologies in vivo and in vitro. The results showed that in DSS-induced mice, AT III significantly reversed the body weight loss, colon length reduction, disease activity index (DAI) increase, and histological damage. The production of proinflammatory factors and reduction of antioxidants in colitis were suppressed by AT III. In addition, we demonstrated that AT III attenuated the intestinal epithelial barrier destruction and mitochondrial dysfunction induced by DSS, which was similar to the in vitro results in LPS-treated IEC-6 cells. The protein levels of p-AMPK, SIRT1, and PGC-1α along with acetylated PGC-1α were also upregulated by AT III in vivo and in vitro. In conclusion, these findings support that AT III may protect against mitochondrial dysfunction by the activation of the AMPK/SIRT1/PGC-1α signaling pathway during UC development.
Collapse
|
3
|
Story E, Bijelic V, Penney C, Benchimol EI, Halton J, Mack DR. Safety of Venous Thromboprophylaxis With Low-molecular-weight Heparin in Children With Ulcerative Colitis. J Pediatr Gastroenterol Nutr 2021; 73:604-609. [PMID: 34676833 DOI: 10.1097/mpg.0000000000003231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To evaluate for increased rectal bleeding following enoxaparin thromboprophylaxis in children hospitalized for ulcerative colitis (UC). METHODS Retrospective cohort study (2007--2016) of 218 inpatients with active UC. Patients receiving enoxaparin were compared with a nonenoxaparin-treated patient group. Severity of UC was determined using the Pediatric Ulcerative Colitis Activity Index (PUCAI). Hemoglobin (Hb) values and packed red blood cell (pRBC) transfusions were reviewed for a 7-day period following hospital admission. A linear mixed effect model was used to compare change in Hb values between the groups. Risk of pRBC transfusion was compared using a log-rank test and Cox proportional hazard regression. A sub-analysis was also conducted restricting to patients with severe UC to provide more generalizable insight into safety profile of enoxaparin. RESULTS Children hospitalized for UC and receiving enoxaparin were more likely to have severe disease, received infliximab therapy and be admitted after 2010. Use of enoxaparin showed there was not a difference (P = 0.60) in the fall of Hb detected among those with acute severe colitis (initial PUCAI ≥65) during the week following admission. Moreover, there was no difference in the risk of requiring a pRBC transfusion with enoxaparin use (log-rank test all patients: P = 0.80; severe UC: P = 0.88; Cox proportional hazard regression all patients: P = 0.72; severe UC: 0.85). CONCLUSIONS There was no difference in Hb levels or need for blood transfusions in children hospitalized for severe UC (PUCAI ≥65) whether or not they received enoxaparin for thromboembolism prophylaxis.
Collapse
Affiliation(s)
- Eden Story
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario
- Faculty of Medicine, University of Ottawa
| | | | | | - Eric I Benchimol
- Faculty of Medicine, University of Ottawa
- CHEO Research Institute
- CHEO Inflammatory Bowel Disease Centre, Children's Hospital of Eastern Ontario, Ottawa, ON
| | - Jacqueline Halton
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario
- Faculty of Medicine, University of Ottawa
- CHEO Research Institute
| | - David R Mack
- Faculty of Medicine, University of Ottawa
- CHEO Research Institute
- CHEO Inflammatory Bowel Disease Centre, Children's Hospital of Eastern Ontario, Ottawa, ON
| |
Collapse
|
4
|
Yan Y, Sun Y, Wang P, Zhang R, Huo C, Gao T, Song C, Xing J, Dong Y. Mucoadhesive nanoparticles-based oral drug delivery systems enhance ameliorative effects of low molecular weight heparin on experimental colitis. Carbohydr Polym 2020; 246:116660. [PMID: 32747292 DOI: 10.1016/j.carbpol.2020.116660] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Low molecular weight heparin (LMWH) is reported to have therapeutic action on ulcerative colitis (UC). To facilitate its oral administration and improve the colon-targeting property, LMWH-loaded nanoparticles (TMC-NPs and SA-TMC-NPs) are prepared and evaluated by a series of studies, including their stabilities, drug release profiles, mucosal permeation, mucoadhesion, cytotoxicities, cellular uptake profiles, anticoagulant and anti-inflammatory activities, mucosal healing properties, biosafety and ameliorative effects on experimental colitis. Consequently, oral administration of LMWH-loaded NPs for 5 days perform significant therapeutic effects on mice, which are manifested as improved body weight gains, colon length, DAI score, MPO activity and histological characteristics. Besides, SA-TMC-NPs show better colon-targeting property than TMC-NPs that is demonstrated by lower oral absorption (ATPP 38.95 s) and stronger mucoadhesion (kcps reduces 36.46 %) to inflamed colon tissues. Therefore, TMC-based NPs are proved to be as promising oral colon-targeting drug delivery systems of LMWH and has potential application in UC treatment.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Sun
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengchong Wang
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Zhang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chuanchuan Huo
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tingting Gao
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenghua Song
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yalin Dong
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Burge K, Bergner E, Gunasekaran A, Eckert J, Chaaban H. The Role of Glycosaminoglycans in Protection from Neonatal Necrotizing Enterocolitis: A Narrative Review. Nutrients 2020; 12:nu12020546. [PMID: 32093194 PMCID: PMC7071410 DOI: 10.3390/nu12020546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/22/2022] Open
Abstract
Necrotizing enterocolitis, a potentially fatal intestinal inflammatory disorder affecting primarily premature infants, is a significant cause of morbidity and mortality in neonates. While the etiology of the disease is, as yet, unknown, a number of risk factors for the development of necrotizing enterocolitis have been identified. One such risk factor, formula feeding, has been shown to contribute to both increased incidence and severity of the disease. The protective influences afforded by breastfeeding are likely attributable to the unique composition of human milk, an extremely potent, biologically active fluid. This review brings together knowledge on the pathogenesis of necrotizing enterocolitis and current thinking on the instrumental role of one of the more prominent classes of bioactive components in human breast milk, glycosaminoglycans.
Collapse
MESH Headings
- Breast Feeding
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/pathology
- Enterocolitis, Necrotizing/prevention & control
- Female
- Glycosaminoglycans/pharmacology
- Humans
- Infant Formula/adverse effects
- Infant, Newborn
- Infant, Premature, Diseases/etiology
- Infant, Premature, Diseases/pathology
- Infant, Premature, Diseases/prevention & control
- Male
- Milk, Human/chemistry
- Protective Agents/pharmacology
- Risk Factors
Collapse
|
6
|
Characteristics of Hemorheology in Patients with Acute Severe Ulcerative Colitis and the Clinical Study of Rivaroxaban Anticoagulant Therapy. HEPATITIS MONTHLY 2020. [DOI: 10.5812/hepatmon.92536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
7
|
Burge KY, Hannah L, Eckert JV, Gunasekaran A, Chaaban H. The Protective Influence of Chondroitin Sulfate, a Component of Human Milk, on Intestinal Bacterial Invasion and Translocation. J Hum Lact 2019; 35:538-549. [PMID: 31051086 PMCID: PMC6615959 DOI: 10.1177/0890334419845338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Human milk is known to be protective against necrotizing enterocolitis, a devastating intestinal inflammatory disease affecting the preterm population. Although the pathogenesis of necrotizing enterocolitis is yet to be solidified, intestinal integrity dysfunction, bacterial invasion and/or translocation, and inflammation may play important roles. Glycosaminoglycans, compounds naturally prevalent in both human milk and the intestine, are thought to be anti-inflammatory and capable of altering bacterial interactions within the gut. RESEARCH AIM In this study, we aimed to evaluate the potential of chondroitin sulfate, the most prominent class of glycosaminoglycans in human milk, to protect against bacterial infection in an intestinal in vitro model. METHODS T84 cell monolayers were treated with chondroitin sulfate and cell viability was assessed across a number of doses. Monolayers were then pretreated with chondroitin sulfate and subsequently challenged with E. coli invasion and translocation to evaluate any protective role of the compound against infection. Tight junction barrier function was assessed by transepithelial electrical resistance, and cytokine levels were evaluated. RESULTS Chondroitin sulfate at any dose up to 750 μg/ml was not associated with any statistically significant decrease in cell viability. Additionally, chondroitin sulfate at 750 μg/ml was associated with a 75% decrease in both bacterial invasion and translocation compared to control. CONCLUSIONS These data suggest chondroitin sulfate may protect against bacterial infection through a reduction in both invasion and translocation, importantly without attendant reduction in cell viability.
Collapse
Affiliation(s)
- Kathryn Y Burge
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lindsey Hannah
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeffrey V Eckert
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aarthi Gunasekaran
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hala Chaaban
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
8
|
Tian Y, Zheng Y, Dong J, Zhang J, Wang H. Papaverine adjuvant therapy for microcirculatory disturbance in severe ulcerative colitis complicated with CMV infection: a case report. Clin J Gastroenterol 2019; 12:407-413. [PMID: 30945123 PMCID: PMC6763508 DOI: 10.1007/s12328-019-00974-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Ulcerative colitis has hypercoagulable state and high risk of thrombosis; so mucosal disturbance of microcirculation may be mediate and amplify the inflammation of ulcerative colitis. A 56-year-old female patient was admitted in hospital for discontinuously mucous bloody stool for more than 1 year. Ulcerative colitis was determined after colonoscopy and pathologic examination. Mesalazine was effective during the year, but her symptoms recurred three times due to her bad compliance. One month before admission, the patient had severe recurrence after mesalazine withdrawal. At this time, the result of quantitative fluorescence PCR of colonic histic CMV-DNA was 1.6 × 104 copies/mL positive, CMV colitis was accompanied. After 4 weeks of ganciclovir and 6 weeks of mesalazine usage and nutrition support, the symptoms of diarrhea and abdominal cramp did not improve; stool frequency was more than twenty times a day. Probe-based confocal laser endomicroscopy revealed local microcirculation disturbance. Papaverine 90-mg slow drip for at least 10 h a day was added. The symptoms dramatically disappeared after 3 days of papaverine treatment. The patient had yellow mushy stool 2–3 times a day. Pathological findings showed diffuse submucosal hemorrhage and transparent thrombosis in capillaries. Treatment of microcirculatory disturbance in severe UC is a promising adjuvant therapy. Confocal laser endomicroscopy may be an effective method for microcirculation judgment.
Collapse
Affiliation(s)
- Yu Tian
- Gastroenterology Department of Peking, University First Hospital, Beijing, China
| | - Yue Zheng
- Gastroenterology Department of Peking, University First Hospital, Beijing, China
| | - Jinpei Dong
- Gastroenterology Department of Peking, University First Hospital, Beijing, China
| | - Jixin Zhang
- Pathology Department of Peking, University First Hospital, Beijing, China
| | - Huahong Wang
- Gastroenterology Department of Peking, University First Hospital, Beijing, China.
| |
Collapse
|
9
|
Patel RP, Shastri MD, Ming LC, Zaidi STR, Peterson GM. Therapeutic Potential of Enoxaparin in Lichen Planus: Exploring Reasons for Inconsistent Reports. Front Pharmacol 2018; 9:586. [PMID: 29922163 PMCID: PMC5996198 DOI: 10.3389/fphar.2018.00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Lichen planus (LP) is an uncommon mucocutaneous inflammatory condition, that is immunologically mediated, typically pruritic and often recurs. The currently advocated therapies are either not highly effective or associated with severe side effects. Enoxaparin, a widely used anticoagulant, is composed of both anticoagulant and non-anticoagulant fragments. Enoxaparin is reported to have anti-inflammatory properties and it was found to be effective in LP. However, the results from clinical studies have varied substantially and, therefore, the clinical role of enoxaparin in LP remains uncertain. This review focuses on potential reasons for the reported inconsistent outcomes, as well as proposing solutions; these include identifying batch-to-batch inconsistency in the composition of enoxaparin. The potential therapeutic value of enoxaparin in LP must be explored using well-designed clinical trials, combined with experimental studies that focus on identifying the anti-inflammatory fragments of enoxaparin and elucidating the mechanism of action of these non-anticoagulant fragments.
Collapse
Affiliation(s)
- Rahul P. Patel
- Pharmacy, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Madhur D. Shastri
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Long Chiau Ming
- Pharmacy, School of Medicine, University of Tasmania, Hobart, TAS, Australia
- School of Pharmacy, KPJ Healthcare University College, Nilai, Malaysia
- Vector-borne Diseases Research Group (VERDI), Pharmaceutical and Life Sciences CoRe, Universiti Teknologi MARA, Shah Alam, Malaysia
| | | | - Gregory M. Peterson
- Pharmacy, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
10
|
Yazeji T, Moulari B, Beduneau A, Stein V, Dietrich D, Pellequer Y, Lamprecht A. Nanoparticle-based delivery enhances anti-inflammatory effect of low molecular weight heparin in experimental ulcerative colitis. Drug Deliv 2017; 24:811-817. [PMID: 28509629 PMCID: PMC8240985 DOI: 10.1080/10717544.2017.1324530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/25/2017] [Indexed: 01/07/2023] Open
Abstract
Epithelial administration of low molecular weight heparin (LMWH) has proven its therapeutic efficiency in ulcerative colitis (UC) but still lacks of a sufficiently selective drug delivery system. Polymeric nanoparticles were used here not only to protect LMWH from intestinal degradation but also to provide targeted delivery to inflamed tissue in experimental colitis mice. LMWH was associated with polymethacrylate nanoparticles (NP) type A (PEMT-A) or type B (PEMT-B) of a size: 150 nm resulting in a maximum drug loading: 0.1 mg/mg. In a lipopolysaccharide-stimulated macrophages both, free LMWH and LMWH-NP have significantly reduced the cytokines secretion independently from cellular uptake. The in-vivo therapeutic efficiency was dose dependent as at low doses (100 IU/kg) only minor differences between free LMWH and LMWH-NP were found and the superiority of LMWH-NP became prominent with dose increase (500 IU/kg). Administration of LMWH-NP at 500 IU/kg has markedly improved the clinical activity as compared to LMWH while similarly pathophysiological indicators revealed increased therapeutic outcome in presence of NP compared to LMWH alone: Myeloperoxidase (Colitis control: 10 480 ± 5335, LMWH-PEMT-A NP: 1507 ± 2165, LMWH-PEMT-B NP: 382 ± 143, LMWH: 8549 ± 5021 units/g) and tumor necrosis factor: (Colitis control: 1636 ± 544, LMWH-PEMT-A NP: 511 ± 506, LMWH-PEMT-B NP: 435 ± 473, LMWH: 1110 ± 309 pg/g). Associating LMWH with NP is improving the anti-inflammatory efficiency of LMWH in-vivo by its protection against degradation in luminal environment and selective drug delivery. Such a combination holds promise for a highly specific therapy by its double selectivity towards the inflamed intestinal tissue. LMWH-PEMT NP have significantly improved the clinical activity in-vivo in comparison to free LMWH.
Collapse
Affiliation(s)
- Tawfek Yazeji
- Department of Pharmaceutics, University of Bonn, Bonn, Germany
| | | | | | - Valentin Stein
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany, and
| | - Dirk Dietrich
- Department of Neurosurgery, University of Bonn, Bonn, Germany
| | | | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, Bonn, Germany
- FDE EA4267University of Burgundy, Besançon, France
| |
Collapse
|
11
|
Zyryanov SK, Ushkalova EA. [Enoxaparin is a low-molecular-weight heparin with a complex chemical structure and various non-anticoagulant properties]. TERAPEVT ARKH 2016. [PMID: 28635885 DOI: 10.17116/terarkh20168812109-115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper discusses the non-anticoagulant properties of unfractionated heparin and enoxaparin and their relation to their chemical structures. It is emphasized that enoxaparin has multiple, often interrelated, non-anticoagulant effects that can complement its antithrombotic activity and enhance the efficiency of therapy in patients receiving the drug for various indications. The realization of these effects requires the complex structure with the standard distribution of molecular weight (Mw) (average Mw, about 4500 Da, as well as Mw of less than 2000 Da (<20%), 2000 to 8000 Da (>68%), and more than 8000 Da (<18%), and with the standard content of 1.6-anhidro rings (15-25%), which is determined by the source of raw materials and by the production technology of the original drug and cannot be fully reproduced when designing its bioanalogues.
Collapse
Affiliation(s)
- S K Zyryanov
- Peoples' Friendship University of Russia, Moscow, Russia
| | - E A Ushkalova
- Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|