1
|
Rong C, Liang C, Shen J, Zhang Y, Wang Q, Yang F, Chen Y, Luo Y, Gu M, Gao P, Xia Y, Duan S. CLLU1 as an emerging biomarker in chronic lymphoid leukemia. Hum Cell 2024; 37:625-632. [PMID: 38507118 DOI: 10.1007/s13577-024-01051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
CLLU1, a disease-specific gene associated with chronic lymphoid leukemia (CLL), is located on chromosome 12q22. Previous studies considered CLLU1 to be a non-coding RNA; however, recent research has discovered that its coding sequence region possesses the potential to encode a short peptide similar to interleukin-4. Remarkably, abnormally elevated expression of CLLU1 has only been detected in chronic lymphoid leukemia among all hematological cancers. High CLLU1 expression often indicates more malignant pathological features and an unfavorable prognosis for patients. Importantly, the expression level of CLLU1 remains unaffected by the passage of time or therapeutic interventions, thus rendering it a novel prognostic marker. This article provides a comprehensive summary of relevant research findings on CLLU1 in the context of CLL prognosis and clinical applications, aiming to guide subsequent theoretical and clinical investigations in this field.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Neoplasm Proteins/genetics
- RNA, Long Noncoding/genetics
- Biomarkers, Tumor/genetics
- Genes, Neoplasm
Collapse
Affiliation(s)
- Chunmeng Rong
- Department of Hematology, Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Chenhao Liang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yuhua Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Fang Yang
- Department of Hematology, Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yalu Chen
- Department of Hematology, Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yuqing Luo
- Department of Hematology, Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Meier Gu
- Department of Hematology, Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Panpan Gao
- Department of Hematology, Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yongming Xia
- Department of Hematology, Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Morabito F, Adornetto C, Monti P, Amaro A, Reggiani F, Colombo M, Rodriguez-Aldana Y, Tripepi G, D’Arrigo G, Vener C, Torricelli F, Rossi T, Neri A, Ferrarini M, Cutrona G, Gentile M, Greco G. Genes selection using deep learning and explainable artificial intelligence for chronic lymphocytic leukemia predicting the need and time to therapy. Front Oncol 2023; 13:1198992. [PMID: 37719021 PMCID: PMC10501728 DOI: 10.3389/fonc.2023.1198992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
Analyzing gene expression profiles (GEP) through artificial intelligence provides meaningful insight into cancer disease. This study introduces DeepSHAP Autoencoder Filter for Genes Selection (DSAF-GS), a novel deep learning and explainable artificial intelligence-based approach for feature selection in genomics-scale data. DSAF-GS exploits the autoencoder's reconstruction capabilities without changing the original feature space, enhancing the interpretation of the results. Explainable artificial intelligence is then used to select the informative genes for chronic lymphocytic leukemia prognosis of 217 cases from a GEP database comprising roughly 20,000 genes. The model for prognosis prediction achieved an accuracy of 86.4%, a sensitivity of 85.0%, and a specificity of 87.5%. According to the proposed approach, predictions were strongly influenced by CEACAM19 and PIGP, moderately influenced by MKL1 and GNE, and poorly influenced by other genes. The 10 most influential genes were selected for further analysis. Among them, FADD, FIBP, FIBP, GNE, IGF1R, MKL1, PIGP, and SLC39A6 were identified in the Reactome pathway database as involved in signal transduction, transcription, protein metabolism, immune system, cell cycle, and apoptosis. Moreover, according to the network model of the 3D protein-protein interaction (PPI) explored using the NetworkAnalyst tool, FADD, FIBP, IGF1R, QTRT1, GNE, SLC39A6, and MKL1 appear coupled into a complex network. Finally, all 10 selected genes showed a predictive power on time to first treatment (TTFT) in univariate analyses on a basic prognostic model including IGHV mutational status, del(11q) and del(17p), NOTCH1 mutations, β2-microglobulin, Rai stage, and B-lymphocytosis known to predict TTFT in CLL. However, only IGF1R [hazard ratio (HR) 1.41, 95% CI 1.08-1.84, P=0.013), COL28A1 (HR 0.32, 95% CI 0.10-0.97, P=0.045), and QTRT1 (HR 7.73, 95% CI 2.48-24.04, P<0.001) genes were significantly associated with TTFT in multivariable analyses when combined with the prognostic factors of the basic model, ultimately increasing the Harrell's c-index and the explained variation to 78.6% (versus 76.5% of the basic prognostic model) and 52.6% (versus 42.2% of the basic prognostic model), respectively. Also, the goodness of model fit was enhanced (χ2 = 20.1, P=0.002), indicating its improved performance above the basic prognostic model. In conclusion, DSAF-GS identified a group of significant genes for CLL prognosis, suggesting future directions for bio-molecular research.
Collapse
Affiliation(s)
| | - Carlo Adornetto
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Adriana Amaro
- Tumor Epigenetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Reggiani
- Tumor Epigenetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Colombo
- Molecular Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Giovanni Tripepi
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica del Consiglio Nazionale delle Ricerche (CNR), Reggio Calabria, Italy
| | - Graziella D’Arrigo
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica del Consiglio Nazionale delle Ricerche (CNR), Reggio Calabria, Italy
| | - Claudia Vener
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - Istituto di Ricovero e Cura a Crabtree Scientifico (USL-IRCCS) of Reggio Emilia, Reggio Emilia, Italy
| | - Teresa Rossi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - Istituto di Ricovero e Cura a Crabtree Scientifico (USL-IRCCS) of Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda Unità Sanitaria Locale - Istituto di Ricovero e Cura a Carattere Scientifico (USL-IRCCS) of Reggio Emilia, Reggio Emilia, Italy
| | - Manlio Ferrarini
- Unità Operariva (UO) Molecular Pathology, Ospedale Policlinico San Martino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Massimo Gentile
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliera (A.O.) of Cosenza, Cosenza, Italy
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Cosenza, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| |
Collapse
|
3
|
Scotton C, Bovolenta M, Schwartz E, Falzarano MS, Martoni E, Passarelli C, Armaroli A, Osman H, Rodolico C, Messina S, Pegoraro E, D'Amico A, Bertini E, Gualandi F, Neri M, Selvatici R, Boffi P, Maioli MA, Lochmüller H, Straub V, Bushby K, Castrignanò T, Pesole G, Sabatelli P, Merlini L, Braghetta P, Bonaldo P, Bernardi P, Foley R, Cirak S, Zaharieva I, Muntoni F, Capitanio D, Gelfi C, Kotelnikova E, Yuryev A, Lebowitz M, Zhang X, Hodge BA, Esser KA, Ferlini A. Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy. J Cell Sci 2016; 129:1671-84. [PMID: 26945058 PMCID: PMC4852766 DOI: 10.1242/jcs.175927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/16/2016] [Indexed: 01/09/2023] Open
Abstract
Collagen VI myopathies are genetic disorders caused by mutations in collagen 6 A1, A2 and A3 genes, ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, which is recapitulated by collagen-VI-null (Col6a1(-/-)) mice. Abnormalities in mitochondria and autophagic pathway have been proposed as pathogenic causes of collagen VI myopathies, but the link between collagen VI defects and these metabolic circuits remains unknown. To unravel the expression profiling perturbation in muscles with collagen VI myopathies, we performed a deep RNA profiling in both Col6a1(-/-)mice and patients with collagen VI pathology. The interactome map identified common pathways suggesting a previously undetected connection between circadian genes and collagen VI pathology. Intriguingly, Bmal1(-/-)(also known as Arntl) mice, a well-characterized model displaying arrhythmic circadian rhythms, showed profound deregulation of the collagen VI pathway and of autophagy-related genes. The involvement of circadian rhythms in collagen VI myopathies is new and links autophagy and mitochondrial abnormalities. It also opens new avenues for therapies of hereditary myopathies to modulate the molecular clock or potential gene-environment interactions that might modify muscle damage pathogenesis.
Collapse
Affiliation(s)
- Chiara Scotton
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Matteo Bovolenta
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Elena Schwartz
- Ariadne Diagnostics, LLC, 9430 Key West Avenue, Suite 115, Rockville, MD 20850, USA
| | - Maria Sofia Falzarano
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Elena Martoni
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Chiara Passarelli
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Annarita Armaroli
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Hana Osman
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Carmelo Rodolico
- Department of Neuroscience, University of Messina and Centro Clinico Nemo Sud, Messina 98125, Italy
| | - Sonia Messina
- Department of Neuroscience, University of Messina and Centro Clinico Nemo Sud, Messina 98125, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova 35128, Italy
| | - Adele D'Amico
- Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Enrico Bertini
- Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Marcella Neri
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Rita Selvatici
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Patrizia Boffi
- Department of Neurology, Regina Margherita Children's Hospital Turin, Torino 10126, Italy
| | - Maria Antonietta Maioli
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari 09124, Italy
| | - Hanns Lochmüller
- Jon Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Volker Straub
- Jon Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Katherine Bushby
- Jon Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Tiziana Castrignanò
- SCAI SuperComputing Applications and Innovation Department, Cineca, 00185 Rome, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70121, Italy
| | - Patrizia Sabatelli
- Institute of Molecular Genetics, CNR-National Research Council of Italy, Bologna 40129, Italy
| | - Luciano Merlini
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna 40136, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Padova 35128, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova 35128, Italy
| | - Paolo Bernardi
- Department of Biomedical Science, University of Padova, Padova 35128, Italy
| | - Reghan Foley
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Sebahattin Cirak
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Irina Zaharieva
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| | - Daniele Capitanio
- University of Milan, Department of Biomedical Science for Health, Milan 20090, Italy
| | - Cecilia Gelfi
- University of Milan, Department of Biomedical Science for Health, Milan 20090, Italy
| | | | - Anton Yuryev
- Ariadne Genomics, LLC, 9430 Key West Avenue, Suite 113, Rockville, MD 20850, USA
| | - Michael Lebowitz
- Ariadne Diagnostics, LLC, 9430 Key West Avenue, Suite 115, Rockville, MD 20850, USA
| | - Xiping Zhang
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Brian A Hodge
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A Esser
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London WC1E 6BT, UK
| |
Collapse
|
4
|
Bhoi S, Baliakas P, Cortese D, Mattsson M, Engvall M, Smedby KE, Juliusson G, Sutton LA, Mansouri L. UGT2B17 expression: a novel prognostic marker within IGHV-mutated chronic lymphocytic leukemia? Haematologica 2015; 101:e63-5. [PMID: 26589911 DOI: 10.3324/haematol.2015.136440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Sujata Bhoi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Diego Cortese
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Mattias Mattsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden Department of Medical Sciences, Uppsala University, Sweden
| | - Marie Engvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Karin E Smedby
- Department of Medical Sciences, Uppsala University, Sweden
| | - Gunnar Juliusson
- Department of Laboratory Medicine, Stem Cell Center, Hematology and Transplantation, Lund University, Sweden
| | - Lesley-Ann Sutton
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
5
|
Identification of a 20-gene expression-based risk score as a predictor of clinical outcome in chronic lymphocytic leukemia patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:423174. [PMID: 24883311 PMCID: PMC4026849 DOI: 10.1155/2014/423174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022]
Abstract
Despite the improvement in treatment options, chronic lymphocytic leukemia (CLL) remains an incurable disease and patients show a heterogeneous clinical course requiring therapy for many of them. In the current work, we have built a 20-gene expression (GE)-based risk score predictive for patients overall survival and improving risk classification using microarray gene expression data. GE-based risk score allowed identifying a high-risk group associated with a significant shorter overall survival (OS) and time to treatment (TTT) (P ≤ .01), comprising 19.6% and 13.6% of the patients in two independent cohorts. GE-based risk score, and NRIP1 and TCF7 gene expression remained independent prognostic factors using multivariate Cox analyses and combination of GE-based risk score together with NRIP1 and TCF7 gene expression enabled the identification of three clinically distinct groups of CLL patients. Therefore, this GE-based risk score represents a powerful tool for risk stratification and outcome prediction of CLL patients and could thus be used to guide clinical and therapeutic decisions prospectively.
Collapse
|
6
|
Mansouri L, Grabowski P, Degerman S, Svenson U, Gunnarsson R, Cahill N, Smedby KE, Geisler C, Juliusson G, Roos G, Rosenquist R. Short telomere length is associated with NOTCH1/SF3B1/TP53 aberrations and poor outcome in newly diagnosed chronic lymphocytic leukemia patients. Am J Hematol 2013; 88:647-51. [PMID: 23620080 DOI: 10.1002/ajh.23466] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/28/2013] [Accepted: 04/18/2013] [Indexed: 12/21/2022]
Abstract
Most previous studies on telomere length (TL) in chronic lymphocytic leukemia (CLL) are based on referral cohorts including a high proportion of aggressive cases. Here, the impact of TL was analyzed in a population-based cohort of newly diagnosed CLL (n = 265) and in relation to other prognostic markers. Short telomeres were particularly associated with high-risk genetic markers, such as NOTCH1, SF3B1, or TP53 aberrations, and predicted a short time to treatment (TTT) and overall survival (OS) (both P < 0.0001). TL was an independent prognostic factor and subdivided patients with otherwise good-prognostic features (e.g., mutated IGHV genes, favorable cytogenetics) into subgroups with different outcome. Furthermore, in follow-up samples (n = 119) taken 5-8 years after diagnosis, TL correlated well with TL at diagnosis and remained unaffected by treatment. Altogether, these novel data indicate that short TL already at diagnosis is associated with poor outcome in CLL and that TL can be measured at later stages of the disease.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Immunology; Genetics; and Pathology; Rudbeck Laboratory; Uppsala University; Uppsala; Sweden
| | - Pawel Grabowski
- Department of Medical Biosciences; Umeå University; Umeå; Sweden
| | - Sofie Degerman
- Department of Medical Biosciences; Umeå University; Umeå; Sweden
| | - Ulrika Svenson
- Department of Medical Biosciences; Umeå University; Umeå; Sweden
| | - Rebeqa Gunnarsson
- Department of Immunology; Genetics; and Pathology; Rudbeck Laboratory; Uppsala University; Uppsala; Sweden
| | - Nicola Cahill
- Department of Immunology; Genetics; and Pathology; Rudbeck Laboratory; Uppsala University; Uppsala; Sweden
| | - Karin Ekström Smedby
- Department of Medicine; Clinical Epidemiology Unit; Karolinska Institutet; Stockholm; Sweden
| | | | - Gunnar Juliusson
- Department of Laboratory Medicine; Stem Cell Center; Hematology and Transplantation; Lund University; Lund; Sweden
| | - Göran Roos
- Department of Medical Biosciences; Umeå University; Umeå; Sweden
| | - Richard Rosenquist
- Department of Immunology; Genetics; and Pathology; Rudbeck Laboratory; Uppsala University; Uppsala; Sweden
| |
Collapse
|
7
|
Landau DA, Wu CJ. Chronic lymphocytic leukemia: molecular heterogeneity revealed by high-throughput genomics. Genome Med 2013; 5:47. [PMID: 23731665 PMCID: PMC3706960 DOI: 10.1186/gm451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) has been consistently at the forefront of genetic research owing to its prevalence and the accessibility of sample material. Recently, genome-wide technologies have been intensively applied to CLL genetics, with remarkable progress. Single nucleotide polymorphism arrays have identified recurring chromosomal aberrations, thereby focusing functional studies on discrete genomic lesions and leading to the first implication of somatic microRNA disruption in cancer. Next-generation sequencing (NGS) has further transformed our understanding of CLL by identifying novel recurrently mutated putative drivers, including the unexpected discovery of somatic mutations affecting spliceosome function. NGS has further enabled in-depth examination of the transcriptional and epigenetic changes in CLL that accompany genetic lesions, and has shed light on how different driver events appear at different stages of disease progression and clonally evolve with relapsed disease. In addition to providing important insights into disease biology, these discoveries have significant translational potential. They enhance prognosis by highlighting specific lesions associated with poor clinical outcomes (for example, driver events such as mutations in the splicing factor subunit gene SF3B1) or with increased clonal heterogeneity (for example, the presence of subclonal driver mutations). Here, we review new genomic discoveries in CLL and discuss their possible implications in the era of precision medicine.
Collapse
Affiliation(s)
- Dan A Landau
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA ; Broad Institute, Cambridge, MA 02142, USA ; Department of Hematology, Yale Cancer Center, New Haven, CT 06510, USA ; Université Paris Diderot, Paris 75013, France
| | - Catherine J Wu
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA ; Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA ; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Rosenquist R, Cortese D, Bhoi S, Mansouri L, Gunnarsson R. Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand? Leuk Lymphoma 2013; 54:2351-64. [PMID: 23480493 DOI: 10.3109/10428194.2013.783913] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a clinically and biologically heterogeneous disease where the majority of patients have an indolent disease course, while others may experience a far more aggressive disease, treatment failure and poor overall survival. During the last two decades, there has been an intense search to find novel biomarkers that can predict prognosis as well as guide treatment decisions. Two of the most reliable molecular prognostic markers, both of which are offered in routine diagnostics, are the immunoglobulin heavy chain variable (IGHV) gene mutational status and fluorescence in situ hybridization (FISH) detection of prognostically relevant genomic aberrations (e.g. 11q-, 13q-, +12 and 17p-). In addition to these markers, a myriad of additional biomarkers have been postulated as potential prognosticators in CLL, on the protein (e.g. CD38, ZAP70, TCL1), the RNA (e.g. LPL, CLLU1, micro-RNAs) and the genomic (e.g. TP53, NOTCH1, SF3B1 and BIRC3 mutations) level. Efforts are now being made to test these novel markers in larger patient cohorts as well as in prospective trials, with the ultimate goal to combine the "best" markers in a "CLL prognostic index" applicable for the individual patient. Although it is clear that these studies have significantly improved our knowledge regarding both prognostication and the biology of the disease, there is still an immediate need for recognizing biomarkers that can predict therapy response, and efforts should now focus on addressing this pertinent issue. In the present article, we review the extensive literature in the field of prognostic markers in CLL, focus on the most clinically relevant markers and discuss future directions regarding biomarkers in CLL.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | | | | | | |
Collapse
|
9
|
Gonzalez D, Else M, Wren D, Usai M, Buhl AM, Parker A, Oscier D, Morgan G, Catovsky D. CLLU1 expression has prognostic value in chronic lymphocytic leukemia after first-line therapy in younger patients and in those with mutated IGHV genes. Haematologica 2013; 98:274-8. [PMID: 22899580 PMCID: PMC3561436 DOI: 10.3324/haematol.2012.070201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/10/2012] [Indexed: 11/09/2022] Open
Abstract
CLLU1, located at chromosome 12q22, encodes a transcript specific to chronic lymphocytic leukemia and has potential prognostic value. We assessed the value of CLLU1 expression in the LRF CLL4 randomized trial. Samples from 515 patients with chronic lymphocytic leukemia were collected immediately before the start of treatment. After RNA extraction and cDNA synthesis, CLLU1 expression was assessed by quantitative polymerase chain reaction. In total, 247 and 268 samples were identified as having low and high CLLU1 expression, respectively. The median follow-up was 88 months. High CLLU1 expression was significantly correlated with unmutated IGHV genes, ZAP-70 and CD38 positivity, and absence of 13q deletion (all r>0.2, P<0.0001). At 6 years, patients with high CLLU1 expression had significantly worse progression-free survival (9% versus 17%; P=0.03) and overall survival (42% versus 57%; P=0.0003) than patients with low CLLU1 expression. Among patients with mutated IGHV genes, overall survival at 6 years was 50% in those with high CLLU1 expression and 76% in those with low CLLU1 expression (P=0.005). However, CLLU1 expression was not an independent predictor of overall survival in a multivariate model including TP53 aberrations, beta-2 microglobulin level, age and IGHV mutation status. Nor did it predict response to treatment. CLLU1 expression analysis helps to refine the prognosis of patients with chronic lymphocytic leukemia who have mutated IGHV genes.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Female
- Gene Expression
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Middle Aged
- Mutation
- Neoplasm Proteins/genetics
- Prognosis
- RNA, Long Noncoding
- Treatment Outcome
Collapse
Affiliation(s)
- David Gonzalez
- Haemato-Oncology Research Unit, Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|