1
|
Abu-Zeinah G, Qin A, Gill H, Komatsu N, Mascarenhas J, Shih WJ, Zagrijtschuk O, Sato T, Shimoda K, Silver RT, Mesa R. A randomized, double-blind, placebo-controlled phase 3 study to assess efficacy and safety of ropeginterferon alfa-2b in patients with early/lower-risk primary myelofibrosis. Ann Hematol 2024; 103:3573-3583. [PMID: 39145781 PMCID: PMC11358163 DOI: 10.1007/s00277-024-05912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
Primary myelofibrosis (PMF) is the most aggressive of the myeloproliferative neoplasms and patients require greater attention and likely require earlier therapeutic intervention. Currently approved treatment options are limited in their selective suppression of clonal proliferation resulting from driver- and coexisting gene mutations. Janus kinase inhibitors are approved for symptomatic patients with higher-risk PMF. Additionally, most ongoing clinical studies focus on patients with higher-risk disease and/or high rates of transfusion dependency. Optimal treatment of early/lower-risk PMF remains to be identified and needs randomized clinical trial evaluations. Pegylated interferon alfa is recommended for symptomatic lower-risk PMF patients based on phase 2 non-randomized studies and expert opinion. Ropeginterferon alfa-2b (ropeg) is a new-generation pegylated interferon-based therapy with favorable pharmacokinetics and safety profiles, requiring less frequent injections than prior formulations. This randomized, double-blind, placebo-controlled phase 3 trial will assess its efficacy and safety in patients with "early/lower-risk PMF", defined as pre-fibrotic PMF or PMF at low or intermediate-1 risk according to Dynamic International Prognostic Scoring System-plus. Co-primary endpoints include clinically relevant complete hematologic response and symptom endpoint. Secondary endpoints include progression- or event-free survival, molecular response in driver or relevant coexisting gene mutations, bone marrow response, and safety. Disease progression and events are defined based on the International Working Group criteria and well-published reports. 150 eligible patients will be randomized in a 2:1 ratio to receive either ropeg or placebo. Blinded sample size re-estimation is designed. Ropeg will be administered subcutaneously with a tolerable, higher starting-dose regimen. The study will provide important data for the treatment of early/lower-risk PMF for which an anti-clonal, disease-modifying agent is highly needed.
Collapse
Affiliation(s)
- Ghaith Abu-Zeinah
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Albert Qin
- Medical Research & Clinical Operations, PharmaEssentia Corporation, Taipei, Taiwan
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Norio Komatsu
- PharmaEssentia Japan K.K, Akasaka Center Building 12 F, Minato-Ku, Tokyo, 107-0051, Japan
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of of Advanced Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - John Mascarenhas
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | | | | | - Toshiaki Sato
- PharmaEssentia Japan K.K, Akasaka Center Building 12 F, Minato-Ku, Tokyo, 107-0051, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Richard T Silver
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ruben Mesa
- Atrium Health, Levine Cancer Institute, Wake Forest University School of Medicine, Cancer Programs, Charlotte, NC, USA.
| |
Collapse
|
2
|
Goulart H, Masarova L, Mesa R, Harrison C, Kiladjian JJ, Pemmaraju N. Myeloproliferative neoplasms in the adolescent and young adult population: A comprehensive review of the literature. Br J Haematol 2024; 205:48-60. [PMID: 38853641 PMCID: PMC11245372 DOI: 10.1111/bjh.19557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Myeloproliferative neoplasms (MPN) are characterized by a clonal proliferation of myeloid lineage cells within the bone marrow. The classical BCR-ABL negative MPNs are comprised of polycythaemia vera, essential thrombocythaemia and primary myelofibrosis. Historically, the majority of MPNs are diagnosed in adults older than 60 years of age; however, in recent years, there has been recognition of MPNs in the adolescent and young adult (AYA) population. AYAs with MPN, typically defined as between the ages of 15 and 39 years old, may comprise up to 20% of patients diagnosed with MPN. They demonstrate unique patterns of driver mutations and thrombotic events and remain at risk for progression to more aggressive disease states. Given the likely long length of time they will live with their disease, there is a significant unmet need in identifying well-tolerated and effective treatment options for these patients, particularly with the advent of disease modification. In this review, we provide a comprehensive overview of the clinical features, disease course and management of AYA patients with MPN and, in doing so, highlight key characteristics that distinguish them from their older counterparts.
Collapse
Affiliation(s)
- Hannah Goulart
- Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Lucia Masarova
- Department of Leukemia, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Ruben Mesa
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Claire Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Naveen Pemmaraju
- Department of Leukemia, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Jin J, Qin A, Zhang L, Shen W, Wang W, Zhang J, Li Y, Wu D, Xiao Z. A phase II trial to assess the efficacy and safety of ropeginterferon α-2b in Chinese patients with polycythemia vera. Future Oncol 2023. [PMID: 37129584 DOI: 10.2217/fon-2022-1141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Ropeginterferon α-2b is a mono-PEGylated proline-interferon for the treatment of polycythemia vera (PV). This drug is used biweekly with a starting dose of 100 μg (50 μg if patients receiving hydroxyurea) and 50 μg increments up to a maximum dose of 500 μg. Increasing evidence indicates that patients can tolerate higher starting doses of ropeginterferon α-2b. This phase II trial utilizes 250 μg as the starting dose, 350 μg at week 2 and 500 μg at week 4 as the target dose. Doses can be adjusted according to tolerability. This study assesses the safety, efficacy and molecular response of ropeginterferon α-2b in Chinese patients with PV utilizing the 250-350-500 μg dosing schema. This study will be used to support the application of a biologics license for PV treatment in China.
Collapse
Affiliation(s)
- Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Albert Qin
- PharmaEssentia Corporation, Taipei, Taiwan
| | - Lei Zhang
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Weihong Shen
- PharmaEssentia Biotech (Beijing) Ltd, Beijing, China
| | - Wei Wang
- PharmaEssentia Biotech (Beijing) Ltd, Beijing, China
| | | | - Yaning Li
- PharmaEssentia Biotech (Beijing) Ltd, Beijing, China
| | - Daoxiang Wu
- PharmaEssentia Biotech (Beijing) Ltd, Beijing, China
| | - Zhijian Xiao
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
4
|
Dam MJB, Pedersen RK, Knudsen TA, Andersen M, Ellervik C, Larsen MK, Kjaer L, Skov V, Hasselbalch HC, Ottesen JT. A novel integrated biomarker index for the assessment of hematological responses in MPNs during treatment with hydroxyurea and interferon-alpha2. Cancer Med 2023; 12:4218-4226. [PMID: 36254099 PMCID: PMC9972145 DOI: 10.1002/cam4.5285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Conventional cytoreductive therapy for patients with chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) includes hydroxyurea (HU), interferon-alpha2 (IFN), and anagrelide. HU is worldwide the most used cytoreductive agent, which lowers elevated blood cell counts within days in the large majority of patients. However, some patients may experience rebound cytosis when HU is reduced due to cytopenia, thereby potentially giving rise to fluctuating cell counts during therapy. Such rapid oscillations may be harmful and potentially elicit thrombosis. Treatment with IFN gradually lowers elevated cell counts within weeks and when the dosage is reduced, the cell counts do not rapidly increase but are sustained within the normal range in the large majority of patients. Conventional hematological response criteria are among others based upon single absolute cell count values and do not take into account the relative decreases toward normal for each cell count. MATERIALS, METHODS & RESULTS Using serial data from the Danish DALIAH trial, we herein describe a novel integrated biomarker index for the assessment of hematological and molecular (JAK2V617F) responses in patients with MPNs during treatment with IFN or HU. DISCUSSION This novel tool convincingly displays the superiority of IFN versus HU in normalizing elevated cell counts. Our results need to be validated in larger studies but already now call for studies of the safety and efficacy of combination therapy during the initial treatment of patients with MPNs.
Collapse
Affiliation(s)
- Marc J B Dam
- Centre for Mathematical Modeling - Human Health and Disease (COMMAND), IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Rasmus K Pedersen
- Centre for Mathematical Modeling - Human Health and Disease (COMMAND), IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Trine A Knudsen
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Morten Andersen
- Centre for Mathematical Modeling - Human Health and Disease (COMMAND), IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Christina Ellervik
- Department of Research, Production, Innovation, Region Zealand, Sorø, Denmark.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lasse Kjaer
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Hans C Hasselbalch
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Johnny T Ottesen
- Centre for Mathematical Modeling - Human Health and Disease (COMMAND), IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
5
|
Hasselbalch H, Skov V, Kjær L, Larsen MK, Knudsen TA, Lucijanić M, Kusec R. Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives. Cancers (Basel) 2022; 14:5495. [PMID: 36428587 PMCID: PMC9688061 DOI: 10.3390/cancers14225495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
About 30 years ago, the first clinical trials of the safety and efficacy of recombinant interferon-α2 (rIFN-α2) were performed. Since then, several single-arm studies have shown rIFN-α2 to be a highly potent anticancer agent against several cancer types. Unfortunately, however, a high toxicity profile in early studies with rIFN-α2 -among other reasons likely due to the high dosages being used-disqualified rIFN-α2, which was accordingly replaced with competitive drugs that might at first glance look more attractive to clinicians. Later, pegylated IFN-α2a (Pegasys) and pegylated IFN-α2b (PegIntron) were introduced, which have since been reported to be better tolerated due to reduced toxicity. Today, treatment with rIFN-α2 is virtually outdated in non-hematological cancers, where other immunotherapies-e.g., immune-checkpoint inhibitors-are routinely used in several cancer types and are being intensively investigated in others, either as monotherapy or in combination with immunomodulatory agents, although only rarely in combination with rIFN-α2. Within the hematological malignancies, rIFN-α2 has been used off-label for decades in patients with Philadelphia-negative chronic myeloproliferative neoplasms (MPNs)-i.e., essential thrombocythemia, polycythemia vera, and myelofibrosis-and in recent years rIFN-α2 has been revived with the marketing of ropeginterferon-α2b (Besremi) for the treatment of polycythemia vera patients. Additionally, rIFN-α2 has been revived for the treatment of chronic myelogenous leukemia in combination with tyrosine kinase inhibitors. Another rIFN formulation-recombinant interferon-β (rIFN-β)-has been used for decades in the treatment of multiple sclerosis but has never been studied as a potential agent to be used in patients with MPNs, although several studies and reviews have repeatedly described rIFN-β as an effective anticancer agent as well. In this paper, we describe the rationales and perspectives for launching studies on the safety and efficacy of rIFN-β in patients with MPNs.
Collapse
Affiliation(s)
- Hans Hasselbalch
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | | | - Trine A. Knudsen
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Marko Lucijanić
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Rajko Kusec
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms favorably impacts deregulation of oxidative stress genes and antioxidative defense mechanisms. PLoS One 2022; 17:e0270669. [PMID: 35771847 PMCID: PMC9246201 DOI: 10.1371/journal.pone.0270669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is considered a major driving force for clonal expansion and evolution in the Philadelphia-negative myeloproliferative neoplasms, which include essential thrombocythemia, polycythemia vera and primary myelofibrosis (MPNs). One of the key mutation drivers is the JAK2V617F mutation, which has been shown to induce the generation of reactive oxygen species (ROS). Using whole blood gene expression profiling, deregulation of several oxidative stress and anti-oxidative defense genes has been identified in MPNs, including significant downregulation of TP53, the NFE2L2 or NRF2 genes. These genes have a major role for maintaining genomic stability, regulation of the oxidative stress response and in modulating migration or retention of hematopoietic stem cells. Therefore, their deregulation might give rise to increasing genomic instability, increased chronic inflammation and disease progression with egress of hematopoietic stem cells from the bone marrow to seed in the spleen, liver and elsewhere. Interferon-alpha2 (rIFNα) is increasingly being recognized as the drug of choice for the treatment of patients with MPNs. Herein, we report the first gene expression profiling study on the impact of rIFNα upon oxidative stress and antioxidative defense genes in patients with MPNs (n = 33), showing that rIFNα downregulates several upregulated oxidative stress genes and upregulates downregulated antioxidative defense genes. Treatment with rIFNα induced upregulation of 19 genes in ET and 29 genes in PV including CXCR4 and TP53. In conclusion, this rIFNα- mediated dampening of genotoxic damage to hematopoietic cells may ultimately diminish the risk of additional mutations and accordingly clonal evolution and disease progression towards myelofibrotic and leukemic transformation.
Collapse
|
7
|
Huang YW, Qin A, Fang J, Wang TF, Tsai CW, Lin KC, Teng CL, Larouche R. Novel long-acting ropeginterferon alfa-2b: Pharmacokinetics, pharmacodynamics and safety in a phase I clinical trial. Br J Clin Pharmacol 2021; 88:2396-2407. [PMID: 34907578 DOI: 10.1111/bcp.15176] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS Ropeginterferon alfa-2b is a novel, long-acting pegylated interferon alfa-2b. We aimed to evaluate its safety, pharmacokinetics (PK) and pharmacodynamics (PD). METHODS Thirty-six subjects received single subcutaneous injection of ropeginterferon alfa-2b at doses ranging from 24 to 270 μg, and 12 subjects received pegylated IFN alfa-2a subcutaneously at 180 μg. Primary endpoints were safety/PK profiles of ropeginterferon alfa-2b, while secondary endpoints were to compare PK/PD parameters with pegylated IFN alfa-2a. RESULTS Adverse events in ropeginterferon alfa-2b and pegylated IFN alfa-2a groups were similar, and most of them were mild or moderate. Mean Cmax increased from 1.78 to 24.84 ng/mL along with the dose escalations in ropeginterferon alfa-2b groups and was 12.95 ng/mL for pegylated IFN alfa-2a. At 180 μg, ropeginterferon alfa-2b showed statistically significant Cmax geometric mean ratio (1.76; P = .0275). Mean Tmax ranged from 74.52 to 115.69 h for ropeginterferon alfa-2b groups, and was 84.25 h for pegylated IFN alfa-2a. Mean AUC0-t increased from 372.3 to 6258 ng•h/mL with the dose escalations in the ropeginterferon alfa-2b groups, while for pegylated IFN alfa-2a it was found to be 2706 ng•h/mL in pegylated IFN alfa-2a. For neopterin and 2',5'-oligoadenylate synthase, mean Emax , Tmax and AUC0-t of ropeginterferon alfa-2b were similar to those of pegylated IFNα-2a at 180 μg. CONCLUSION Ropeginterferon alfa-2b up to 270 μg was safe and well tolerated. The PK/PD parameters of ropeginterferon alfa-2b showed increase in dose-response. Ropeginterferon alfa-2b had higher drug exposures and showed similar safety profile when compared to pegylated IFN alfa-2a at the same dose level.
Collapse
Affiliation(s)
- Yi-Wen Huang
- PharmaEssentia Corporation, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Albert Qin
- PharmaEssentia Corporation, Taipei, Taiwan
| | - Jane Fang
- Athenex Inc., Buffalo, New York, USA
| | | | | | | | | | | |
Collapse
|
8
|
Pedersen RK, Andersen M, Knudsen TA, Skov V, Kjær L, Hasselbalch HC, Ottesen JT. Dose‐dependent mathematical modeling of interferon‐α‐treatment for personalized treatment of myeloproliferative neoplasms. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rasmus K. Pedersen
- Centre for Mathematical Modeling ‐ Human Health and Disease (COMMAND) IMFUFA Department of Science and Environment Roskilde University Roskilde Denmark
| | - Morten Andersen
- Centre for Mathematical Modeling ‐ Human Health and Disease (COMMAND) IMFUFA Department of Science and Environment Roskilde University Roskilde Denmark
| | - Trine A. Knudsen
- Department of Hematology Zealand University Hospital Roskilde Denmark
| | - Vibe Skov
- Department of Hematology Zealand University Hospital Roskilde Denmark
| | - Lasse Kjær
- Department of Hematology Zealand University Hospital Roskilde Denmark
| | | | - Johnny T. Ottesen
- Centre for Mathematical Modeling ‐ Human Health and Disease (COMMAND) IMFUFA Department of Science and Environment Roskilde University Roskilde Denmark
| |
Collapse
|
9
|
Hasselbalch HC, Silver RT. New Perspectives of Interferon-alpha2 and Inflammation in Treating Philadelphia-negative Chronic Myeloproliferative Neoplasms. Hemasphere 2021; 5:e645. [PMID: 34805764 PMCID: PMC8601345 DOI: 10.1097/hs9.0000000000000645] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hans C Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Richard T Silver
- Myeloproliferative Neoplasms Center, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
10
|
Campanelli R, Massa M, Rosti V, Barosi G. New Markers of Disease Progression in Myelofibrosis. Cancers (Basel) 2021; 13:5324. [PMID: 34771488 PMCID: PMC8582535 DOI: 10.3390/cancers13215324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm due to the clonal proliferation of a hematopoietic stem cell. The vast majority of patients harbor a somatic gain of function mutation either of JAK2 or MPL or CALR genes in their hematopoietic cells, resulting in the activation of the JAK/STAT pathway. Patients display variable clinical and laboratoristic features, including anemia, thrombocytopenia, splenomegaly, thrombotic complications, systemic symptoms, and curtailed survival due to infections, thrombo-hemorrhagic events, or progression to leukemic transformation. New drugs have been developed in the last decade for the treatment of PMF-associated symptoms; however, the only curative option is currently represented by allogeneic hematopoietic cell transplantation, which can only be offered to a small percentage of patients. Disease prognosis is based at diagnosis on the classical International Prognostic Scoring System (IPSS) and Dynamic-IPSS (during disease course), which comprehend clinical parameters; recently, new prognostic scoring systems, including genetic and molecular parameters, have been proposed as meaningful tools for a better patient stratification. Moreover, new biological markers predicting clinical evolution and patient survival have been associated with the disease. This review summarizes basic concepts of PMF pathogenesis, clinics, and therapy, focusing on classical prognostic scoring systems and new biological markers of the disease.
Collapse
Affiliation(s)
- Rita Campanelli
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| | - Margherita Massa
- General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| |
Collapse
|
11
|
Shao X, Liu Z, Qin C, Xiao F. Acute Myocardial Infarction Followed by Cerebral Hemorrhagic Infarction in Polycythemia Vera: Case Report and Literature Review. Front Cardiovasc Med 2021; 8:660999. [PMID: 34527707 PMCID: PMC8435622 DOI: 10.3389/fcvm.2021.660999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022] Open
Abstract
A 60-year-old man presented to our emergency room with severe chest pain. Based on the electrocardiogram and elevated serum troponin T levels, acute coronary syndrome was suspected. Coronary angiography revealed total occlusion of the middle of the left anterior descending coronary artery. However, blood cell count abnormalities were not of concern. Twelve days later, the patient developed hemorrhagic infarction in the right parieto-occipital lobe. Acute coronary syndrome and cerebral hemorrhagic infarction were primarily caused by thrombus formation due to polycythemia vera (PV), based on the presence of increased blood consistency on admission. PV was diagnosed after bone marrow biopsy and genetic testing. The patient was treated with descending cell and antiplatelet therapy. Our case highlights the importance of the urgent identification of PV. When acute myocardial infarction occurs in patients with no significant risk factors for cardiovascular disease, blood routine abnormalities should be paid close attention to. If PV was diagnosed as early as possible, thrombotic and hemorrhagic complications could be prevented in the early stages.
Collapse
Affiliation(s)
- XiangSen Shao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - ZhuoTing Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - ChunChang Qin
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Improving the investigative approach to polycythaemia vera: a critical assessment of current evidence and vision for the future. LANCET HAEMATOLOGY 2021; 8:e605-e612. [PMID: 34329580 DOI: 10.1016/s2352-3026(21)00171-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
Polycythaemia vera is a challenging disease to study given its low prevalence and prolonged time-to-event for important clinical endpoints such as thrombosis, progression, and mortality. Although researchers in this space often rise to meet these challenges, there is considerable room for improvement in the analysis of retrospective data, the development of risk-stratification tools, and the design of randomised controlled trials. In this Viewpoint, we review the evidence behind the contemporary approach to risk stratification and treatment of polycythaemia vera. Frameworks for using data more efficiently, constructing more nuanced prognostic models, and overcoming challenges in clinical trial design are discussed.
Collapse
|
13
|
Phase II study of single-agent nivolumab in patients with myelofibrosis. Ann Hematol 2021; 100:2957-2960. [PMID: 34350483 DOI: 10.1007/s00277-021-04618-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Dysregulated JAK-STAT signaling in myelofibrosis induces pro-inflammatory cytokines, which suppresses T cell proliferation and differentiation, likely responsible for disease progression. The PD-1 pathway, found to be overexpressed in myeloid malignancies, has gained great interest as a therapeutic target, where a significant unmet need exists for novel therapeutic strategies. Preclinical models showed JAK2 mutant cells had higher expression of PD-L1; furthermore, JAK2 mutant xenografts treated with PD-1 inhibition had prolonged survival and reduction in JAK2 allele burden. We evaluated the efficacy and safety of single-agent nivolumab in 8 adult patients with myelofibrosis. Nivolumab was given at 3 mg/kg every 2 weeks for 8 doses, then every 12 weeks for up to 4 years, or until disease progression or toxicity. The median number of nivolumab doses received was 6 [range, 5-16 doses]. Five patients had stable disease including spleen size, total symptom score, and blood requirements for a median of 3.3 months [range, 2.3-15.2 months]. After a median follow-up of 57 months, two patients were still alive. The median overall survival was 6.1 months [range, 3.2-57.4 months]. Due to failure to meet the predetermined efficacy endpoint, the study was terminated early. Trial registration: Clinical trials.gov NCT: 02,421,354.
Collapse
|
14
|
Shallis RM, Podoltsev NA. Emerging agents and regimens for polycythemia vera and essential thrombocythemia. Biomark Res 2021; 9:40. [PMID: 34049597 PMCID: PMC8161993 DOI: 10.1186/s40364-021-00298-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Polycythemia vera (PV) and essential thrombocythemia (ET) are both driven by JAK-STAT pathway activation and consequently much of the recent research efforts to improve the management and outcomes of patients with these neoplasms have centered around inhibition of this pathway. In addition to newer JAK inhibitors and improved interferons, promising novel agents exploiting a growing understanding of PV and ET pathogenesis and disease evolution mechanisms are being developed. These agents may modify the disease course in addition to cytoreduction. Histone deacetylase, MDM2 and telomerase inhibitors in patients with PV/ET have demonstrated clinically efficacy and serve as chief examples. Hepcidin mimetics, limiting iron availability to red blood cell precursors, offer an exciting alternative to therapeutic phlebotomy and have the potential to revolutionize management for patients with PV. Many of these newer agents are found to improve hematologic parameters and symptom burden, but their role in thrombotic risk reduction and disease progression control is currently unknown. The results of larger, randomized studies to confirm the early efficacy signals observed in phase 1/2 trials are eagerly awaited.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA
| | - Nikolai A Podoltsev
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA.
| |
Collapse
|
15
|
Morsia E, Gangat N. Myelofibrosis: challenges for preclinical models and emerging therapeutic targets. Expert Opin Ther Targets 2021; 25:211-222. [PMID: 33844952 DOI: 10.1080/14728222.2021.1915992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Myelofibrosis (MF) is characterized by anemia, splenomegaly, constitutional symptoms and bone marrow fibrosis. MF has no curative treatment to date, except for a small subset of patients that are eligible for allogeneic hematopoietic stem cell transplant. The discovery in recent years of the MF mutational landscape and the role of bone marrow microenvironment in disease pathogenesis has led to further insights into disease biology and consequentially rationally derived therapies.Areas covered: We searched PubMed/Medline/American Society of Hematology (ASH) abstracts until November 2020 using the following terms: myelofibrosis, mouse models, pre-clinical studies and clinical trials. The development of targeted therapies is aimed to modify the history of the disease. Although JAK inhibitors showed encouraging results in terms of spleen and symptoms response, long term remissions and disease modifying ability is lacking. Beyond JAK inhibitors, a range of agents targeting proliferative, metabolic, apoptotic pathways, the microenvironment, epigenetic modification and immunomodulation are in various stages of investigations. We review pre-clinical data, preliminary clinical results of these agents, and finally offer insights on the management of MF patients.Expert opinion: MF patients refractory or with suboptimal response to JAK inhibitors, may be managed by addition of agents with differing mechanisms, such as bromodomain (BET), lysine demethylase 1 (LSD1), MDM2, or Bcl-Xl inhibitors which could prevent emergence of resistance. Immunotherapies as long-acting interferons, and calreticulin directed antibodies or peptide vaccination are eagerly awaited. Historically, therapeutic challenges in MF have arisen due to the fact that rationally derived therapies that are based on murine models have limited impact on fibrosis and underlying disease biology in human studies, the latter illustrates the complex multi-faceted disease pathogenesis of MF. Together, we not only suggest individualized therapy in MF that is guided by genomic signature but also its early implementation potentially in prefibrotic MF.
Collapse
Affiliation(s)
- Erika Morsia
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
16
|
Interferon-alpha for treating polycythemia vera yields improved myelofibrosis-free and overall survival. Leukemia 2021; 35:2592-2601. [PMID: 33654206 DOI: 10.1038/s41375-021-01183-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/12/2023]
Abstract
Interferon-alpha (rIFNα) is the only disease-modifying treatment for polycythemia vera (PV), but whether or not it prolongs survival is unknown. This large single center retrospective study of 470 PV patients compares the myelofibrosis-free survival (MFS) and overall survival (OS) with rIFNα to two other primary treatments, hydroxyurea (HU) and phlebotomy-only (PHL-O). The median age at diagnosis was 54 years (range 20-94) and the median follow-up was 10 years (range 0-45). Two hundred and twenty-nine patients were women (49%) and 208 were high-risk (44%). The primary treatment was rIFNα in 93 (20%), HU in 189 (40%), PHL-O in 133 (28%) and other cytoreductive drugs in 55 (12%). The treatment groups differed by ELN risk score (p < 0.001). In low-risk patients, 20-year MFS for rIFNα, HU, and PHL-O was 84%, 65% and 55% respectively (p < 0.001) and 20-year OS was 100%, 85% and 80% respectively (p = 0.44). In high-risk patients, 20-year MFS for rIFNα, HU, and PHL-O was 89%, 41% and 36% respectively (p = 0.19) and 20-year OS was 66%, 40%, 14% respectively (p = 0.016). In multivariable analysis, longer time on rIFNα was associated with a lower risk of myelofibrosis (HR: 0.91, p < 0.001) and lower mortality (HR: 0.94, p = 0.012). In conclusion, this study supports treatment of PV with rIFNα to prevent myelofibrosis and potentially prolong survival.
Collapse
|
17
|
Buxhofer-Ausch V, Heibl S, Sliwa T, Beham-Schmid C, Wolf D, Geissler K, Krauth MT, Krippl P, Petzer A, Wölfler A, Melchardt T, Gisslinger H. Austrian recommendations for the management of essential thrombocythemia. Wien Klin Wochenschr 2020; 133:52-61. [PMID: 33215234 DOI: 10.1007/s00508-020-01761-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
According to the World Health Organization (WHO) classification, essential (primary) thrombocythemia (ET) is one of several Bcr-Abl negative chronic myeloproliferative neoplasms (MPN). The classical term MPN covers the subcategories of MPN: ET, polycythemia vera (PV), primary myelofibrosis (PMF), and prefibrotic PMF (pPMF). ET is marked by clonal proliferation of hematopoietic stem cells, leading to a chronic overproduction of platelets. At the molecular level a JAK2 (Janus Kinase 2), calreticulin, or MPL mutation is found in the majority of patients. Typical ongoing complications of the disease include thrombosis and hemorrhage. Primary and secondary prevention of these complications can be achieved with platelet function inhibitors and various cytoreductive drugs including anagrelide, hydroxyurea and interferon. After a long follow up, in a minority of ET patients the disease transforms into post-ET myelofibrosis or secondary leukemia. Overall, life expectancy with ET is only slightly decreased.
Collapse
Affiliation(s)
- Veronika Buxhofer-Ausch
- Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Fadingerstraße 1, 4020, Linz, Austria. .,Medizinische Fakultät, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040, Linz, Austria.
| | - Sonja Heibl
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Thamer Sliwa
- 3rd Medical Department, Hanusch Hospital, Vienna, Austria
| | | | - Dominik Wolf
- Division of Hematology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Klaus Geissler
- 5th Medical Department with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, Vienna, Austria
| | - Maria Theresa Krauth
- Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna, Vienna, Austria
| | - Peter Krippl
- Department of Internal Medicine with Hematology and Oncology, Steiermärkische Krankenanstaltengesellschaft m. b. H. Krankenhausverbund Feldbach-Fürstenfeld, Fürstenfeld, Austria
| | - Andreas Petzer
- Medizinische Fakultät, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040, Linz, Austria.,Departments of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Thomas Melchardt
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Hospital Salzburg, Salzburg, Austria
| | - Heinz Gisslinger
- Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Buxhofer-Ausch V, Wolf D, Sormann S, Forjan E, Schimetta W, Gisslinger B, Heibl S, Krauth MT, Thiele J, Ruckser R, Gisslinger H. Impact of platelets on major thrombosis in patients with a normal white blood cell count in essential thrombocythemia. Eur J Haematol 2020; 106:58-63. [PMID: 32909297 PMCID: PMC7756407 DOI: 10.1111/ejh.13516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Objectives Cell counts have a significant impact on the complex mechanism of thrombosis in patients with essential thrombocythemia (ET). We recently demonstrated a considerable impact of white blood cell (WBC) counts on thrombotic risk in patients with optimized platelet counts by analysing a large anagrelide registry. In contrast, the current analysis of the registry aimed to estimate the influence of platelet counts on thrombotic risk in patients with optimized WBC counts. Methods Cox regression analysis and Kaplan‐Meier plot were applied on all patients in the registry with optimized WBC counts. Results By using the calculated cut‐off of 593 G/L for platelets, Cox regression analysis revealed a clear influence of elevated platelet counts on the occurrence of a major thrombotic event (P < .001). A Kaplan‐Meier plot revealed a markedly shorter time to a major thrombotic event for patients with platelet counts above the cut‐off (P < .001). Conclusions The data show clear impact of platelet lowering on the thrombotic risk in ET patients with normal WBC counts. Therefore, selective platelet lowering with anagrelide appears sufficient for thrombotic risk reduction in WHO‐diagnosed ET patients lacking leukocytosis.
Collapse
Affiliation(s)
- Veronika Buxhofer-Ausch
- Department of Internal Medicine I for Haematology with Stem Cell Transplantation, Haemostasis and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria.,Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Dominik Wolf
- Division of Haematology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Siegfried Sormann
- Department of Haematology, Medical University of Graz, Graz, Austria
| | - Ernst Forjan
- Department of Internal Medicine 3, Hanusch Hospital, Vienna, Austria
| | - Wolfgang Schimetta
- Department of Applied Systems Research and Statistics, Johannes Kepler University, Linz, Austria
| | - Bettina Gisslinger
- Department of Haematology and Blood Coagulation, Division of Internal Medicine I,, Medical University of Vienna, Vienna, Austria
| | - Sonja Heibl
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Maria Theresa Krauth
- Department of Haematology and Blood Coagulation, Division of Internal Medicine I,, Medical University of Vienna, Vienna, Austria
| | - Jürgen Thiele
- Department of Pathology, University of Cologne, Cologne, Germany
| | | | - Heinz Gisslinger
- Department of Haematology and Blood Coagulation, Division of Internal Medicine I,, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Silver RT. Combination therapy with interferon and ruxolitinib for polycythemia vera and myelofibrosis: are two drugs better than one? Haematologica 2020; 105:2190-2191. [PMID: 33054041 PMCID: PMC7556626 DOI: 10.3324/haematol.2020.256602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Richard T Silver
- Richard T. Silver Myeloproliferative Neoplasms Center, Weill Cornell Medicine Division of Hematology-Oncology, New York, NY, USA.
| |
Collapse
|
20
|
Skov V. Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers (Basel) 2020; 12:E2194. [PMID: 32781570 PMCID: PMC7464861 DOI: 10.3390/cancers12082194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
The myeloproliferative neoplasms (MPNs) are acquired hematological stem cell neoplasms characterized by driver mutations in JAK2, CALR, or MPL. Additive mutations may appear in predominantly epigenetic regulator, RNA splicing and signaling pathway genes. These molecular mutations are a hallmark of diagnostic, prognostic, and therapeutic assessment in patients with MPNs. Over the past decade, next generation sequencing (NGS) has identified multiple somatic mutations in MPNs and has contributed substantially to our understanding of the disease pathogenesis highlighting the role of clonal evolution in disease progression. In addition, disease prognostication has expanded from encompassing only clinical decision making to include genomics in prognostic scoring systems. Taking into account the decreasing costs and increasing speed and availability of high throughput technologies, the integration of NGS into a diagnostic, prognostic and therapeutic pipeline is within reach. In this review, these aspects will be discussed highlighting their role regarding disease outcome and treatment modalities in patients with MPNs.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, 4000 Roskilde, Denmark
| |
Collapse
|
21
|
Holmström MO, Hasselbalch HC, Andersen MH. Cancer Immune Therapy for Philadelphia Chromosome-Negative Chronic Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:E1763. [PMID: 32630667 PMCID: PMC7407874 DOI: 10.3390/cancers12071763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPN) are neoplastic diseases of the hematopoietic stem cells in the bone marrow. MPN are characterized by chronic inflammation and immune dysregulation. Of interest, the potent immunostimulatory cytokine interferon-α has been used to treat MPN for decades. A deeper understanding of the anti-cancer immune response and of the different immune regulatory mechanisms in patients with MPN has paved the way for an increased perception of the potential of cancer immunotherapy in MPN. Therapeutic vaccination targeting the driver mutations in MPN is one recently described potential new treatment modality. Furthermore, T cells can directly react against regulatory immune cells because they recognize proteins like arginase and programmed death ligand 1 (PD-L1). Therapeutic vaccination with arginase or PD-L1 therefore offers a novel way to directly affect immune inhibitory pathways, potentially altering tolerance to tumor antigens like mutant CALR and mutant JAK2. Other therapeutic options that could be used in concert with therapeutic cancer vaccines are immune checkpoint-blocking antibodies and interferon-α. For more advanced MPN, adoptive cellular therapy is a potential option that needs more preclinical investigation. In this review, we summarize current knowledge about the immune system in MPN and discuss the many opportunities for anti-cancer immunotherapy in patients with MPN.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, DK-2730 Herlev, Denmark;
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, DK-2730 Herlev, Denmark;
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
22
|
Atypical Myocardial Infarction with Apical Thrombus and Systemic Embolism: A Rare Presentation of Likely JAK2 V617F-Positive Myeloproliferative Neoplasm. Case Rep Oncol Med 2020; 2020:9654048. [PMID: 32685224 PMCID: PMC7338968 DOI: 10.1155/2020/9654048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/22/2020] [Indexed: 11/18/2022] Open
Abstract
A few types of myeloproliferative neoplasms may be significant for Janus-associated kinase 2 mutation, JAK2 V617F, including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. The prevalence of JAK2 mutation is low in the general population but higher in patients with myeloproliferative neoplasms. Some patients with JAK2 V617F-positive essential thrombocythemia are asymptomatic, but others may develop hemorrhagic or thromboembolic complications. Thromboembolism may occur in vessels of high flow organs like the heart and, thereby, present as myocardial infarction. Nonetheless, these patients are usually symptomatic with complaints of chest pain, for example. Atypical (asymptomatic) myocardial infarction with mild thrombocytosis may be the first clue for possible essential thrombocythemia with JAK2 V617F. In this report, we discuss a case of atypical (asymptomatic) myocardial infarction with secondary thromboembolism in a patient positive for JAK2 V617F with a likely myeloproliferative neoplasm.
Collapse
|
23
|
Immunoproteasome Genes Are Modulated in CD34 + JAK2 V617F Mutated Cells from Primary Myelofibrosis Patients. Int J Mol Sci 2020; 21:ijms21082926. [PMID: 32331228 PMCID: PMC7216198 DOI: 10.3390/ijms21082926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by stem-cell-derived clonal over-proliferation of mature myeloid lineages, bone marrow fibrosis, osteosclerosis, defective erythropoiesis, and pro-inflammatory cytokine over-expression. The aim of the present study was to highlight possible differences in the transcriptome among CD34+ cells from peripheral blood (PB) of PMF patients. Therefore, we merged two microarray datasets of healthy control subjects and PMF (34 JAK2V617F MUTATED and 28 JAK2 wild-type). The GO analysis of upregulated genes revealed enrichment for JAK2/STAT1 pathway gene set in PB CD34+ cells of PMF patients with and without the JAK2V617F mutation comparing to the healthy control subjects, and in particular a significant upregulation of immunoproteasome (IP)-belonging genes as PSMB8, PSMB9, and PSMB10. A more detailed investigation of the IFN-gamma (IFNG) pathway also revealed that IFNG, IRF1, and IFNGR2 were significantly upregulated in PB CD34+ cells of PMF patients carrying the mutation for JAK2V617F compared to JAK2 wild-type PMF patients. Finally, we showed an upregulation of HLA-class I genes in PB CD34+ cells from PMF JAK2V617F mutated patients compared to JAK2 wild-type and healthy controls. In conclusion, our results demonstrate that IPs and IFNG pathways could be involved in PMF disease and in particular in patients carrying the JAK2V617F mutation.
Collapse
|
24
|
Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, Rossiev V, Dulicek P, Illes A, Pylypenko H, Sivcheva L, Mayer J, Yablokova V, Krejcy K, Grohmann-Izay B, Hasselbalch HC, Kralovics R, Kiladjian JJ. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. LANCET HAEMATOLOGY 2020; 7:e196-e208. [PMID: 32014125 DOI: 10.1016/s2352-3026(19)30236-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The PROUD-PV and CONTINUATION-PV trials aimed to compare the novel monopegylated interferon ropeginterferon alfa-2b with hydroxyurea, the standard therapy for patients with polycythaemia vera, over 3 years of treatment. METHODS PROUD-PV and its extension study, CONTINUATION-PV, were phase 3, randomised, controlled, open-label, trials done in 48 clinics in Europe. Patients were eligible if 18 years or older with early stage polycythaemia vera (no history of cytoreductive treatment or less than 3 years of previous hydroxyurea treatment) diagnosed by WHO's 2008 criteria. Patients were randomly assigned 1:1 to ropeginterferon alfa-2b (subcutaneously every 2 weeks, starting at 100 μg) or hydroxyurea (orally starting at 500 mg/day). After 1 year, patients could opt to enter the extension part of the trial, CONTINUATION-PV. The primary endpoint in PROUD-PV was non-inferiority of ropeginterferon alfa-2b versus hydroxyurea regarding complete haematological response with normal spleen size (longitudinal diameter of ≤12 cm for women and ≤13 cm for men) at 12 months; in CONTINUATION-PV, the coprimary endpoints were complete haematological response with normalisation of spleen size and with improved disease burden (ie, splenomegaly, microvascular disturbances, pruritus, and headache). We present the final results of PROUD-PV and an interim analysis at 36 months of the CONTINUATION-PV study (per statistical analysis plan). Analyses for safety and efficacy were per-protocol. The trials were registered on EudraCT, 2012-005259-18 (PROUD-PV) and 2014-001357-17 (CONTINUATION-PV, which is ongoing). FINDINGS Patients were recruited from Sept 17, 2013 to March 13, 2015 with 306 enrolled. 257 patients were randomly assigned, 127 were treated in each group (three patients withdrew consent in the hydroxyurea group), and 171 rolled over to the CONTINUATION-PV trial. Median follow-up was 182·1 weeks (IQR 166·3-201·7) in the ropeginterferon alfa-2b and 164·5 weeks (144·4-169·3) in the standard therapy group. In PROUD-PV, 26 (21%) of 122 patients in the ropeginterferon alfa-2b group and 34 (28%) of 123 patients in the standard therapy group met the composite primary endpoint of complete haematological response with normal spleen size. In CONTINUATION-PV, complete haematological response with improved disease burden was met in 50 (53%) of 95 patients in the ropeginterferon alfa-2b group versus 28 (38%) of 74 patients in the hydroxyurea group, p=0·044 at 36 months. Complete haematological response without the spleen criterion in the ropeginterferon alfa-2b group versus standard therapy group were: 53 (43%) of 123 patients versus 57 (46%) of 125 patients, p=0·63 at 12 months (PROUD-PV), and 67 (71%) of 95 patients versus 38 (51%) of 74 patients, p=0·012 at 36 months (CONTINUATION-PV). The most frequently reported grade 3 and grade 4 treatment-related adverse events were increased γ-glutamyltransferase (seven [6%] of 127 patients) and increased alanine aminotransferase (four [3%] of 127 patients) in the ropeginterferon alfa-2b group, and leucopenia (six [5%] of 127 patients) and thrombocytopenia (five [4%] of 127 patients) in the standard therapy group. Treatment-related serious adverse events occurred in three (2%) of 127 patients in the ropeginterferon alfa-2b group and five (4%) of 127 patients in the hydroxyurea group. One treatment-related death was reported in the standard therapy group (acute leukaemia). INTERPRETATION In patients with early polycythaemia vera, who predominantly presented without splenomegaly, ropeginterferon alfa-2b was effective in inducing haematological responses; non-inferiority to hydroxyurea regarding haematological response and normal spleen size was not shown at 12 months. However, response to ropeginterferon alfa-2b continued to increase over time with improved responses compared with hydroxyurea at 36 months. Considering the high and durable haematological and molecular responses and its good tolerability, ropeginterferon alfa-2b offers a valuable and safe long-term treatment option with features distinct from hydroxyurea. FUNDING AOP Orphan Pharmaceuticals AG.
Collapse
Affiliation(s)
- Heinz Gisslinger
- Department of Internal Medicine I, Division of Haematology and Blood Coagulation, Medical University Vienna, Vienna, Austria.
| | | | - Pencho Georgiev
- University Multiprofile Hospital for Active Treatment "Sveti Georgi", Clinic of Haematology, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dorota Krochmalczyk
- Teaching Unit of the Haematology Department, University Hospital in Krakow, Krakow, Poland
| | - Liana Gercheva-Kyuchukova
- Multiprofile Hospital for Active Treatment "Sveta Marina", Clinical Haematology Clinic, Varna, Bulgaria
| | - Miklos Egyed
- Department of Internal Medicine II, Kaposi MorCounty Teaching Hospital, Kaposvar, Hungary
| | - Viktor Rossiev
- Samara Kalinin Regional Clinical Hospital, Samara, Russia
| | - Petr Dulicek
- Department of Clinical Haematology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Arpad Illes
- Department of Haematology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Halyna Pylypenko
- Department of Haematology, Regional Treatment and Diagnostics Haematology Centre, Cherkasy Regional Oncology Centre, Cherkasy, Ukraine
| | - Lylia Sivcheva
- Multiprofile Hospital for Active Treatment-HristoBotev, First Department of Internal Medicine, Vratsa, Bulgaria
| | - Jiri Mayer
- Clinic of Internal Medicine-Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Vera Yablokova
- Yaroslavl Regional Clinical Hospital, Department of Haematology, Yaroslavl, Russia
| | - Kurt Krejcy
- AOP Orphan Pharmaceuticals AG, Vienna, Austria
| | | | - Hans C Hasselbalch
- Department of Haematology, Zealand University Hospital, Roskilde, University of Copenhagen, Denmark
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jean-Jacques Kiladjian
- Université de Paris, CIC 1427, Inserm, F-75010, Paris, France; Centre d'Investigations Cliniques, AP-HP, Hopital Saint-Louis, F-75010, Paris, France
| | | |
Collapse
|
25
|
Pedersen RK, Andersen M, Knudsen TA, Sajid Z, Gudmand-Hoeyer J, Dam MJB, Skov V, Kjaer L, Ellervik C, Larsen TS, Hansen D, Pallisgaard N, Hasselbalch HC, Ottesen JT. Data-driven analysis of JAK2V617F kinetics during interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms. Cancer Med 2020; 9:2039-2051. [PMID: 31991066 PMCID: PMC7064092 DOI: 10.1002/cam4.2741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022] Open
Abstract
Treatment with PEGylated interferon-alpha2 (IFN) of patients with essential thrombocythemia and polycythemia vera induces major molecular remissions with a reduction in the JAK2V617F allele burden to undetectable levels in a subset of patients. A favorable response to IFN has been argued to depend upon the tumor burden, implying that institution of treatment with IFN should be as early as possible after the diagnosis. However, evidence for this statement is not available. We present a thorough analysis of unique serial JAK2V617F measurements in 66 IFN-treated patients and in 6 untreated patients. Without IFN treatment, the JAK2V617F allele burden increased exponentially with a period of doubling of 1.4 year. During monotherapy with IFN, the JAK2V617F allele burden decreased mono- or bi-exponentially for 33 responders of which 28 patients satisfied both descriptions. Bi-exponential description improved the fits in 19 cases being associated with late JAK2V617F responses. The decay of the JAK2V617F allele burden during IFN treatment was estimated to have half-lives of 1.6 year for the monoexponential response and 1.0 year in the long term for the bi-exponential response. In conclusion, through data-driven analysis of the JAK2V617F allele burden, we provide novel information regarding the JAK2V617F kinetics during IFN-treatment, arguing for early intervention.
Collapse
Affiliation(s)
- Rasmus K Pedersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Morten Andersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Trine A Knudsen
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Zamra Sajid
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Marc J B Dam
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjaer
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Production, Research, and Innovation, Region Zealand, Sorø, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pathology, Harvard Medical School, Boston, FL, USA.,Department of Laboratory Medicine, Boston Children's Hospital, Boston, FL, USA
| | - Thomas S Larsen
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Dennis Hansen
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Niels Pallisgaard
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Hans C Hasselbalch
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Johnny T Ottesen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
26
|
Nersesjan V, Zervides KA, Sørensen AL, Kjaer L, Skov V, Hasselbalch HC. The red blood cell count and the erythrocyte sedimentation rate in the diagnosis of polycythaemia vera. Eur J Haematol 2019; 104:46-54. [PMID: 31584701 DOI: 10.1111/ejh.13334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Iron deficiency in polycythaemia vera (PV) may impact the validity of the haematocrit (HCT), since HCT is red blood cell count (RBC) × mean corpuscular volume (MCV). OBJECTIVES To investigate (a) the effect of microcytosis on HCT, (b) the erythrocyte sedimentation rate (ESR) as a possible additional diagnostic marker for PV. MATERIAL AND METHODS This study included 182 subjects: 39 with PV, 27 with essential thrombocythemia (ET) and 116 suspected of myeloproliferative neoplasm (MPN) with a secondary cause for either thrombocytosis or erythrocytosis. RESULTS Patients with PV had significantly lower ratio of MCV and serum ferritin compared to MPN suspects. A good correlation of RBC versus HCT was found for PV and MPN subjects when individuals with microcytosis were excluded (R2 = .87 in PV and R2 = .82 in MPN suspects). We found a specificity of 98% and a sensitivity of 37% for ESR <2 mm in the diagnosis of PV. CONCLUSION The RBC may more precisely reflect the total red cell mass and accordingly the hypercoagulable state of the PV patient, which is integrated in the ESR. A combination of RBC and ESR is proposed as a novel tool to substitute the Hb concentration and the HCT in the diagnosis of PV.
Collapse
Affiliation(s)
- Vardan Nersesjan
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kristoffer A Zervides
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders L Sørensen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lasse Kjaer
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Hans C Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
27
|
Abstract
Since its discovery, polycythemia vera (PV) has challenged clinicians responsible for its diagnosis and management and scientists investigating its pathogenesis. As a clonal hematopoietic stem cell (HSC) disorder, PV is a neoplasm but its driver mutations result in overproduction of morphologically and functionally normal blood cells. PV arises in an HSC but it can present initially as isolated erythrocytosis, leukocytosis, thrombocytosis, or any combination of these together with splenomegaly or myelofibrosis, and it can take years for a true panmyelopathy to appear. PV shares the same JAK2 mutation as essential thrombocytosis and primary myelofibrosis, but erythrocytosis only occurs in PV. However, unlike secondary causes of erythrocytosis, in PV, the plasma volume is frequently expanded, masking the erythrocytosis and making diagnosis difficult if this essential fact is ignored. PV is not a monolithic disorder: female patients deregulate fewer genes and clinically behave differently than their male counterparts, while some PV patients are genetically predisposed to an aggressive clinical course. Nevertheless, based on what we have learned over the past century, most PV patients can lead long and productive lives. In this review, using clinical examples, I describe how I diagnose and manage PV in an evidence-based manner without relying on chemotherapy.
Collapse
|
28
|
Abstract
Introduction: Despite our recent progress in the understanding of essential thrombocythemia (ET) pathogenesis, the therapeutic management of this disease has remained largely unchanged in the past decades. Treatment has mostly focused on decreasing the risk of complications, especially prevention of thrombotic or hemorrhagic events. Areas covered: Over recent years, the treatment options of ET have been expanding with some novel agents on the horizon. The classes of agents described in this review include targeted and immunomodulatory agents, such as JAK1/2 inhibitors, interferon-α, histone deacetylase inhibitors, telomerase inhibitors and human double minute 2 inhibitors. These compounds entered various stages of development, albeit the only portion of them is currently actively undergoing evaluation in clinical trials. In this review, we look at the current therapies and discuss novel agents available in the management of ET. Expert opinion: The drug development in ET possesses several challenges stemming from its relatively benign and prolonged disease course. Therapy focused on reducing the risk of thrombotic and hemorrhagic complications and symptom management needs to be chosen wisely as a vast majority of these patients have a near-normal life expectancy. To date, no therapy has shown effective and definitive alteration of the disease behavior. Although novel agents are in development and hopefully some of them will extend treatment armamentarium of ET, their exact role remains to be determined.
Collapse
Affiliation(s)
- Lucia Masarova
- a MD Anderson Cancer Center , The University of Texas , Houston , TX , USA
| | - Srdan Verstovsek
- a MD Anderson Cancer Center , The University of Texas , Houston , TX , USA
| |
Collapse
|
29
|
Silver RT, Krichevsky S. Distinguishing essential thrombocythemia JAK2V617F from polycythemia vera: limitations of erythrocyte values. Haematologica 2019; 104:2200-2205. [PMID: 30948488 PMCID: PMC6821600 DOI: 10.3324/haematol.2018.213108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/03/2019] [Indexed: 11/09/2022] Open
Abstract
Distinguishing essential thrombocythemia JAK2V617F from polycythemia vera is difficult because of shared mutation and phenotypic characteristics. The World Health Organization suggested hemoglobin and hematocrit values to diagnose polycythemia vera (PV), but their sensitivity and specificity were not tested. Moreover, red cell values do not accurately predict red cell mass, which we use to discriminate essential thrombocythemia JAK2V617F from PV. Eighty-three PV and 39 essential thrombocythemia JAK2V617F patients were diagnosed based on JAK2V617F positivity, chromium-51 red cell mass, and marrow biopsy findings. Red cell values used to construct a receiver operating characteristic analysis determined optimal thresholds for distinguishing essential thrombocythemia JAK2V617F from PV. Red cell value frequencies were plotted determining if overlap existed. Chromium-51 red cell mass separated PV from essential thrombocythemia JAK2V617F, but red cell values overlapped in 25.0-54.7%. Our data indicate that a significant proportion of PV patients may be underdiagnosed by using only red cell values. A bone marrow biopsy was performed in 199 of 410 (48.5%) and a serum erythropoietin value was measured in 225 of 410 (54.9%) of potential PV patients at our institution. Without isotope studies, marrow biopsies and serum erythropoietin values should improve diagnostic accuracy and become mandatory, but clinical data suggest these tests have not been routinely performed. Therefore, the clinical hematologist must be aware of imperfect accuracy when using only red cell values for distinguishing essential thrombocythemia JAK2V617F from PV.
Collapse
Affiliation(s)
- Richard T Silver
- Richard T. Silver Myeloproliferative Neoplasm Center, Division of Hematology/Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Spencer Krichevsky
- Richard T. Silver Myeloproliferative Neoplasm Center, Division of Hematology/Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
30
|
Randi ML, Bertozzi I, Putti MC. Contemporary management of essential thrombocythemia in children. Expert Rev Hematol 2019; 12:367-373. [PMID: 30925843 DOI: 10.1080/17474086.2019.1602034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Essential thrombocythemia (ET) is a disease which is extremely rare in children. Only recently, data on pediatric ET have become available. Areas covered: In children with sustained platelet count over 450 x 109/L, secondary thrombocytosis must be ruled out. ET workup comprehends research of JAK2V617F, CALR and MPL mutations and bone marrow biopsy (BM). In asymptomatic children wait and watch is the best option. Aspirin controls headache and other microvascular disturbances. Patients with venous thrombosis need anticoagulation. Cytoreductive drugs in children with ET should be prescribed as a last choice. Hydroxyurea and IFN-a are first-line therapy at any age including children; Anagrelide is not licensed as first-line therapy for ET in Europe. New JAK2-inhibitors are not clearly useful in ET and hence not approved for ET. Expert opinion: The most challenging problem is to understand if a child with prolonged not secondary thrombocytosis really has ET. Diagnostic workup requires molecular and histological studies. The rare children with clonal ET have features like those of adults. Patients with ET have long expected survival and the treatment in children must be long-term efficacious and well tolerated.
Collapse
Affiliation(s)
- Maria Luigia Randi
- a Department of Medicine - DIMED, First Medical Clinic , University of Padua , Padova , Italy
| | - Irene Bertozzi
- a Department of Medicine - DIMED, First Medical Clinic , University of Padua , Padova , Italy
| | - Maria Caterina Putti
- b Department of Women's and Children's Health, Pediatric Hemato-Oncology , University of Padova , Padova , Italy
| |
Collapse
|
31
|
Wang Y, Zuo X. Cytokines frequently implicated in myeloproliferative neoplasms. Cytokine X 2019; 1:100005. [PMID: 33604548 PMCID: PMC7885877 DOI: 10.1016/j.cytox.2019.100005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
MPN is a chronic inflammation-driven tumor model. Many cytokines are involved in pathogenesis and progression of MPN. IL-1β, TNF-α, IL-6, IL-8, VEGF, PDGF, TGF-β and IFNs are critical in MPN. Cytokine directed therapy could be an alternative treatment for MPN in future.
Classical myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). MPN has been defined as a chronic inflammation-driven tumor model. It is clear that there is a close link between chronic inflammation and MPN pathogenesis. Several studies have demonstrated cytokine profiles in MPN patients. Other studies have used cell lines or animal models aiming to clarify the underlying mechanism of cytokines in the pathogenesis of MPN. However, important questions remain: (1) among all these cytokines, which are more predictive? and (2) which are more critical? In this review, we summarize cytokines that have been investigated in MPN and highlight several cytokines that may be more significant in MPN. We suggest that cytokines are more critical in PMF than PV or ET. These cytokines include IL-1β, TNF-α, IL-6, IL-8, VEGF, PDGF, IFNs and TGF-β, all of which should be more closely investigated in MPN. Based on our extensive literature search, several key factors have emerged in our understanding of MPN: first, TNF-α could correlate with MPN progression including PMF, PV and ET. IL-1β plays a role in PMF progression, while it showed no relation with PV or ET. Second, IL-8 could be a prognostic factor for PMF, and IL-6 could be important for MPN progression. Third, VEGF and PDGF play an indirect role in MPN development and their inhibitors could be effective. Fourth, different subtypes of IFNs could have different effects in MPN. Finally, TGF-β is closely linked to MF, although the data are inconsistent. Agents that have targeted these cytokines described above are already in clinical trials, and some of them have even been used to treat MPN patients. Taken together, it will be critical to continue to investigate the precise role of these cytokines in the pathogenesis and progression of MPN.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang, Wuhan, Hubei 430071, PR China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang, Wuhan, Hubei 430071, PR China
| |
Collapse
|
32
|
Hasselbalch HC, Holmström MO. Perspectives on interferon-alpha in the treatment of polycythemia vera and related myeloproliferative neoplasms: minimal residual disease and cure? Semin Immunopathol 2019; 41:5-19. [PMID: 30203226 PMCID: PMC6323070 DOI: 10.1007/s00281-018-0700-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
The first clinical trials of the safety and efficacy of interferon-alpha2 (IFN-alpha2) were performed about 30 years ago. Since then, several single-arm studies have convincingly demonstrated that IFN-alpha2 is a highly potent anti-cancer agent in several cancer types but unfortunately not being explored sufficiently due to a high toxicity profile when using non-pegylated IFN-alpha2 or high dosages or due to competitive drugs, that for clinicians at first glance might look more attractive. Within the hematological malignancies, IFN-alpha2 has only recently been revived in patients with the Philadelphia-negative myeloproliferative neoplasms-essential thrombocytosis, polycythemia vera, and myelofibrosis (MPNs)-and in patients with chronic myelogenous leukemia (CML) in combination with tyrosine kinase inhibitors. In this review, we tell the IFN story in MPNs from the very beginning in the 1980s up to 2018 and describe the perspectives for IFN-alpha2 treatment of MPNs in the future. The mechanisms of actions are discussed and the impact of chronic inflammation as the driving force for clonal expansion and disease progression in MPNs is discussed in the context of combination therapies with potent anti-inflammatory agents, such as the JAK1-2 inhibitors (licensed only ruxolitinib) and statins as well. Interferon-alpha2 being the cornerstone treatment in MPNs and having the potential of inducing minimal residual disease (MRD) with normalization of the bone marrow and low-JAK2V617F allele burden, we believe that combination therapy with ruxolitinib may be even more efficacious and hopefully revert disease progression in many more patients to enter the path towards MRD. In patients with advanced and transforming disease towards leukemic transformation or having transformed to acute myeloid leukemia, "triple therapy" is proposed as a novel treatment modality to be tested in clinical trials combining IFN-alpha2, DNA-hypomethylator, and ruxolitinib. The rationale for this "triple therapy" is given, including the fact that even in AML, IFN-alpha2 as monotherapy may revert disease progression. We envisage a new and bright future with many more patients with MPNs obtaining MRD on the above therapies. From this stage-and even before-vaccination strategies may open a new horizon with cure being the goal for some patients.
Collapse
Affiliation(s)
- Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark.
| | - Morten Orebo Holmström
- Department of Hematology, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Herlev, Denmark
| |
Collapse
|
33
|
Klausen U, Holmberg S, Holmström MO, Jørgensen NGD, Grauslund JH, Svane IM, Andersen MH. Novel Strategies for Peptide-Based Vaccines in Hematological Malignancies. Front Immunol 2018; 9:2264. [PMID: 30327655 PMCID: PMC6174926 DOI: 10.3389/fimmu.2018.02264] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Peptides vaccination is an interesting approach to activate T-cells toward desired antigens in hematological malignancies. In addition to classical tumor associated antigens, such as cancer testis antigens, new potential targets for peptide vaccination comprise neo-antigens including JAK2 and CALR mutations, and antigens from immune regulatory proteins in the tumor microenvironment such as programmed death 1 ligands (PD-L1 and PD-L2). Immunosuppressive defenses of tumors are an important challenge to overcome and the T cell suppressive ligands PD-L1 and PD-L2 are often present in tumor microenvironments. Thus, PD-L1 and PD-L2 are interesting targets for peptide vaccines in diseases where the tumor microenvironment is known to play an essential role such as multiple myeloma and follicular lymphoma. In myelodysplastic syndromes the drug azacitidine re-exposes tumor associated antigens, why vaccination with related peptides would be an interesting addition. In myeloproliferative neoplasms the JAK2 and CALR mutations has proven to be immunogenic neo-antigens and thus possible targets for peptide vaccination. In this mini review we summarize the basis for these novel approaches, which has led to the initiation of clinical trials with various peptide vaccines in myelodysplastic syndromes, myeloproliferative neoplasms, multiple myeloma, and follicular lymphoma.
Collapse
Affiliation(s)
- Uffe Klausen
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
| | - Staffan Holmberg
- Department of Hematology, Herlev Hospital, Herlev, Denmark
- Division of Immunology - T cells & Cancer, DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
| | - Morten Orebo Holmström
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Jacob Handlos Grauslund
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Holmström MO, Hasselbalch HC. Cancer immune therapy for myeloid malignancies: present and future. Semin Immunopathol 2018; 41:97-109. [PMID: 29987478 DOI: 10.1007/s00281-018-0693-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
The myelodysplastic syndromes, the chronic myeloproliferative neoplasms, and the acute myeloid leukemia are malignancies of the myeloid hematopoietic stem cells of the bone marrow. The diseases are characterized by a dysregulation of the immune system as both the cytokine milieu, immune phenotype, immune regulation, and expression of genes related to immune cell functions are deregulated. Several treatment strategies try to circumvent this deregulation, and several clinical and preclinical trials have shown promising results, albeit not in the same scale as chimeric antigen receptor T cells have had in the treatment of refractory lymphoid malignancies. The use of immune checkpoint blocking antibodies especially in combination with hypomethylating agents has had some success-a success that will likely be enhanced by therapeutic cancer vaccination with tumor-specific antigens. In the chronic myeloproliferative neoplasms, the recent identification of immune responses against the Januskinase-2 and calreticulin exon 9 driver mutations could also be used in the vaccination setting to enhance the anti-tumor immune response. This immune response could probably be enhanced by the concurrent use of immune checkpoint inhibitors or by vaccination with epitopes from immune regulatory proteins such as arginase-1 and programmed death ligand-1. Herein, we provide an overview of current cancer immune therapeutic treatment strategies as well as potential future cancer immune therapeutic treatment options for the myeloid malignancies.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Hematology, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark. .,Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Herlev, Denmark.
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark
| |
Collapse
|
35
|
Mikkelsen SU, Kjaer L, Bjørn ME, Knudsen TA, Sørensen AL, Andersen CBL, Bjerrum OW, Brochmann N, Fassi DE, Kruse TA, Larsen TS, Mourits-Andersen HT, Nielsen CH, Pallisgaard N, Thomassen M, Skov V, Hasselbalch HC. Safety and efficacy of combination therapy of interferon-α2 and ruxolitinib in polycythemia vera and myelofibrosis. Cancer Med 2018; 7:3571-3581. [PMID: 29932310 PMCID: PMC6089176 DOI: 10.1002/cam4.1619] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/30/2022] Open
Abstract
Interferon‐α2 reduces elevated blood cell counts and splenomegaly in patients with myeloproliferative neoplasms (MPN) and may restore polyclonal hematopoiesis. Its use is limited by inflammation‐mediated toxicity, leading to treatment discontinuation in 10‐30% of patients. Ruxolitinib, a potent anti‐inflammatory agent, has demonstrated benefit in myelofibrosis (MF) and polycythemia vera (PV) patients. Combination therapy (CT) with these two agents may be more efficacious than monotherapy with either, potentially improving tolerability of interferon‐α2 as well. We report the preliminary results from a phase II study of CT with pegylated interferon‐α2 and ruxolitinib in 50 MPN patients (PV, n = 32; low‐/intermediate‐1‐risk MF, n = 18), the majority (n = 47) being resistant and/or intolerant to interferon‐α2 monotherapy. Objectives included remission (2013 revised criteria encompassing histologic, hematologic, and clinical responses), complete hematologic response (CHR), molecular response, and toxicity. Follow‐up was 12 months. Partial remission (PR) and sustained CHR were achieved in 9% and 44% of PV patients, respectively. In MF patients, complete or partial remission was achieved in 39%, and sustained CHR in 58%. The median JAK2V617F allele burden declined significantly in both groups. Hematologic toxicity was the most common adverse event and was managed by dose reduction. Thirty‐seven serious adverse events were recorded in 23 patients; the discontinuation rate was 20%. We conclude that CT with interferon‐α2 and ruxolitinib is efficacious in patients with low‐/intermediate‐1‐risk MF and, to a lesser extent, in patients with PV. These preliminary results encourage phase III studies as well as a study with CT in newly diagnosed MPN patients.
Collapse
Affiliation(s)
| | - Lasse Kjaer
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Mads Emil Bjørn
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | | | | | - Nana Brochmann
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Daniel El Fassi
- Department of Hematology, Herlev University Hospital, Copenhagen, Denmark.,Institute for Inflammation Research, Rigshospitalet, Copenhagen, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | | | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | |
Collapse
|
36
|
Lindgren M, Samuelsson J, Nilsson L, Knutsen H, Ghanima W, Westin J, Johansson PL, Andréasson B. Genetic variation in IL28B (IFNL3) and response to interferon-alpha treatment in myeloproliferative neoplasms. Eur J Haematol 2018; 100:419-425. [PMID: 29369421 DOI: 10.1111/ejh.13034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In myeloproliferative neoplasms (MPN), interferon-alpha (IFN-α) is an effective treatment with disease-modifying properties but currently with no clear predictors of treatment outcome. Recent genomewide association studies in chronic hepatitis C have found a strong influence of genetic polymorphism near the IL28B (IFNL3) gene in response to IFN-α treatment. In this study, we sought to evaluate the prognostic impact of IL28B rs12979860, rs8099917, and rs12980275 on IFN-α treatment response in myeloproliferative neoplasms. METHOD We retrospectively evaluated 100 patients with MPN treated with IFN-α. The hematologic treatment response on IFN-α was compared between patients and correlated with host genetic variations in IL28B. The genotypes of IL28B were determined by allelic discrimination assays. RESULTS The CC genotype of rs12979860 was found significantly associated with hematologic response in polycythemia vera (PV) with a complete response (CR) in 79% (CC) compared to 48% (non-CC), (P = .036). No association between the genotypes and treatment response on hydroxyurea was found. CONCLUSION These results imply an effect of IL28B genotype on the outcome of IFN-α treatment in MPN.
Collapse
Affiliation(s)
- Marie Lindgren
- Department of Medicine, Kalmar County Hospital, Kalmar, Sweden
| | - Jan Samuelsson
- Department of Medicine, Stockholm South Hospital, Stockholm, Sweden
| | - Lars Nilsson
- Department of Hematology, Skåne University Hospital, Lund, Sweden
| | - Håvar Knutsen
- Department of Hematology, Ullevål University Hospital, Oslo, Norway
| | - Waleed Ghanima
- Department of Medicine, Östfold Hospital, Fredrikstad, Norway
| | - Johan Westin
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter L Johansson
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medicine, Section of Hematology, NU Hospital, Uddevalla, Sweden
| | - Björn Andréasson
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medicine, Section of Hematology, NU Hospital, Uddevalla, Sweden
| |
Collapse
|
37
|
Craver BM, El Alaoui K, Scherber RM, Fleischman AG. The Critical Role of Inflammation in the Pathogenesis and Progression of Myeloid Malignancies. Cancers (Basel) 2018; 10:cancers10040104. [PMID: 29614027 PMCID: PMC5923359 DOI: 10.3390/cancers10040104] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/23/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) maintain an organism's immune system for a lifetime, and derangements in HSC proliferation and differentiation result in hematologic malignancies. Chronic inflammation plays a contributory if not causal role in HSC dysfunction. Inflammation induces HSC exhaustion, which promotes the emergence of mutant clones that may be resistant to an inflammatory microenvironment; this likely promotes the onset of a myeloid hematologic malignancy. Inflammatory cytokines are characteristically high in patients with myeloid malignancies and are linked to disease initiation, symptom burden, disease progression, and worsened prognostic survival. This review will cover our current understanding of the role of inflammation in the initiation, progression, and complications of myeloid hematologic malignancies, drawing from clinical studies as well as murine models. We will also highlight inflammation as a therapeutic target in hematologic malignancies.
Collapse
Affiliation(s)
- Brianna M Craver
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Kenza El Alaoui
- Department of Internal Medicine, Université Libre de Bruxelles, 1050 Brussels, Belgium.
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Robyn M Scherber
- Department of Hematology and Oncology, Mays MD Anderson Cancer Center, University of Texas San Antonio, San Antonio, TX 78249, USA.
| | - Angela G Fleischman
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA.
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
38
|
Kvasnicka HM, Thiele J, Bueso-Ramos CE, Sun W, Cortes J, Kantarjian HM, Verstovsek S. Long-term effects of ruxolitinib versus best available therapy on bone marrow fibrosis in patients with myelofibrosis. J Hematol Oncol 2018; 11:42. [PMID: 29544547 PMCID: PMC5856218 DOI: 10.1186/s13045-018-0585-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelofibrosis (MF) is a life-shortening complication of myeloproliferative neoplasms associated with ineffective hematopoiesis, splenomegaly, and progressive bone marrow (BM) fibrosis. The oral Janus kinase (JAK) 1/JAK2 inhibitor ruxolitinib has been shown to improve splenomegaly, symptom burden, and overall survival in patients with intermediate-2 or high-risk MF compared with placebo or best available therapy (BAT). METHODS The effects of ruxolitinib therapy for up to 66 months on BM morphology in 68 patients with advanced MF with variable BM fibrosis grade were compared with those in 192 matching patients treated with BAT. Available trephine biopsies underwent independent, blinded review by three hematopathologists for consensus-based adjudication of grades for reticulin fibrosis, collagen deposition, and osteosclerosis. RESULTS Ruxolitinib treatment versus BAT was associated with greater odds of BM fibrosis improvement or stabilization and decreased odds of BM fibrosis worsening based on changes from baseline in reticulin fibrosis grade. Generally, these changes were accompanied by a sustained higher level of individual spleen size reduction and regression of leukoerythroblastosis. Patients with more advanced baseline fibrosis showed lower spleen size response. CONCLUSIONS The finding that long-term ruxolitinib therapy may reverse or markedly delay BM fibrosis progression in advanced MF suggests that sustained JAK inhibition may be disease-modifying. TRIAL REGISTRATION INCB18424-251, ClinicalTrials.gov identifier NCT00509899 .
Collapse
Affiliation(s)
- Hans Michael Kvasnicka
- Senckenberg Institute of Pathology, University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | | | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jorge Cortes
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
|
40
|
Kiladjian JJ, Guglielmelli P, Griesshammer M, Saydam G, Masszi T, Durrant S, Passamonti F, Jones M, Zhen H, Li J, Gadbaw B, Perez Ronco J, Khan M, Verstovsek S. Efficacy and safety of ruxolitinib after and versus interferon use in the RESPONSE studies. Ann Hematol 2018; 97:617-627. [DOI: 10.1007/s00277-017-3225-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
|
41
|
Andersen M, Sajid Z, Pedersen RK, Gudmand-Hoeyer J, Ellervik C, Skov V, Kjær L, Pallisgaard N, Kruse TA, Thomassen M, Troelsen J, Hasselbalch HC, Ottesen JT. Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development. PLoS One 2017; 12:e0183620. [PMID: 28859112 PMCID: PMC5578482 DOI: 10.1371/journal.pone.0183620] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as "A Human Inflammation Model for Cancer Development". This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.
Collapse
Affiliation(s)
- Morten Andersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Zamra Sajid
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Rasmus K. Pedersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Christina Ellervik
- Department of Laboratory Medicine at Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jesper Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Johnny T. Ottesen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
42
|
Masarova L, Verstovsek S, Kantarjian H, Daver N. Immunotherapy based approaches in myelofibrosis. Expert Rev Hematol 2017; 10:903-914. [DOI: 10.1080/17474086.2017.1366853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lucia Masarova
- MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Srdan Verstovsek
- MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Hagop Kantarjian
- MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Naval Daver
- MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| |
Collapse
|
43
|
Affiliation(s)
- Jerry L Spivak
- From the Hematology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
44
|
Hasselbalch HC. Molecular profiling as a novel tool to predict response to interferon-α2 in MPNs: The proof of concept in early myelofibrosis. Cancer 2017; 123:2600-2603. [PMID: 28518284 DOI: 10.1002/cncr.30676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 11/06/2022]
|
45
|
Bjørn ME, Hasselbalch HC. Minimal residual disease or cure in MPNs? Rationales and perspectives on combination therapy with interferon-alpha2 and ruxolitinib. Expert Rev Hematol 2017; 10:393-404. [DOI: 10.1080/17474086.2017.1284583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mads Emil Bjørn
- Department of Hematology, Region Zealand University Hospital, Roskilde, Denmark
- Institute for Inflammation Research, Center for Reumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
46
|
Alimam S, Harrison C. Experience with ruxolitinib in the treatment of polycythaemia vera. Ther Adv Hematol 2017; 8:139-151. [PMID: 28491265 PMCID: PMC5405900 DOI: 10.1177/2040620717693972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Polycythaemia vera (PV) is a myeloproliferative neoplasm classically characterized by an erythrocytosis and is associated with a high risk of thromboembolic events, constitutional symptoms burden and risk of transformation to myelofibrosis and acute myeloid leukaemia. Therapy is directed at the haematocrit (HCT) to reduce the risk of thrombotic events and usually comprises low-dose aspirin and phlebotomy to maintain HCT at >45%. Frequently in addition, cytoreductive therapy is indicated in high-risk patients for normalizing haematological parameters to mitigate the occurrence of thromboembolic events. Unfortunately, there is no clear evidence that current therapies reduce the risk of transformation to myelofibrosis and for some a risk of a therapy related complication is unknown for example leukaemia due to hydroxycarbamide (HC). First-line therapy for treating PV remains HC or interferon, the latter most often in younger patients, especially those of childbearing age. However, therapy related intolerance or resistance is a common feature and results in limited treatment options for such patients. The discovery of the JAK2 V617F mutation and consequently targeted therapy with Janus kinase inhibitors, in particular ruxolitinib, has extended the spectrum of agents that can be used as second or third line in PV. The findings of the phase II trial RESPONSE and the preliminary data from RESPONSE 2 trial have identified a role for ruxolitinib in PV patients who are resistant or intolerant to HC. In this article, using clinical cases we demonstrate our experience with ruxolitinib highlighting the clinical benefits and limitations we encountered in clinical practice.
Collapse
Affiliation(s)
- Samah Alimam
- Guy’s and St Thomas’s NHS Foundation Trust, London, UK
| | | |
Collapse
|
47
|
Sokolova MA, Turkina AG, Melikian AL, Sudarikov AB, Treglazova SA, Shukhov OA, Gemdzhian EG, Abdullaev AО, Kovrigina AM, Misyurin AV, Pliskunova YV, Ivanova VL, Moiseeva TN. [Efficiency of interferon therapy in patients with essential thrombocythemia or polycythemia vera]. TERAPEVT ARKH 2017; 88:69-77. [PMID: 28139563 DOI: 10.17116/terarkh2016881269-77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To evaluate the efficiency of interferon (IFN) therapy in patients with essential thrombocythemia (ET) and polycythemia vera (PV). SUBJECTS AND METHODS A total of 61 patients (41 with ET and 20 with PV) were examined. Prior to study enrolment, 44 (72%) patients with ET or PV received one or other therapy (aspirin was not taken into account). The mean Jak2V617F mutant allele at baseline was 23% (6-54%) in the patients with ET and 40% (11-88%) in those with PV. The median time from diagnosis to enrollment was 49 months. RESULTS The paper presents the clinical and molecular findings of long-term INF-α therapy in patients with ET or PV. The median follow-up was 52 months. Recombinant IFN-α2 showed its ability to induce complete hematologic remission (ET (76%), PV (70%)) and a complete molecular response. 22 (69%) out of 32 patients were noted to have a smaller number of cells with the Jak2V617F mutation. In the patients with PV and in those with ET, the relative reduction in the proportion of cells with the Jak2V617F mutant gene averaged 85% and 56% of the baseline values, respectively. There was a reduction in the proportion of cells expressing the Jak2V617F mutation in both the ET (from 12 to 2.2%; p=0.001) and PV (from 32.7% to 3.2%) groups (р=0.001). Ten (31%) patients achieved a deep molecular remission (≤2% Jak2V617F allele); among them, 5 patients were not found to have Jak2V617F mutation. The obtained molecular response remained in 7 of the 10 patients untreated for 11 to 86 months. The long-term treatment with IFN-α led to normalization of the morphological pattern of bone marrow in 5 of the 7 PV or ET patients. CONCLUSION Significant molecular remissions achieved by therapy with recombinant interferon-α2 confirm the appropriateness of this treatment option in in the majority of patients with ET or PV.
Collapse
Affiliation(s)
- M A Sokolova
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - A G Turkina
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - A L Melikian
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - A B Sudarikov
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - S A Treglazova
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - O A Shukhov
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - E G Gemdzhian
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - A О Abdullaev
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - A M Kovrigina
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - A V Misyurin
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - Yu V Pliskunova
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - V L Ivanova
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| | - T N Moiseeva
- National Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
48
|
Skov V, Riley CH, Thomassen M, Kjær L, Stauffer Larsen T, Bjerrum OW, Kruse TA, Hasselbalch HC. The impact of interferon-alpha2 on HLA genes in patients with polycythemia vera and related neoplasms. Leuk Lymphoma 2016; 58:1914-1921. [PMID: 27911124 DOI: 10.1080/10428194.2016.1262032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene expression profiling in Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have unraveled significant deregulation of several immune and inflammation genes of potential importance for clonal evolution. Other mechanisms might be downregulation of major histocompatibility class I and II genes used by tumor cells to escape antitumor T-cell-mediated immune responses. Several genes encoding human leukocyte antigen (HLA) class I and II molecules have been shown to be significantly downregulated. Upregulation of HLA genes is considered one of the mechanisms of action of interferon (IFN)-alpha2, but regulation of these genes during IFN-alpha2 treatment in MPNs has never been studied. Our findings show a significant upregulation of several HLA genes of importance for tumor immune surveillance by IFN-alpha2 treatment in MPNs. This mechanism might enhance the cytotoxic potential of immune cells against MPNs and explain the induction of minimal residual disease by IFN-alpha2 treatment in these patients.
Collapse
Affiliation(s)
- Vibe Skov
- a Department of Hematology , Zealand University Hospital , Roskilde , Denmark
| | - Caroline Hasselbalch Riley
- a Department of Hematology , Zealand University Hospital , Roskilde , Denmark.,b Center for Cancer Immune Therapy, Department of Hematology , Herlev Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Mads Thomassen
- c Department of Clinical Genetics , Odense University Hospital , Odense , Denmark
| | - Lasse Kjær
- a Department of Hematology , Zealand University Hospital , Roskilde , Denmark
| | | | - Ole Weis Bjerrum
- e Department of Hematology L , Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Torben A Kruse
- c Department of Clinical Genetics , Odense University Hospital , Odense , Denmark
| | | |
Collapse
|
49
|
Hansen IO, Sørensen AL, Hasselbalch HC. Second malignancies in hydroxyurea and interferon-treated Philadelphia-negative myeloproliferative neoplasms. Eur J Haematol 2016; 98:75-84. [PMID: 27471124 DOI: 10.1111/ejh.12787] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE In an era of controversy in regard to 'hydroxyurea-leukaemogenicity' and when interferon-alfa2 (IFN) is being revived in the treatment of Philadelphia-negative myeloproliferative neoplasms (MPNs), we aim in this single-centre observational study to describe the frequencies of second malignancies in a cohort of MPN patients treated with hydroxyurea (HU) or IFN monotherapy or the combination of these agents. PATIENTS AND METHODS Records of a MPN cohort of 196 patients were reviewed, and a retrospective analysis was performed on 90 patients treated with HU, 38 patients treated with IFN and 68 patients treated with both IFN and HU. Logistic regression was used to compare frequencies in second malignancies. RESULTS Patients treated with HU had a significantly higher risk of developing all second malignancies compared with patients treated with IFN [HU vs. IFN: OR of 4.01 (95%CI: 1.12-14.27, P-value: 0.023) and HU-IFN vs. IFN: OR 5.58 (95%CI: 1.55-20.15, P-value: 0.004)]. CONCLUSION We have found an increased risk of second malignancies in MPN patients treated with HU compared with patients treated with IFN.
Collapse
Affiliation(s)
- Iben Onsberg Hansen
- Department of Haematology, Copenhagen University Hospital Roskilde, Copenhagen, Denmark
| | - Anders Lindholm Sørensen
- Department of Haematology, Copenhagen University Hospital Roskilde, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hans Carl Hasselbalch
- Department of Haematology, Copenhagen University Hospital Roskilde, Copenhagen, Denmark
| |
Collapse
|
50
|
Pati HP, Sharma P. Myeloproliferative Neoplasms, an Acquired Thrombophilic State: JAK2 and Beyond. Indian J Hematol Blood Transfus 2016; 32:245-7. [PMID: 27429514 DOI: 10.1007/s12288-016-0700-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|