1
|
Hippert C, Graca AB, Barber AC, West EL, Smith AJ, Ali RR, Pearson RA. Müller glia activation in response to inherited retinal degeneration is highly varied and disease-specific. PLoS One 2015; 10:e0120415. [PMID: 25793273 PMCID: PMC4368159 DOI: 10.1371/journal.pone.0120415] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/22/2015] [Indexed: 12/20/2022] Open
Abstract
Despite different aetiologies, most inherited retinal disorders culminate in photoreceptor loss, which induces concomitant changes in the neural retina, one of the most striking being reactive gliosis by Müller cells. It is typically assumed that photoreceptor loss leads to an upregulation of glial fibrilliary acidic protein (Gfap) and other intermediate filament proteins, together with other gliosis-related changes, including loss of integrity of the outer limiting membrane (OLM) and deposition of proteoglycans. However, this is based on a mix of both injury-induced and genetic causes of photoreceptor loss. There are very few longitudinal studies of gliosis in the retina and none comparing these changes across models over time. Here, we present a comprehensive spatiotemporal assessment of features of gliosis in the degenerating murine retina that involves Müller glia. Specifically, we assessed Gfap, vimentin and chondroitin sulphate proteoglycan (CSPG) levels and outer limiting membrane (OLM) integrity over time in four murine models of inherited photoreceptor degeneration that encompass a range of disease severities (Crb1rd8/rd8, Prph2+/Δ307, Rho-/-, Pde6brd1/rd1). These features underwent very different changes, depending upon the disease-causing mutation, and that these changes are not correlated with disease severity. Intermediate filament expression did indeed increase with disease progression in Crb1rd8/rd8 and Prph2+/Δ307, but decreased in the Prph2+/Δ307 and Pde6brd1/rd1 models. CSPG deposition usually, but not always, followed the trends in intermediate filament expression. The OLM adherens junctions underwent significant remodelling in all models, but with differences in the composition of the resulting junctions; in Rho-/- mice, the adherens junctions maintained the typical rod-Müller glia interactions, while in the Pde6brd1/rd1 model they formed predominantly between Müller cells in late stage of degeneration. Together, these results show that gliosis and its associated processes are variable and disease-dependent.
Collapse
Affiliation(s)
- Claire Hippert
- Department of Genetics, University College London Institute of Ophthalmology, 11–43 Bath Street, London, EC1V 9EL, United Kingdom
| | - Anna B. Graca
- Department of Genetics, University College London Institute of Ophthalmology, 11–43 Bath Street, London, EC1V 9EL, United Kingdom
| | - Amanda C. Barber
- Department of Genetics, University College London Institute of Ophthalmology, 11–43 Bath Street, London, EC1V 9EL, United Kingdom
| | - Emma L. West
- Department of Genetics, University College London Institute of Ophthalmology, 11–43 Bath Street, London, EC1V 9EL, United Kingdom
| | - Alexander J. Smith
- Department of Genetics, University College London Institute of Ophthalmology, 11–43 Bath Street, London, EC1V 9EL, United Kingdom
| | - Robin R. Ali
- Department of Genetics, University College London Institute of Ophthalmology, 11–43 Bath Street, London, EC1V 9EL, United Kingdom
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London, EC1V 2PD, United Kingdom
| | - Rachael A. Pearson
- Department of Genetics, University College London Institute of Ophthalmology, 11–43 Bath Street, London, EC1V 9EL, United Kingdom
- * E-mail:
| |
Collapse
|
2
|
Clark SJ, Schmidt CQ, White AM, Hakobyan S, Morgan BP, Bishop PN. Identification of factor H-like protein 1 as the predominant complement regulator in Bruch's membrane: implications for age-related macular degeneration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:4962-70. [PMID: 25305316 PMCID: PMC4225158 DOI: 10.4049/jimmunol.1401613] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The tight regulation of innate immunity on extracellular matrix (ECM) is a vital part of immune homeostasis throughout the human body, and disruption to this regulation in the eye is thought to contribute directly to the progression of age-related macular degeneration (AMD). The plasma complement regulator factor H (FH) is thought to be the main regulator that protects ECM against damaging complement activation. However, in the present study we demonstrate that a truncated form of FH, called FH-like protein 1 (FHL-1), is the main regulatory protein in the layer of ECM under human retina, called Bruch's membrane. Bruch's membrane is a major site of AMD disease pathogenesis and where drusen, the hallmark lesions of AMD, form. We show that FHL-1 can passively diffuse through Bruch's membrane, whereas the full sized, glycosylated, FH cannot. FHL-1 is largely bound to Bruch's membrane through interactions with heparan sulfate, and we show that the common Y402H polymorphism in the CFH gene, associated with an increased risk of AMD, reduces the binding of FHL-1 to this heparan sulfate. We also show that FHL-1 is retained in drusen whereas FH coats the periphery of the lesions, perhaps inhibiting their clearance. Our results identify a novel mechanism of complement regulation in the human eye, which highlights potential new avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Simon J Clark
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom;
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Anne M White
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Svetlana Hakobyan
- Complement Biology Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - B Paul Morgan
- Complement Biology Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - Paul N Bishop
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom; Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, United Kingdom
| |
Collapse
|
3
|
The role of glial cells and the complement system in retinal diseases and Alzheimer’s disease: common neural degeneration mechanisms. Exp Brain Res 2014; 232:3363-77. [DOI: 10.1007/s00221-014-4078-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023]
|
4
|
Langford-Smith A, Keenan TDL, Clark SJ, Bishop PN, Day AJ. The role of complement in age-related macular degeneration: heparan sulphate, a ZIP code for complement factor H? J Innate Immun 2013; 6:407-16. [PMID: 24335201 DOI: 10.1159/000356513] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/21/2013] [Indexed: 12/23/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in developed nations and has been associated with complement dysregulation in the central retina. The Y402H polymorphism in the complement regulatory protein factor H (CFH) can confer a >5-fold increased risk of developing AMD and is present in approximately 30% of people of European descent. CFH, in conjunction with other factors, regulates complement activation in host tissues, and the Y402H polymorphism has been found to alter the protein's specificity for heparan sulphate (HS) - a complex polysaccharide found ubiquitously in mammals. HS, which is present on the cell surface and also in the extracellular matrix, exhibits huge structural diversity due to variations in the level/pattern of sulphation, where particular structures may act as 'ZIP codes' for different tissue/cellular locations. Recent work has demonstrated that CFH contains two HS-binding domains that each recognize specific HS ZIP codes, allowing differential recognition of Bruch's membrane (in the eye) or the glomerular basement membrane (in the kidney). Importantly, the Y402H polymorphism impairs the binding of CFH to the HS in Bruch's membrane, which could result in increased complement activation and chronic local inflammation (in 402H individuals) and thereby contribute to AMD pathology.
Collapse
Affiliation(s)
- Alex Langford-Smith
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
5
|
Boels MGS, Lee DH, van den Berg BM, Dane MJC, van der Vlag J, Rabelink TJ. The endothelial glycocalyx as a potential modifier of the hemolytic uremic syndrome. Eur J Intern Med 2013; 24:503-9. [PMID: 23357408 DOI: 10.1016/j.ejim.2012.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Atypical hemolytic uremic syndrome (HUS) is a renal disease due to complement dysregulation. Many of the known causes of atypical HUS originate from genetic mutations of complement regulatory proteins, such as complement factor H (CFH) and thrombomodulin. However, atypical HUS has only a genetic penetrance of 40-50% of the cases and usually appears in adulthood. We introduce a novel factor that may be involved in the onset and development of atypical HUS, i.e. the endothelial surface glycocalyx. The glycocalyx is a highly interactive matrix covering the luminal side of vascular endothelial cells and consists of glycosaminoglycans, proteoglycans and glycoproteins, which has an important role in maintaining homeostasis of the vasculature. The surface-bound glycocalyx glycosaminoglycan constituent heparan sulfate is crucial for CFH binding and function, both in recognition of host tissue and prevention of spontaneous complement activation via the alternative pathway. Most of the clinically relevant genetic mutations in CFH result in incorrect binding to heparan sulfate. In addition, a role between proper function of thrombomodulin and the endothelial glycocalyx has also been observed. We suggest that not only changes in binding properties of the complement regulatory proteins play a role but also changes in the endothelial glycocalyx are involved in increased risk of clinical manifestation of atypical HUS. Finally, vascular glycocalyx heterogeneity in turn could dictate the specific vulnerability of the glomerular vascular bed in atypical HUS and may provide new therapeutic targets to intervene with endothelial cell activation and local complement pathway regulation.
Collapse
Affiliation(s)
- Margien G S Boels
- Department of Nephrology, Einthoven Laboratory for Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
Clark SJ, Ridge LA, Herbert AP, Hakobyan S, Mulloy B, Lennon R, Würzner R, Morgan BP, Uhrín D, Bishop PN, Day AJ. Tissue-specific host recognition by complement factor H is mediated by differential activities of its glycosaminoglycan-binding regions. THE JOURNAL OF IMMUNOLOGY 2013; 190:2049-57. [PMID: 23365078 DOI: 10.4049/jimmunol.1201751] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Complement factor H (CFH) regulates complement activation in host tissues through its recognition of polyanions, which mediate CFH binding to host cell surfaces and extracellular matrix, promoting the deactivation of deposited C3b. These polyanions include heparan sulfate (HS), a glycosaminoglycan with a highly diverse range of structures, for which two regions of CFH (CCP6-8 and CCP19-20) have been implicated in HS binding. Mutations/polymorphisms within these glycosaminoglycan-binding sites have been associated with age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome. In this study, we demonstrate that CFH has tissue-specific binding properties mediated through its two HS-binding regions. Our data show that the CCP6-8 region of CFH binds more strongly to heparin (a highly sulfated form of HS) than CCP19-20, and that their sulfate specificities are different. Furthermore, the HS binding site in CCP6-8, which is affected by the AMD-associated Y402H polymorphism, plays the principal role in host tissue recognition in the human eye, whereas the CCP19-20 region makes the major contribution to the binding of CFH in the human kidney. This helps provide a biochemical explanation for the genetic basis of tissue-specific diseases such as AMD and atypical hemolytic uremic syndrome, and leads to a better understanding of the pathogenic mechanisms for these diseases of complement dysregulation.
Collapse
Affiliation(s)
- Simon J Clark
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|