1
|
Yang R, Yang H, Jiang D, Xu L, Feng L, Xing Y. Investigation of the potential mechanism of the Shugan Xiaozhi decoction for the treatment of nonalcoholic fatty liver disease based on network pharmacology, molecular docking and molecular dynamics simulation. PeerJ 2022; 10:e14171. [PMID: 36389420 PMCID: PMC9657198 DOI: 10.7717/peerj.14171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/12/2022] [Indexed: 11/11/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a metabolic disease, the incidence of which increases annually. Shugan Xiaozhi (SGXZ) decoction, a composite traditional Chinese medicinal prescription, has been demonstrated to exert a therapeutic effect on NAFLD. In this study, the potential bioactive ingredients and mechanism of SGXZ decoction against NAFLD were explored via network pharmacology, molecular docking, and molecular dynamics simulation. Methods Compounds in SGXZ decoction were identified and collected from the literature, and the corresponding targets were predicted through the Similarity Ensemble Approach database. Potential targets related to NAFLD were searched on DisGeNET and GeneCards databases. The compound-target-disease and protein-protein interaction (PPI) networks were constructed to recognize key compounds and targets. Functional enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed on the targets. Molecular docking was used to further screen the potent active compounds in SGXZ. Finally, molecular dynamics (MD) simulation was applied to verify and validate the binding between the most potent compound and targets. Results A total of 31 active compounds and 220 corresponding targets in SGXZ decoction were collected. Moreover, 1,544 targets of NAFLD were obtained, of which 78 targets intersected with the targets of SGXZ decoction. Key compounds and targets were recognized through the compound-target-disease and PPI network. Multiple biological pathways were annotated, including PI3K-Akt, MAPK, insulin resistance, HIF-1, and tryptophan metabolism. Molecular docking showed that gallic acid, chlorogenic acid and isochlorogenic acid A could combine with the key targets. Molecular dynamics simulations suggested that isochlorogenic acid A might potentially bind directly with RELA, IL-6, VEGFA, and MMP9 in the regulation of PI3K-Akt signaling pathway. Conclusion This study investigated the active substances and key targets of SGXZ decoction in the regulation of multiple-pathways based on network pharmacology and computational approaches, providing a theoretical basis for further pharmacological research into the potential mechanism of SGXZ in NAFLD.
Collapse
Affiliation(s)
- Rong Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Huili Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dansheng Jiang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linyi Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lian Feng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufeng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
2
|
Pieters A, Gijbels E, Cogliati B, Annaert P, Devisscher L, Vinken M. Biomarkers of cholestasis. Biomark Med 2021; 15:437-454. [PMID: 33709780 DOI: 10.2217/bmm-2020-0691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a major pathological manifestation, often resulting in detrimental liver conditions, which occurs in a variety of indications collectively termed cholestatic liver diseases. The frequent asymptomatic character and complexity of cholestasis, together with the lack of a straightforward biomarker, hampers early detection and treatment of the condition. The 'omics' era, however, has resulted in a plethora of cholestatic indicators, yet a single clinically applicable biomarker for a given cholestatic disease remains missing. The criteria to fulfil as an ideal biomarker as well as the challenging molecular pathways in cholestatic liver diseases advocate for a scenario in which multiple biomarkers, originating from different domains, will be assessed concomitantly. This review gives an overview of classical clinical and novel molecular biomarkers in cholestasis, focusing on their benefits and drawbacks.
Collapse
Affiliation(s)
- Alanah Pieters
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine & Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, SP, 05508-270, Brazil
| | - Pieter Annaert
- Drug Delivery & Disposition, Department of Pharmaceutical & Pharmacological Sciences, Katholieke Universiteit Leuven, ON II Herestraat 49, Box 921, Leuven, 3000, Belgium
| | - Lindsey Devisscher
- Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine & Health Sciences, Ghent University, C Heymanslaan 10, Ghent, 9000, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| |
Collapse
|
3
|
Witjes JJ, Smits LP, Pekmez CT, Prodan A, Meijnikman AS, Troelstra MA, Bouter KEC, Herrema H, Levin E, Holleboom AG, Winkelmeijer M, Beuers UH, van Lienden K, Aron-Wisnewky J, Mannisto V, Bergman JJ, Runge JH, Nederveen AJ, Dragsted LO, Konstanti P, Zoetendal EG, de Vos W, Verheij J, Groen AK, Nieuwdorp M. Donor Fecal Microbiota Transplantation Alters Gut Microbiota and Metabolites in Obese Individuals With Steatohepatitis. Hepatol Commun 2020; 4:1578-1590. [PMID: 33163830 PMCID: PMC7603524 DOI: 10.1002/hep4.1601] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
The intestinal microbiota has been linked to the development and prevalence of steatohepatitis in humans. Interestingly, steatohepatitis is significantly lower in individuals taking a plant-based, low-animal-protein diet, which is thought to be mediated by gut microbiota. However, data on causality between these observations in humans is scarce. In this regard, fecal microbiota transplantation (FMT) using healthy donors is safe and is capable of changing microbial composition in human disease. We therefore performed a double-blind randomized controlled proof-of-principle study in which individuals with hepatic steatosis on ultrasound were randomized to two study arms: lean vegan donor (allogenic n = 10) or own (autologous n = 11) FMT. Both were performed three times at 8-week intervals. A liver biopsy was performed at baseline and after 24 weeks in every subject to determine histopathology (Nonalcoholic Steatohepatitis Clinical Research Network) classification and changes in hepatic gene expression based on RNA sequencing. Secondary outcome parameters were changes in intestinal microbiota composition and fasting plasma metabolomics. We observed a trend toward improved necro-inflammatory histology, and found significant changes in expression of hepatic genes involved in inflammation and lipid metabolism following allogenic FMT. Intestinal microbial community structure changed following allogenic FMT, which was associated with changes in plasma metabolites as well as markers of . Conclusion: Allogenic FMT using lean vegan donors in individuals with hepatic steatosis shows an effect on intestinal microbiota composition, which is associated with beneficial changes in plasma metabolites and markers of steatohepatitis.
Collapse
Affiliation(s)
- Julia J Witjes
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Loek P Smits
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Ceyda T Pekmez
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Andrei Prodan
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Abraham S Meijnikman
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Marian A Troelstra
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Kristien E C Bouter
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Adriaan G Holleboom
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Maaike Winkelmeijer
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Ulrich H Beuers
- Department of Gastroenterology and Hepatology Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Krijn van Lienden
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Judith Aron-Wisnewky
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Ville Mannisto
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Jacques J Bergman
- Department of Gastroenterology and Hepatology Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Jurgen H Runge
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Aart J Nederveen
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Prokopis Konstanti
- Laboratory of Microbiology Wageningen University Wageningen the Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology Wageningen University Wageningen the Netherlands
| | - Willem de Vos
- Laboratory of Microbiology Wageningen University Wageningen the Netherlands.,Faculty of Medicine Human Microbiome Research Program University of Helsinki Finland
| | - Joanne Verheij
- Department of Pathology Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Albert K Groen
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands.,Department of Laboratory Medicine University of Groningen University Medical Center Groningen the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| |
Collapse
|
4
|
Expression of Matrix Metalloproteinases and Their Tissue Inhibitors in Peripheral Blood Leukocytes and Plasma of Children with Nonalcoholic Fatty Liver Disease. Mediators Inflamm 2020; 2020:8327945. [PMID: 32963496 PMCID: PMC7501567 DOI: 10.1155/2020/8327945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
Gene expression profiles of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) were evaluated in peripheral blood leukocytes of children with nonalcoholic fatty liver disease (NAFLD). Gene expression patterns were correlated with their plasma protein counterparts, systemic parameters of liver injury, and selected markers of inflammation. The MMP-2, MMP-9, MMP-12, MMP-14, TIMP-1, TIMP-2, TGF-β, and IL-6 transcripts levels were tested by the real-time PCR. Plasma concentrations of MMP-9, TIMP-1, MMP-9/TIMP-1 ratio, MMP-2/TIMP-2 ratio, sCD14, leptin, resistin, IL-1 beta, and IL-6 and serum markers of liver injury were estimated by ELISA. The MMP-9, TIMP-2 expression levels, plasma amounts of MMP-9, TIMP-1, and the MMP-9/TIMP-1 ratio were increased in children with NAFLD. Concentrations of AST, ALT, GGT, and leptin were elevated in serum patients with NAFLD, while concentration of other inflammatory or liver injury markers was unchanged. The MMP-2 and MMP-9 levels correlated with serum liver injury parameters (ALT and GGT concentrations, respectively); there were no other correlations between MMP/TIMP gene expression profiles, their plasma counterparts, and serum inflammatory markers. Association of MMP-2 and MMP-9 expression with serum liver injury parameters (ALT, GGT) may suggest leukocyte engagement in the early stages of NAFLD development which possibly precedes subsequent systemic inflammatory responses.
Collapse
|
5
|
Abstract
Fibrosis prediction is an essential part of the assessment and management of patients with chronic liver disease. Traditionally the gold standard for assessment of fibrosis is liver biopsy, but it suffers from various limitations including risk of patient injury and sampling error. As a result, noninvasive tests of hepatic fibrosis have been used in patients with chronic liver disease due to conditions such as hepatitis B and C, and alcoholic and non-alcoholic fatty liver disease. With the advent of new direct-acting antivirals, hepatic fibrosis staging is an important component of treatment decisions in the care of patients with chronic hepatitis C virus infection. Current limitations of the noninvasive biomarker models include a significant indeterminate range, and a predictive ability that is limited to only a few stages of fibrosis. However newer technologies and novel proteins identified by proteomics and genomics offer the possibility for further refinement and individualisation of biomarker fibrosis models in the future.
Collapse
|
6
|
Chaeyklinthes T, Tiyao V, Roytrakul S, Phaonakrop N, Showpittapornchai U, Pradidarcheep W. Proteomics study of the antifibrotic effects of α-mangostin in a rat model of renal fibrosis. ASIAN BIOMED 2019. [DOI: 10.1515/abm-2019-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Renal fibrosis is a consequence of a “faulty” wound-healing mechanism that results in the accumulation of extracellular matrix, which could lead to the impairment of renal functions. α-Mangostin (AM) may prevent the formation of liver fibrosis, but there has yet to be a conclusive investigation of its effect on renal fibrosis.
Objectives
To investigate the renoprotective effect of AM against thioacetamide (TAA)-induced renal fibrosis in rats at the morphological and proteomic levels.
Methods
We divided 18 male Wistar rats into 3 groups: a control group, a TAA-treated group, and a TAA + AM group. The various agents used to treat the rats were administered intraperitoneally over 8 weeks. Subsequently, the morphology of renal tissue was analyzed by histology using Sirius Red staining and the relative amount of stained collagen fibers quantified using ImageJ analysis. One-dimensional gel liquid chromatography with tandem mass spectrometry (GeLC-MS/MS) was used to track levels of protein expression. Proteomic bioinformatics tools including STITCH were used to correlate the levels of markers known to be involved in fibrosis with Sirius Red-stained collagen scoring.
Results
Histology revealed that AM could reduce the relative amount of collagen fibers significantly compared with the TAA group. Proteomic analysis revealed the levels of 4 proteins were modulated by AM, namely CASP8 and FADD-like apoptosis regulator (Cflar), Ragulator complex protein LAMTOR3 (Lamtor3), mitogen-activated protein kinase kinase kinase 14 (Map3k14), and C-Jun-amino-terminal kinase-interacting protein 3 (Mapk8ip3).
Conclusion
AM can attenuate renal fibrosis by the suppression of pathways involving Cflar, Lamtor3, Map3k14, and Mapk8ip3.
Collapse
Affiliation(s)
- Thana Chaeyklinthes
- Department of Science, Mahidol University International College, Mahidol University , Nakhon Pathom 73170 , Thailand
| | - Vilailak Tiyao
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University , Bangkok 10110 , Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency , Pathum Thani 12120 , Thailand
| | - Narumon Phaonakrop
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency , Pathum Thani 12120 , Thailand
| | | | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University , Bangkok 10110 , Thailand
| |
Collapse
|
7
|
Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem 2019; 63:417-432. [DOI: 10.1042/ebc20190001] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Abstract
The extracellular matrix (ECM) is a complex assembly of hundreds of proteins that constitutes the scaffold of multicellular organisms. In addition to providing architectural and mechanical support to the surrounding cells, it conveys biochemical signals that regulate cellular processes including proliferation and survival, fate determination, and cell migration. Defects in ECM protein assembly, decreased ECM protein production or, on the contrary, excessive ECM accumulation, have been linked to many pathologies including cardiovascular and skeletal diseases, cancers, and fibrosis. The ECM thus represents a potential reservoir of prognostic biomarkers and therapeutic targets. However, our understanding of the global protein composition of the ECM and how it changes during pathological processes has remained limited until recently.
In this mini-review, we provide an overview of the latest methodological advances in sample preparation and mass spectrometry-based proteomics that have permitted the profiling of the ECM of now dozens of normal and diseased tissues, including tumors and fibrotic lesions.
Collapse
|
8
|
Lim JW, Dillon J, Miller M. Proteomic and genomic studies of non-alcoholic fatty liver disease - clues in the pathogenesis. World J Gastroenterol 2014; 20:8325-8340. [PMID: 25024592 PMCID: PMC4093687 DOI: 10.3748/wjg.v20.i26.8325] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/14/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widely prevalent hepatic disorder that covers wide spectrum of liver pathology. NAFLD is strongly associated with liver inflammation, metabolic hyperlipidaemia and insulin resistance. Frequently, NAFLD has been considered as the hepatic manifestation of metabolic syndrome. The pathophysiology of NAFLD has not been fully elucidated. Some patients can remain in the stage of simple steatosis, which generally is a benign condition; whereas others can develop liver inflammation and progress into non-alcoholic steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. The mechanism behind the progression is still not fully understood. Much ongoing proteomic researches have focused on discovering the unbiased circulating biochemical markers to allow early detection and treatment of NAFLD. Comprehensive genomic studies have also begun to provide new insights into the gene polymorphism to understand patient-disease variations. Therefore, NAFLD is considered a complex and mutifactorial disease phenotype resulting from environmental exposures acting on a susceptible polygenic background. This paper reviewed the current status of proteomic and genomic studies that have contributed to the understanding of NAFLD pathogenesis. For proteomics section, this review highlighted functional proteins that involved in: (1) transportation; (2) metabolic pathway; (3) acute phase reaction; (4) anti-inflammatory; (5) extracellular matrix; and (6) immune system. In the genomic studies, this review will discuss genes which involved in: (1) lipolysis; (2) adipokines; and (3) cytokines production.
Collapse
|
9
|
Zhao Q, Qin CY, Zhao ZH, Fan YC, Wang K. Epigenetic modifications in hepatic stellate cells contribute to liver fibrosis. TOHOKU J EXP MED 2013; 229:35-43. [PMID: 23238615 DOI: 10.1620/tjem.229.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Liver fibrosis represents the final common pathway of virtually all types of chronic liver diseases, and it has been a major public health concern. Many genes have been demonstrated to be involved in the pathogenesis of liver fibrosis, while the mechanisms underlying gene regulation still needs further research. On the other hand, hepatic stellate cells (HSCs) are quiescent cells in the perisinusoidal space in liver. HSCs facilitate hepatocytes interactions via releasing soluble inflammatory factors and producing extracellular matrix. HSCs can be activated in response to liver injury, and they differentiate to myofibroblasts, which greatly contribute to the fibrogenesis process. Various epigenetic procedures, including DNA methylation, histone modification and formation of particular chromatin structure, play crucial roles in the gene transcriptional expression in HSCs, regulating various vital processes. For instance, epigenetic modulation on the peroxisome proliferator-activated receptor gamma (PPAR-γ) gene promoter accounts for HSC differentiation through interacting pathways. Aberrant expression of a series of histones and chemokines in activated HSCs can aggravate inflammation and oxidative stress, which in turn promotes differentiation of HSCs to myofibroblasts and enhances the whole fibrogenesis process. Degradation of extracellular matrix is also regulated through epigenetic modulation on matrix associated enzymes. Moreover, fibrosis-related epigenetic modifications in the parental generation may be inherited to their offspring. In this review, we firstly summarize the vital epigenetic modifications of fibrosis-related genes in HSCs, and highlight specific nucleic acid sequences and structures in gene promoters as important action sites, which may provide indicators for liver fibrosis diagnosis in the future.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, Shangdong, PR China.
| | | | | | | | | |
Collapse
|
10
|
Basaranoglu M, Basaranoglu G, Sentürk H. From fatty liver to fibrosis: A tale of “second hit”. World J Gastroenterol 2013; 19:1158-65. [PMID: 23483818 PMCID: PMC3587471 DOI: 10.3748/wjg.v19.i8.1158] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/13/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023] Open
Abstract
Although much is known about how fat accumulates in the liver, much remains unknown about how this causes sustained hepatocellular injury. The consequences of injury are recognized as nonalcoholic steatohepatitis (NASH) and progressive fibrosis. The accumulation of fat within the hepatocytes sensitizes the liver to injury from a variety of causes and the regenerative capacity of a fatty liver is impaired. An additional stressor is sometimes referred to as a “second hit” in a paradigm that identifies the accumulation of fat as the “first hit”. Possible candidates for the second hit include increased oxidative stress, lipid peroxidation and release of toxic products such as malondialdehyde and 4-hydroxynonenal, decreased antioxidants, adipocytokines, transforming growth factor (TGF)-β, Fas ligand, mitochondrial dysfunction, fatty acid oxidation by CYPs (CYP 2E1, 4A10 and 4A14), and peroxisomes, excess iron, small intestinal bacterial overgrowth, and the generation of gut-derived toxins such as lipopolysaccharide and ethanol. Oxidative stress is one of the most popular proposed mechanisms of hepatocellular injury. Previous studies have specifically observed increased plasma and tissue levels of oxidative stress markers and lipid peroxidation products, with reduced hepatic and plasma levels of antioxidants. There is also some indirect evidence of the benefit of antioxidants such as vitamin E, S-adenosylmethionine, betaine, phlebotomy to remove iron, and N-acetylcysteine in NASH. However, a causal relationship or a pathogenic link between NASH and oxidative stress has not been established so far. A number of sources of increased reactive oxygen species production have been established in NASH that include proinflammatory cytokines such as tumor necrosis factor (TNF)-α, iron overload, overburdened and dysfunctional mitochondria, CYPs, and peroxisomes. Briefly, the pathogenesis of NASH is multifactorial and excess intracellular fatty acids, oxidant stress, ATP depletion, and mitochondrial dysfunction are important causes of hepatocellular injury in the steatotic liver.
Collapse
|
11
|
Vanderschaeghe D, Guttman A, Callewaert N. High-throughput profiling of the serum N-glycome on capillary electrophoresis microfluidics systems. Methods Mol Biol 2013; 919:87-96. [PMID: 22976093 DOI: 10.1007/978-1-62703-029-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glycosylation research has gained significant attention in several research fields including immunology, protein production, and biomarker discovery. However, complex and time-consuming protocols are often necessary to obtain suitable samples for analysis. We here describe a short and robust assay to prepare 8-aminopyrene-1,3,6-trisulphonic acid-labeled N-glycans from serum samples. It only involves the subsequent addition of reagents and incubation in a PCR thermocycler. Moreover, this assay allows the detection of these glycans, which are only present in minute amounts in serum, on high-throughput microfluidics CE platforms including the MCE-202 MultiNA, 2100 Bioanalyzer, and eGene system. Using this clinical glycomics assay, we could reliably measure GlycoHepatoTest, a panel of biomarkers allowing the follow-up of chronic liver disease patients from the early stage onward.
Collapse
Affiliation(s)
- Dieter Vanderschaeghe
- Department for Molecular Biomedical Research, Unit for Molecular Glycobiology, VIB, Ghent, Belgium
| | | | | |
Collapse
|
12
|
Explore the Molecular Mechanism of Apoptosis Induced by Tanshinone IIA on Activated Rat Hepatic Stellate Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:734987. [PMID: 23346212 PMCID: PMC3546466 DOI: 10.1155/2012/734987] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/28/2012] [Accepted: 12/07/2012] [Indexed: 02/06/2023]
Abstract
Since the activated hepatic stellate cell (HSC) is the predominant event in the progression of liver fibrosis, selective clearance of HSC should be a potential strategy in therapy. Salvia miltiorrhiza roots ethanol extract (SMEE) remarkably ameliorates liver fibrogenesis in DMN-administrated rat model. Next, tanshinone IIA (Tan IIA), the major compound of SMEE, significantly inhibited rat HSC viability and led to cell apoptosis. Proteome tools elucidated that increased prohibitin is involved in cell cycle arrest under Tan IIA is the treatment while knockdown of prohibitin could attenuate Tan IIA-induced apoptosis. In addition, Tan IIA mediated translocation of C-Raf which interacted with prohibitin activating MAPK and inhibiting AKT signaling in HSC. MAPK antagonist suppressed ERK phosphorylation which was necessary for Tan IIA-induced expression of Bax and cytochrome c. PD98059 also abolished Tan IIA-modulated cleavage of PARP. Our findings suggested that Tan IIA could contribute to apoptosis of HSC by promoting ERK-Bax-caspase pathways through C-Raf/prohibitin complex.
Collapse
|
13
|
Gehrau R, Mas V, Archer K, Maluf D. Biomarkers of disease differentiation: HCV recurrence versus acute cellular rejection. FIBROGENESIS & TISSUE REPAIR 2012; 5:S11. [PMID: 23259646 PMCID: PMC3368799 DOI: 10.1186/1755-1536-5-s1-s11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The wound-healing process induced by chronic hepatitis C virus (HCV) infection triggers liver damage characterized by fibrosis development and finally cirrhosis. Liver Transplantation (LT) is the optimal surgical treatment for HCV-cirrhotic patients at end-stage liver disease. However, acute cellular rejection (ACR) and HCV recurrence disease represent two devastating complications post-LT. The accurate differential diagnosis between both conditions is critical for treatment choice, and similar histological features represent a challenge for pathologists. Moreover, the HCV recurrence disease severity is highly variable post-LT. HCV recurrence disease progression is characterized by an accelerated fibrogenesis process, and almost 30% of those patients develop cirrhosis at 5-years of follow-up. Whole-genome gene expression (WGE) analyses through well-defined oligonucleotide microarray platforms represent a powerful tool for the molecular characterization of biological process. In the present manuscript, the utility of microarray technology is applied for the ACR and HCV-recurrence biological characterization in post-LT liver biopsy samples. Moreover, WGE analysis was performed to identify predictive biomarkers of HCV recurrence severity in formalin-fixed paraffin-embedded liver biopsies prospectively collected.
Collapse
Affiliation(s)
- Ricardo Gehrau
- University of Virginia, Department of Surgery, Transplant Division, P.O. Box 800625, 904 Lane Rd, Charlottesville, VA, 22908-0625, USA
| | - Valeria Mas
- University of Virginia, Department of Surgery, Transplant Division, P.O. Box 800625, 904 Lane Rd, Charlottesville, VA, 22908-0625, USA
| | - Kellie Archer
- Virginia Commonwealth University, Department of Biostatistics P.O. Box 980032, 730 East Broad Street, Room 3006, Richmond, VA 23298-0032, USA
| | - Daniel Maluf
- University of Virginia, Department of Surgery, Transplant Division, P.O. Box 800625, 904 Lane Rd, Charlottesville, VA, 22908-0625, USA
| |
Collapse
|
14
|
Salgado-Somoza A, Teijeira-Fernández E, Fernández ÁL, González-Juanatey JR, Eiras S. Changes in lipid transport-involved proteins of epicardial adipose tissue associated with coronary artery disease. Atherosclerosis 2012; 224:492-9. [PMID: 22959663 DOI: 10.1016/j.atherosclerosis.2012.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 06/08/2012] [Accepted: 07/01/2012] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Recent studies have focused on the potential role of epicardial adipose tissue (EAT) in the physiopathology of several metabolic and cardiovascular diseases, especially coronary artery disease (CAD). We aimed to study whether there are differences in the proteome and the secretome between epicardial and subcutaneous adipose tissue (SAT) from patients with and without CAD. METHODS EAT and SAT samples were collected from 64 patients undergoing elective cardiac surgery either for coronary artery bypass grafting or valve surgery. One or two-dimensional electrophoresis were performed on tissue samples and media collected at 3, 6, 24 or 48 of tissue culture. Protein identification was performed with mass spectrometry, and the results were then validated with Western blot or enzyme immunoassay. mRNA expression levels were analysed by real time polymerase chain reaction. RESULTS The release of several proteins was found to be higher in EAT that in SAT. Remarkably, there were higher levels of apolipoprotein A-I and glutation S-transferase P release, whereas mRNA expression of fatty acid binding protein 4 was lower in EAT. Although apolipoprotein A-I protein quantity in EAT was similar between CAD and non CAD patients, its released levels from this fat pad were lower in CAD. CONCLUSION EAT and SAT show different profiles of protein release and a different pattern was also found in samples from patients with CAD. These findings might support the hypothesis that EAT plays an interesting role in the physiopathology of atherosclerosis and CAD.
Collapse
Affiliation(s)
- Antonio Salgado-Somoza
- Cardiovascular Division, Health Research Institute, University Clinical Hospital of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
15
|
Abstract
This review provides an introduction to mass spectrometry based proteomics and discusses several proteomics approaches that are relevant in understanding the pathophysiology of fibrotic disorders and the approaches that are frequently used in biomarker discovery.
Collapse
Affiliation(s)
- Marjan Gucek
- NHLBI Proteomics Core , National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Aroor AR, Roy LJ, Restrepo RJ, Mooney BP, Shukla SD. A proteomic analysis of liver after ethanol binge in chronically ethanol treated rats. Proteome Sci 2012; 10:29. [PMID: 22545783 PMCID: PMC3504578 DOI: 10.1186/1477-5956-10-29] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/30/2012] [Indexed: 12/16/2022] Open
Abstract
Background Binge ethanol in rats after chronic ethanol exposure augments necrosis and steatosis in the liver. In this study, two-dimensional gel electrophoresis proteomic profiles of liver of control, chronic ethanol, control-binge, and chronic ethanol- binge were compared. Results The proteomic analysis identified changes in protein abundance among the groups. The levels of carbonic anhydrase 3 (CA3) were decreased after chronic ethanol and decreased further after chronic ethanol-binge. Ethanol binge alone in control rats had no effect on this protein suggesting its possible role in increased susceptibility to injury by binge after chonic ethanol treatment. A protein spot, in which both cytosolic isocitrate dehydrogenase (IDH1) and glutamine synthetase (GS) were identified, showed a small decrease after chronic ethanol binge but western blot demonstrated significant decrease only for glutamine synthetase in chronic ethanol treated rats. The level of gluathione S-transferase mu isoform (GSTM1) increased after chronic ethanol but was lower after chronic ethanol-binge compared to chronic ethanol treatment. The protein levels of the basic form of protein disulfide isomerase associated protein 3 (PDIA3) were significantly decreased and the acidic forms were increased after chronic ethanol- binge but not in chronic ethanol treated rats or ethanol binge in control rats. The significant changes in proteome profile in chronic ethanol binge were accompanied by a marked increase in liver injury as evidenced by enhanced steatosis, necrosis, increased 4-hydroxynonenal labeled proteins, CYP2E1 expression, and decreased histone H2AX phosphorylation. Conclusions Given the role of CA3, IDH1 and GST in oxidative stress; PDIA3 in protein quality control, apoptosis and DNA repair and decreased glutamine synthetase as a sensitive marker of pericentral liver injury this proteome study of chronic ethanol-binge rat model identifies these proteins for the first time as molecular targets with potential role in progression of liver injury by binge ethanol drinking.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA.
| | | | | | | | | |
Collapse
|
17
|
Hannivoort RA, Hernandez-Gea V, Friedman SL. Genomics and proteomics in liver fibrosis and cirrhosis. FIBROGENESIS & TISSUE REPAIR 2012; 5:1. [PMID: 22214245 PMCID: PMC3260086 DOI: 10.1186/1755-1536-5-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/03/2012] [Indexed: 12/15/2022]
Abstract
Genomics and proteomics have become increasingly important in biomedical science in the past decade, as they provide an opportunity for hypothesis-free experiments that can yield major insights not previously foreseen when scientific and clinical questions are based only on hypothesis-driven approaches. Use of these tools, therefore, opens new avenues for uncovering physiological and pathological pathways. Liver fibrosis is a complex disease provoked by a range of chronic injuries to the liver, among which are viral hepatitis, (non-) alcoholic steatohepatitis and autoimmune disorders. Some chronic liver patients will never develop fibrosis or cirrhosis, whereas others rapidly progress towards cirrhosis in a few years. This variety can be caused by disease-related factors (for example, viral genotype) or host-factors (genetic/epigenetic). It is vital to establish accurate tools to identify those patients at highest risk for disease severity or progression in order to determine who are in need of immediate therapies. Moreover, there is an urgent imperative to identify non-invasive markers that can accurately distinguish mild and intermediate stages of fibrosis. Ideally, biomarkers can be used to predict disease progression and treatment response, but these studies will take many years due to the requirement for lengthy follow-up periods to assess outcomes. Current genomic and proteomic research provides many candidate biomarkers, but independent validation of these biomarkers is lacking, and reproducibility is still a key concern. Thus, great opportunities and challenges lie ahead in the field of genomics and proteomics, which, if successful, could transform the diagnosis and treatment of chronic fibrosing liver diseases.
Collapse
Affiliation(s)
- Rebekka A Hannivoort
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
18
|
Liu C. Serum amyloid a protein in clinical cancer diagnosis. Pathol Oncol Res 2011; 18:117-21. [PMID: 21901273 DOI: 10.1007/s12253-011-9459-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/31/2011] [Indexed: 12/12/2022]
Abstract
The serum amyloid A (SAA) protein is an acute phase protein that is synthesized under the regulation of inflammatory cytokines during both acute and chronic inflammation. It is suggested that the SAA increases correlate with many types of carcinogenesis and neoplastic diseases. Th changes in SAA in serum could therefore indicate the progress and malignancy of the disease, as well as the host responses. The present paper reviewed the rationale of using SAA as potential cancer biomarker in clinical diagnosis, including the contribution and involvement of SAA in cancer growth and development. Then we discussed the current applications of SAA in diagnosis and tracing of different types of cancers. Finally the proteomics techniques, especially the SELDI-TOF MS to identify SAA in serum from patients were appreciated as an important manner in clinical diagnosis.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
19
|
Masuda T, Miyoshi E. Cancer biomarkers for hepatocellular carcinomas: from traditional markers to recent topics. Clin Chem Lab Med 2011; 49:959-66. [PMID: 21428856 DOI: 10.1515/cclm.2011.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinomas (HCC) are the fifth most common tumor type and the third most common cause of cancer-related death worldwide. Some tumor markers for HCC, such as α-fetoprotein and des-γ-carboxyprothrombin, are used clinically. Recent advances in proteomics and glyco-proteomics might provide various types of novel tumor markers for HCC. While the clinical availability of these tumor markers is important, the molecular mechanisms underlying the production of tumor markers requires further clarification. Our group has investigated the glycobiology of tumor markers. In this review, we describe the impact of novel HCC markers and their possible implications for clinical use.
Collapse
Affiliation(s)
- Tomomi Masuda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
20
|
Chen BY, Qu P, Tie R, Zhu MZ, Zhu XX, Yu J. Protecting effects of vasonatrin peptide against carbon tetrachloride-induced liver fibrosis. ACTA ACUST UNITED AC 2010; 164:139-43. [PMID: 20619296 DOI: 10.1016/j.regpep.2010.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/31/2010] [Accepted: 06/28/2010] [Indexed: 02/02/2023]
Abstract
In order to investigate the effects of vasonatrin peptide (VNP), a novel man-made natriuretic peptide, on liver fibrosis, mice received carbon tetrachloride (CCl(4)) injection for 12weeks and with or without VNP treatment during the last 6weeks. Hematoxylin-eosin (HE) staining and Sirius red staining were performed to evaluate the status of liver fibrosis. After treatment of VNP, DNA and collagen synthesis of cultured HSC-T6 hepatic stellate cells were assessed by [(3)H]-thymidine and [(3)H]-proline incorporation, respectively. Additionally, involved signaling pathway was identified by radioimmunoassay to detect the levels of intracellular cGMP and by mimicking experiments using 8-br-cGMP (a membrane-permeable cGMP analog). Also, blocking experiments were performed using HS-142-1, an antagonist of guanylyl cyclase-coupled natriuretic peptide receptor (NPR), or KT-5823, the cGMP-dependent protein kinase (PKG) inhibitor. As a result, VNP markedly alleviated CCl(4)-induced liver fibrosis in mice. In vitro, HSC-T6 cells demonstrated a dose-dependent reduction of DNA and collagen synthesis in the presence VNP. In addition, VNP significantly increased the intracellular levels of cGMP. These effects of VNP were mimicked by 8-br-cGMP, although inhibited by HS-142-1 or KT-5823. Taken together, VNP ameliorates liver fibrosis by inhibiting collagen production from hepatic stellate cells via guanylyl cyclase-coupled NPR/cGMP/PKG pathway, indicating that VNP might be a new effective reagent in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Bao-Ying Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
21
|
McPhail MJW, Bajaj JS, Thomas HC, Taylor-Robinson SD. Pathogenesis and diagnosis of hepatic encephalopathy. Expert Rev Gastroenterol Hepatol 2010; 4:365-78. [PMID: 20528123 DOI: 10.1586/egh.10.32] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic encephalopathy (HE) is a common and potentially devastating neuropsychiatric complication of acute liver failure and cirrhosis. Even in its mildest form, minimal HE (MHE), the syndrome significantly impacts daily living and heralds progression to overt HE. There is maturity in the scientific understanding of the cellular processes that lead to functional and structural abnormalities in astrocytes. Hyperammonemia and subsequent cell swelling is a key pathophysiological abnormality, but this aspect alone is insufficient to fully explain the complex neurotransmitter abnormalities that may be observable using sophisticated imaging techniques. Inflammatory cytokines, reactive oxygen species activation and the role of neurosteroids on neurotransmitter binding sites are emerging pathological lines of inquiry that have yielded important new information on the processes underlying HE and offer promise of future therapeutic targets. Overt HE remains a clinical diagnosis and the neurophysiological and imaging modalities used in research studies have not transferred successfully to the clinical situation. MHE is best characterized by psychometric evaluation, but these tests can be lengthy to perform and require specific expertise to interpret. Simpler computer-based tests are now available and perhaps offer an opportunity to screen, diagnose and monitor MHE in a clinical scenario, although large-scale studies comparing the different techniques have not been undertaken. There is a discrepancy between the depth of understanding of the pathophysiology of HE and the translation of this understanding to a simple, easily understood diagnostic and longitudinal marker of disease. This is a present area of focus for the management of HE.
Collapse
Affiliation(s)
- Mark J W McPhail
- Hepatology Section, Department of Medicine, 10th Floor QEQM Wing, St Mary's Hospital Campus, Imperial College London, South Wharf Street, London W2 1NY, UK
| | | | | | | |
Collapse
|