1
|
Thorne AM, Hoekzema M, Porte RJ, Kuipers F, de Meijer VE, Wolters JC. Comparative Analysis of Digestion Methods for Bile Proteomics: The Key to Unlocking Biliary Biomarker Potential. Anal Chem 2024; 96:14393-14404. [PMID: 39186690 PMCID: PMC11391409 DOI: 10.1021/acs.analchem.4c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
BACKGROUND Bile's potential to reflect the health of the biliary system has led to increased attention, with proteomic analysis offering deeper understanding of biliary diseases and potential biomarkers. With the emergence of normothermic machine perfusion (NMP), bile can be easily collected and analyzed. However, the composition of bile can make the application of proteomics challenging. This study systematically evaluated various trypsin digestion methods to optimize proteomics of bile from human NMP livers. METHODS Bile was collected from 12 human donor livers that were accepted for transplantation after the NMP viability assessment. We performed tryptic digestion using six different methods: in-gel, in-solution, S-Trap, SMART, EasyPep, and filter-aided sample purification, with or without additional precipitation before digestion. Proteins were analyzed using untargeted proteomics. Methods were assessed for total protein IDs, variation, and protein characteristics to determine the most optimal method. RESULTS Methods involving precipitation surpassed crude methods in protein identifications (4500 vs 3815) except for in-gel digestion. Filtered data (40%) resulted in 3192 versus 2469 for precipitated and crude methods, respectively. We found minimal differences in mass, cellular components, or hydrophobicity of proteins between methods. Intermethod variability was notably diverse, with in-gel, in-solution, and EasyPep outperforming others. Age-related biological comparisons revealed upregulation of metabolic-related processes in younger donors and immune response and cell cycle-related processes in older donors. CONCLUSIONS Variability between methods emphasizes the importance of cross-validation across multiple analytical approaches to ensure robust analysis. We recommend the in-gel crude method for its simplicity and efficiency, avoiding additional precipitation steps. Sample processing speed, cost, cleanliness, and reproducibility should be considered when a digestion method is selected for bile proteomics.
Collapse
Affiliation(s)
- Adam M Thorne
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center, 9713 GZ Groningen, The Netherlands
- UMCG Comprehensive Transplant Center, 9700 RB Groningen, The Netherlands
| | - Martijn Hoekzema
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center, 9713 GZ Groningen, The Netherlands
- Department of Applied Life Sciences, Institute for Life Science and Technology, Hanze University Groningen, 9747 AS Groningen, The Netherlands
| | - Robert J Porte
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center, 9713 GZ Groningen, The Netherlands
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB and Transplant Surgery, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Folkert Kuipers
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen and University Medical Center Groningen, 9713 AV Groningen, The Netherlands
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Vincent E de Meijer
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center, 9713 GZ Groningen, The Netherlands
- UMCG Comprehensive Transplant Center, 9700 RB Groningen, The Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
2
|
Snashall CM, Sutton CW, Faro LL, Ceresa C, Ploeg R, Shaheed SU. Comparison of in-gel and in-solution proteolysis in the proteome profiling of organ perfusion solutions. Clin Proteomics 2023; 20:51. [PMID: 37968584 PMCID: PMC10648346 DOI: 10.1186/s12014-023-09440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
PURPOSE The organ perfusion solution (perfusate), collected at clinically and temporally significant stages of the organ preservation and transplantation process, provides a valuable insight into the biological status of an organ over time and prior to reperfusion (transplantation) in the recipient. The objective of this study was to assess two bottom-up proteomics workflows for the extraction of tryptic peptides from the perfusate. EXPERIMENTAL DESIGN Two different kinds of perfusate samples from kidney and liver trials were profiled using liquid chromatography-mass spectrometry (LC-MS/MS). The preparation of clean peptide mixtures for downstream analysis was performed considering different aspects of sample preparation; protein estimation, enrichment, in-gel and urea-based in-solution digestion. RESULTS In-solution digestion of perfusate allowed identification of the highest number of peptides and proteins with greater sequence coverage and higher confidence data in kidney and liver perfusate. Key pathways identified by gene ontology analysis included complement, coagulation and antioxidant pathways, and a number of biomarkers previously linked to ischemia-reperfusion injury were also observed in perfusate. CONCLUSIONS This study showed that in-solution digestion is a more efficient method for LC-MS/MS analysis of kidney and liver organ perfusion solutions. This method is also quicker and easier than in-gel digestion, allowing for greater sample throughput, with fewer opportunities for experimental error or peptide loss.
Collapse
Affiliation(s)
- Corinna M Snashall
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Chris W Sutton
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Letizia Lo Faro
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Carlo Ceresa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Rutger Ploeg
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Leiden University Medical Centre, Leiden University, Leiden, Netherlands
- Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Sadr Ul Shaheed
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
- NHSBT Oxford Blood Donor Centre John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9BQ, UK.
| |
Collapse
|
3
|
Farkona S, Pastrello C, Konvalinka A. Proteomics: Its Promise and Pitfalls in Shaping Precision Medicine in Solid Organ Transplantation. Transplantation 2023; 107:2126-2142. [PMID: 36808112 DOI: 10.1097/tp.0000000000004539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Solid organ transplantation is an established treatment of choice for end-stage organ failure. However, all transplant patients are at risk of developing complications, including allograft rejection and death. Histological analysis of graft biopsy is still the gold standard for evaluation of allograft injury, but it is an invasive procedure and prone to sampling errors. The past decade has seen an increased number of efforts to develop minimally invasive procedures for monitoring allograft injury. Despite the recent progress, limitations such as the complexity of proteomics-based technology, the lack of standardization, and the heterogeneity of populations that have been included in different studies have hindered proteomic tools from reaching clinical transplantation. This review focuses on the role of proteomics-based platforms in biomarker discovery and validation in solid organ transplantation. We also emphasize the value of biomarkers that provide potential mechanistic insights into the pathophysiology of allograft injury, dysfunction, or rejection. Additionally, we forecast that the growth of publicly available data sets, combined with computational methods that effectively integrate them, will facilitate a generation of more informed hypotheses for potential subsequent evaluation in preclinical and clinical studies. Finally, we illustrate the value of combining data sets through the integration of 2 independent data sets that pinpointed hub proteins in antibody-mediated rejection.
Collapse
Affiliation(s)
- Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| |
Collapse
|
4
|
Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics (Basel) 2022; 12:diagnostics12071742. [PMID: 35885645 PMCID: PMC9315466 DOI: 10.3390/diagnostics12071742] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.
Collapse
|
5
|
Shaikh A, Olkhanud PB, Gangaplara A, Kone A, Patel S, Gucek M, Fitzhugh CD. Thrombospondin-1, Platelet Factor 4, and Galectin-1 are Associated with Engraftment in Patients with Sickle Cell Disease Who Underwent Haploidentical HSCT. Transplant Cell Ther 2022; 28:249.e1-249.e13. [PMID: 35131485 PMCID: PMC9176382 DOI: 10.1016/j.jtct.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Sickle cell disease (SCD) is an inherited red blood cell disorder that leads to significant morbidity and early mortality. The most widely available curative approach remains allogeneic hematopoietic stem cell transplantation (HSCT). HLA-haploidentical (haplo) HSCT expands the donor pool considerably and is a practical alternative for these patients, but traditionally with an increased risk of allograft rejection. Biomarkers in patient plasma could potentially help predict HSCT outcome and allow treatment at an early stage to reverse or prevent graft rejection. Reliable, noninvasive methods to predict engraftment or rejection early after HSCT are needed. We sought to detect variations in the plasma proteomes of patients who engrafted compared with those who rejected their grafts. We used a mass spectrometry-based proteomics approach to identify candidate biomarkers associated with engraftment and rejection by comparing plasma samples obtained from 9 engrafted patients and 10 patients who experienced graft rejection. A total of 1378 proteins were identified, 45 of which were differentially expressed in the engrafted group compared with the rejected group. Based on bioinformatics analysis results, information from the literature, and immunoassay availability, 7 proteins-thrombospondin-1 (Tsp-1), platelet factor 4 (Pf-4), talin-1, moesin, cell division control protein 42 homolog (CDC42), galectin-1 (Gal-1), and CD9-were selected for further analysis. We compared these protein concentrations among 35 plasma samples (engrafted, n = 9; rejected, n = 10; healthy volunteers, n = 8; nontransplanted SCD, n = 8). ELISA analysis confirmed the significant up-regulation of Tsp-1, Pf-4, and Gal-1 in plasma samples from engrafted patients compared with rejected patients, healthy African American volunteers, and the nontransplanted SCD group (P < .01). By receiver operating characteristic analysis, these 3 proteins distinguished engrafted patients from the other groups (area under the curve, >0.8; P < .05). We then evaluated the concentration of these 3 proteins in samples collected pre-HSCT and at days +30, +60, +100, and +180 post-HSCT. The results demonstrate that Tsp-1 and Pf-4 stratified engrafted patients as early as day 60 post-HSCT (P < .01), and that Gal-1 was significantly higher in engrafted patients as early as day 30 post-HSCT (P < .01). We also divided the rejected group into those who experienced primary (n = 5) and secondary graft rejection (n = 5) and found that engrafted patients had significantly higher Tsp-1 levels compared with patients who developed primary graft rejection at days +60 and +100 (P < .05), as well as higher Pf-4 levels compared with patients who developed primary graft rejection at post-transplantation (PT) day 100. Furthermore, Tsp-1 levels were significantly higher at PT days 60 and 100 and Pf-4 levels were higher at PT day 100 in engrafted patients compared with those who experienced secondary graft rejection. Increased concentrations of plasma Gal-1, Tsp-1, and Pf-4 could reflect increased T regulatory cells, IL-10, and TGF-β, which are essential players in the initiation of immunologic tolerance. These biomarkers may provide opportunities for preemptive intervention to minimize the incidence of graft rejection.
Collapse
Affiliation(s)
- Ahmad Shaikh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; Department of Biology, The Catholic University of America, Washington, DC; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Purevdorj B Olkhanud
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Abdoul Kone
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sajni Patel
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Courtney D Fitzhugh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
6
|
López-López V, Pérez-Sánz F, de Torre-Minguela C, Marco-Abenza J, Robles-Campos R, Sánchez-Bueno F, Pons JA, Ramírez P, Baroja-Mazo A. Proteomics in Liver Transplantation: A Systematic Review. Front Immunol 2021; 12:672829. [PMID: 34381445 PMCID: PMC8350337 DOI: 10.3389/fimmu.2021.672829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023] Open
Abstract
Background Although proteomics has been employed in the study of several models of liver injury, proteomic methods have only recently been applied not only to biomarker discovery and validation but also to improve understanding of the molecular mechanisms involved in transplantation. Methods The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology and the guidelines for performing systematic literature reviews in bioinformatics (BiSLR). The PubMed, ScienceDirect, and Scopus databases were searched for publications through April 2020. Proteomics studies designed to understand liver transplant outcomes, including ischemia-reperfusion injury (IRI), rejection, or operational tolerance in human or rat samples that applied methodologies for differential expression analysis were considered. Results The analysis included 22 studies after application of the inclusion and exclusion criteria. Among the 497 proteins annotated, 68 were shared between species and 10 were shared between sample sources. Among the types of studies analyzed, IRI and rejection shared a higher number of proteins. The most enriched pathway for liver biopsy samples, IRI, and rejection was metabolism, compared to cytokine-cytokine receptor interactions for tolerance. Conclusions Proteomics is a promising technique to detect large numbers of proteins. However, our study shows that several technical issues such as the identification of proteoforms or the dynamic range of protein concentration in clinical samples hinder the successful identification of biomarkers in liver transplantation. In addition, there is a need to minimize the experimental variability between studies, increase the sample size and remove high-abundance plasma proteins.
Collapse
Affiliation(s)
- Victor López-López
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.,Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Fernando Pérez-Sánz
- Biomedical Informatic and Bioinformatic Platform, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Carlos de Torre-Minguela
- Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | | | - Ricardo Robles-Campos
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.,Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Francisco Sánchez-Bueno
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.,Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - José A Pons
- Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Gastroenterology, Unit of Hepatology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Ramírez
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.,Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Alberto Baroja-Mazo
- Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
7
|
Sigdel TK, Schroeder AW, Yang JYC, Sarwal RD, Liberto JM, Sarwal MM. Targeted Urine Metabolomics for Monitoring Renal Allograft Injury and Immunosuppression in Pediatric Patients. J Clin Med 2020; 9:jcm9082341. [PMID: 32707952 PMCID: PMC7465632 DOI: 10.3390/jcm9082341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Despite new advancements in surgical tools and therapies, exposure to immunosuppressive drugs related to non-immune and immune injuries can cause slow deterioration and premature failure of organ transplants. Diagnosis of these injuries by non-invasive urine monitoring would be a significant clinical advancement for patient management, especially in pediatric cohorts. We investigated the metabolomic profiles of biopsy matched urine samples from 310 unique kidney transplant recipients using gas chromatography-mass spectrometry (GC-MS). Focused metabolite panels were identified that could detect biopsy confirmed acute rejection with 92.9% sensitivity and 96.3% specificity (11 metabolites) and could differentiate BK viral nephritis (BKVN) from acute rejection with 88.9% sensitivity and 94.8% specificity (4 metabolites). Overall, targeted metabolomic analyses of biopsy-matched urine samples enabled the generation of refined metabolite panels that non-invasively detect graft injury phenotypes with high confidence. These urine biomarkers can be rapidly assessed for non-invasive diagnosis of specific transplant injuries, opening the window for precision transplant medicine.
Collapse
|
8
|
Wang W, Wang B, Liu C, Yan J, Xiong X, Wang X, Yang J, Guo B, Huang C. Serum proteomic predicts effectiveness and reveals potential biomarkers for complications in liver transplant patients. Aging (Albany NY) 2020; 12:12119-12141. [PMID: 32530819 PMCID: PMC7343480 DOI: 10.18632/aging.103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
Sophisticated postoperative complications limit the long-term clinical success of liver transplantation. Hence, early identification of biomarkers is essential for graft and patient survival. High-throughput serum proteomics technologies provide an opportunity to identify diagnostic and prognostic biomarkers. This study is aimed to identify serum diagnosis biomarkers for complications and monitor effectiveness. Serum samples from 10 paired pre- and post-liver transplant patients, 10 acute rejection (AR) patients, 9 ischemic-type biliary lesion (ITBL) patients, and 10 healthy controls were screened using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to explore divergence in polypeptide. Then, we used ELISA and western blot analysis to validate the expression of these potential biomarkers, and studied the correlation of proteomic profiles with clinical parameters. ACLY, FGA, and APOA1 were significantly lower in pre-operative patients compared with healthy controls, and these patients had modest recovery after transplantation. Downregulation of both, ACLY and FGA, was also observed in AR and ITBL patients. Furthermore, bioinformatics analysis was performed and the results suggested that the identified proteins were involved in glucolipid metabolism and the clotting cascade. Together, these findings suggest that ACLY, FGA, and APOA1 could be novel non-invasive and early biomarkers to detect complications and predict effectiveness of liver transplantation.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P R China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P R China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P R China
| | - Jing Yan
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, P R China
| | - Xiaofan Xiong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, P R China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, P R China
| | - Bo Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, P R China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, P R China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, P R China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, P R China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, P R China
| |
Collapse
|
9
|
Sigdel TK, Sarwal MM. Discovery of Immune Reactive Human Proteins by High-Density Protein Arrays and Customized Validation of Potential Biomarkers by ELISA. Methods Mol Biol 2019; 1788:11-21. [PMID: 29116566 DOI: 10.1007/7651_2017_92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Because of our access to human genome data and ever-improving genome sequencing and proteome analysis methods, we are much better in terms of our understanding of biological processes. In addition to genomics, proteomics, and other "omics" methods, availability of more sophisticated molecular assaying methods has augmented our knowledge about immune processes toward auto- and allogeneic targets. High-density protein arrays are developed to analyze protein-small molecule interactions, enzyme-substrate profiling, protein-protein interaction, and immune monitoring by assessing antibodies in the serum.
Collapse
Affiliation(s)
- Tara K Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA. .,University of California, San Francisco, CA, USA.
| | - Minnie M Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Sigdel TK, Yang JYC, Bestard O, Schroeder A, Hsieh SC, Liberto JM, Damm I, Geraedts ACM, Sarwal MM. A urinary Common Rejection Module (uCRM) score for non-invasive kidney transplant monitoring. PLoS One 2019; 14:e0220052. [PMID: 31365568 PMCID: PMC6668802 DOI: 10.1371/journal.pone.0220052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
A Common Rejection Module (CRM) consisting of 11 genes expressed in allograft biopsies was previously reported to serve as a biomarker for acute rejection (AR), correlate with the extent of graft injury, and predict future allograft damage. We investigated the use of this gene panel on the urine cell pellet of kidney transplant patients. Urinary cell sediments collected from patients with biopsy-confirmed acute rejection, borderline AR (bAR), BK virus nephropathy (BKVN), and stable kidney grafts with normal protocol biopsies (STA) were analyzed for expression of these 11 genes using quantitative polymerase chain reaction (qPCR). We assessed these 11 CRM genes for their abundance, autocorrelation, and individual expression levels. Expression of 10/11 genes were elevated in AR when compared to STA. Psmb9 and Cxcl10could classify AR versus STA as accurately as the 11-gene model (sensitivity = 93.6%, specificity = 97.6%). A uCRM score, based on the geometric mean of the expression levels, could distinguish AR from STA with high accuracy (AUC = 0.9886) and correlated specifically with histologic measures of tubulitis and interstitial inflammation rather than tubular atrophy, glomerulosclerosis, intimal proliferation, tubular vacuolization or acute glomerulitis. This urine gene expression-based score may enable the non-invasive and quantitative monitoring of AR.
Collapse
Affiliation(s)
- Tara K. Sigdel
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Joshua Y. C. Yang
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Oriol Bestard
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Kidney Transplant Unit, Bellvitge University Hospital, UB, Barcelona, Spain
| | - Andrew Schroeder
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Szu-Chuan Hsieh
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Juliane M. Liberto
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Izabella Damm
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Anna C. M. Geraedts
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Minnie M. Sarwal
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Role of biobanks in transplantation. Ann Med Surg (Lond) 2018; 28:30-33. [PMID: 29744049 PMCID: PMC5938524 DOI: 10.1016/j.amsu.2018.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 01/23/2023] Open
Abstract
The establishment of bio-banks together with high throughput technologies, such as genomics, transcriptomics and proteomics has opened new frontiers in biomarker discovery and the development of systems biology approaches to identifying key pathways that could be exploited to improve outcomes of solid organ transplantation. One of the major challenges in organ donation has been the lack of access to large scale well characterised material to facilitate projects that aim to characterise injury to donor organs and identify biomarkers. This may have hampered research in the field of organ donation by not allowing researchers to materials of high quality and lower pre-analytical variability. We describe in this manuscript the need for bio-banks in organ donation, research opportunities and the particular challenges in establishing such an initiative. We address: The main challenges in transplantation. Underpinning cellular processes of injury and repair. The role of biobanks can be used in transplantation.
Collapse
|
12
|
Sigdel TK, Nicora CD, Qian WJ, Sarwal MM. Optimization for Peptide Sample Preparation for Urine Peptidomics. Methods Mol Biol 2018; 1788:63-72. [PMID: 29623538 DOI: 10.1007/7651_2017_90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Analysis of native or endogenous peptides in biofluids can provide valuable insight into disease mechanisms. Furthermore, the detected peptides may also have utility as potential biomarkers for noninvasive monitoring of human diseases. The noninvasive nature of urine collection and the abundance of peptides in the urine make analysis by high-throughput "peptidomics" methods an attractive approach for investigating the pathogenesis of renal disease. However, urine peptidomics methodologies can be problematic with regard to difficulties associated with sample preparation. The urine matrix can provide significant background interference in making the analytical measurements, in that it hampers both the identification of peptides and the depth of the peptidomics read when utilizing LC-MS-based peptidome analysis. We report on a novel adaptation of the standard solid-phase extraction (SPE) method to a modified SPE (mSPE) approach for improved peptide yield and analysis sensitivity with LC-MS-based peptidomics, in terms of time, cost, clogging of the LC-MS column, peptide yield, peptide quality, and number of peptides identified by each method. The mSPE method provides significantly improved efficiencies for the preparation of samples from urine. The mSPE method is found to be superior to the conventional, standard SPE method for urine peptide sample preparation when applying LC-MS peptidomics analysis, due to optimized sample cleanup that provides improved experimental inference from confidently identified peptides.
Collapse
Affiliation(s)
- Tara K Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Minnie M Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Sigdel TK, Sarwal MM. Assessment of Circulating Protein Signatures for Kidney Transplantation in Pediatric Recipients. Front Med (Lausanne) 2017; 4:80. [PMID: 28670579 PMCID: PMC5472654 DOI: 10.3389/fmed.2017.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
Identification and use of non-invasive biomarkers for kidney transplantation monitoring is an unmet need. A total of 121 biobanked sera collected from 111 unique kidney transplant (KT) patients (children and adolescent) and 10 age-matched healthy normal controls were used to profile serum proteins using semi-quantitative proteomics. The proteomics data were analyzed to identify panels of serum proteins that were specific to various transplant injuries, which included acute rejection (AR), BK virus nephropathy (BKVN), and chronic allograft nephropathy (CAN). Gene expression data from matching peripheral blood mononuclear cells were interrogated to investigate the association between soluble serum proteins and altered gene expression of corresponding genes in different injury phenotypes. Analysis of the proteomics data identified from different patient phenotypes, with criteria of false discovery rate <0.05 and at least twofold changes in either direction, resulted in a list of 10 proteins that distinguished KT injury from no injury. Similar analyses to identify proteins specific to chronic injury, acute injury, and AR after kidney transplantation identified 22, 6, and 10 proteins, respectively. Elastic-Net logistic regression method was applied on the 137 serum proteins to classify different transplant injuries. This algorithm has identified panels of 10 serum proteins specific for AR, BKVN, and CAN with classification rates 93, 93, and 95%, respectively. The identified proteins could prove to be potential surrogate biomarkers for routine monitoring of the injury status of pediatric KT patients.
Collapse
Affiliation(s)
- Tara K Sigdel
- University of California, San Francisco, San Francisco, CA, United States
| | - Minnie M Sarwal
- University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Abstract
Modern multianalyte "omics" technologies allow for the identification of molecular signatures that confer significantly more information than measurement of a single parameter as typically used in current medical diagnostics. Proteomics and metabolomics bioanalytical assays capture a large set of proteins and metabolites in body fluids, cells, or tissues and, complementing genomics, assess the phenome. Proteomics and metabolomics contribute to the development of novel predictive clinical biomarkers in transplantation in 2 ways: they can be used to generate a diagnostic fingerprint or they can be used to discover individual proteins and metabolites of diagnostic potential. Much fewer metabolomics than proteomics biomarker studies in transplant patients have been reported, and, in contrast to proteomics discovery studies, new lead metabolite markers have yet to emerge. Most clinical proteomics studies have been discovery studies. Several of these studies have assessed diagnostic sensitivity and specificity. Nevertheless, none of these newly discovered protein biomarkers have yet been implemented in clinical decision making in transplantation. The currently most advanced markers discovered in proteomics studies in transplant patients are the chemokines CXCL-9 and CXCL-10, which have successfully been validated in larger multicenter trials in kidney transplant patients. These chemokines can be measured using standard immunoassay platforms, which should facilitate clinical implementation. Based on the published evidence, it is reasonable to expect that these chemokine markers can help guiding and individualizing immunosuppressive regimens, may be able to predict acute and chronic T-cell-mediated and antibody-mediated rejection, and may be useful tools for risk stratification of kidney transplant patients.
Collapse
|
15
|
A Computational Gene Expression Score for Predicting Immune Injury in Renal Allografts. PLoS One 2015; 10:e0138133. [PMID: 26367000 PMCID: PMC4569485 DOI: 10.1371/journal.pone.0138133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022] Open
Abstract
Background Whole genome microarray meta-analyses of 1030 kidney, heart, lung and liver allograft biopsies identified a common immune response module (CRM) of 11 genes that define acute rejection (AR) across different engrafted tissues. We evaluated if the CRM genes can provide a molecular microscope to quantify graft injury in acute rejection (AR) and predict risk of progressive interstitial fibrosis and tubular atrophy (IFTA) in histologically normal kidney biopsies. Methods Computational modeling was done on tissue qPCR based gene expression measurements for the 11 CRM genes in 146 independent renal allografts from 122 unique patients with AR (n = 54) and no-AR (n = 92). 24 demographically matched patients with no-AR had 6 and 24 month paired protocol biopsies; all had histologically normal 6 month biopsies, and 12 had evidence of progressive IFTA (pIFTA) on their 24 month biopsies. Results were correlated with demographic, clinical and pathology variables. Results The 11 gene qPCR based tissue CRM score (tCRM) was significantly increased in AR (5.68 ± 0.91) when compared to STA (1.29 ± 0.28; p < 0.001) and pIFTA (7.94 ± 2.278 versus 2.28 ± 0.66; p = 0.04), with greatest significance for CXCL9 and CXCL10 in AR (p <0.001) and CD6 (p<0.01), CXCL9 (p<0.05), and LCK (p<0.01) in pIFTA. tCRM was a significant independent correlate of biopsy confirmed AR (p < 0.001; AUC of 0.900; 95% CI = 0.705–903). Gene expression modeling of 6 month biopsies across 7/11 genes (CD6, INPP5D, ISG20, NKG7, PSMB9, RUNX3, and TAP1) significantly (p = 0.037) predicted the development of pIFTA at 24 months. Conclusions Genome-wide tissue gene expression data mining has supported the development of a tCRM-qPCR based assay for evaluating graft immune inflammation. The tCRM score quantifies injury in AR and stratifies patients at increased risk of future pIFTA prior to any perturbation of graft function or histology.
Collapse
|
16
|
Reich HN, Sabelnykova VY, Boutros PC. Matching Kidneys and Urines: Establishing Noninvasive Surrogates of Intrarenal Events in Primary Glomerulonephritis. Semin Nephrol 2015. [PMID: 26215863 DOI: 10.1016/j.semnephrol.2015.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Kidney biopsy is the gold standard procedure for providing diagnostic and prognostic information for patients with glomerular-based diseases, however, the utility of this procedure for assessing longitudinal disease activity is limited. The intense search for noninvasive biomarkers of kidney disease activity and injury is driven in large part by the inherent risks of the kidney biopsy procedure and limited information derived from the morphologic description of biopsy findings. Furthermore, gaps in our understanding of the core intrarenal molecular processes underlying the development and progression of glomerular-based diseases has limited the development of effective targeted therapy. In this review, we discuss the potential utility of molecular analysis of the urine to provide a dynamic window into intrarenal molecular and morphologic responses. We focus on molecular analysis of the urine to identify noninvasive surrogate markers of kidney responses, with the goal of using these biomarkers as more sensitive indicators of progression and tissue-level responses to therapeutic interventions in patients with primary glomerulonephritis.
Collapse
Affiliation(s)
- Heather N Reich
- The Toronto Glomerulonephritis Registry, University Health Network, Gabor Zellerman Chair in Nephrology Research at the University of Toronto Department of Medicine, Toronto, Ontario, Canada.
| | - Veronica Y Sabelnykova
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Paul C Boutros
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Sigdel TK, Nicora CD, Hsieh SC, Dai H, Qian WJ, Camp DG, Sarwal MM. Optimization for peptide sample preparation for urine peptidomics. Clin Proteomics 2014; 11:7. [PMID: 24568099 PMCID: PMC3944950 DOI: 10.1186/1559-0275-11-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 12/10/2013] [Indexed: 11/10/2022] Open
Abstract
Analysis of native or endogenous peptides in biofluids can provide valuable insights into disease mechanisms. Furthermore, the detected peptides may also have utility as potential biomarkers for non-invasive monitoring of human diseases. The non-invasive nature of urine collection and the abundance of peptides in the urine makes analysis by high-throughput ‘peptidomics’ methods , an attractive approach for investigating the pathogenesis of renal disease. However, urine peptidomics methodologies can be problematic with regards to difficulties associated with sample preparation. The urine matrix can provide significant background interference in making the analytical measurements that it hampers both the identification of peptides and the depth of the peptidomics read when utilizing LC-MS based peptidome analysis. We report on a novel adaptation of the standard solid phase extraction (SPE) method to a modified SPE (mSPE) approach for improved peptide yield and analysis sensitivity with LC-MS based peptidomics in terms of time, cost, clogging of the LC-MS column, peptide yield, peptide quality, and number of peptides identified by each method. Expense and time requirements were comparable for both SPE and mSPE, but more interfering contaminants from the urine matrix were evident in the SPE preparations (e.g., clogging of the LC-MS columns, yellowish background coloration of prepared samples due to retained urobilin, lower peptide yields) when compared to the mSPE method. When we compared data from technical replicates of 4 runs, the mSPE method provided significantly improved efficiencies for the preparation of samples from urine (e.g., mSPE peptide identification 82% versus 18% with SPE; p = 8.92E-05). Additionally, peptide identifications, when applying the mSPE method, highlighted the biology of differential activation of urine peptidases during acute renal transplant rejection with distinct laddering of specific peptides, which was obscured for most proteins when utilizing the conventional SPE method. In conclusion, the mSPE method was found to be superior to the conventional, standard SPE method for urine peptide sample preparation when applying LC-MS peptidomics analysis due to the optimized sample clean up that provided improved experimental inference from the confidently identified peptides.
Collapse
Affiliation(s)
| | | | | | | | | | - David G Camp
- California Pacific Medical Center Research Institute, 475 Brannan St,, Ste 220, San Francisco, CA 9410, USA.
| | | |
Collapse
|
18
|
Abstract
The immune management of organ transplant recipients is imperfect. Beyond general dosing guidelines for immunosuppressive agents and clinical diagnostic tests for rejection or infection, there are few objective tools to determine the aggregate status of a patient's alloimmune response or protective immune capacity. The lack of prognostic precision significantly contributes to patient morbidity and reduces long-term allograft survival after kidney transplantation. Noninvasive biomarkers that could serve as predictive tools or surrogate end points for rejection might help clinicians individualize immunosuppression and allow for early intervention, ideally prior to clinically evident organ dysfunction. Although the growing understanding of organ rejection has provided numerous candidate biomarkers, none has been confirmed in robust validation studies as sufficiently useful to guide clinical practice independent of traditional clinical methods. In this Review, the general characteristics of biomarkers and surrogate end points; current biomarkers under active clinical investigation; and the prominent barriers to the translation of biomarkers into clinical practice are discussed.
Collapse
Affiliation(s)
- Denise J Lo
- Emory Transplant Center, Emory University, 101 Woodruff Circle, #5105-WMB, Atlanta, GA 30322, USA
| | - Bruce Kaplan
- University of Kansas Medical Center, Center for Transplantation, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Allan D Kirk
- Emory Transplant Center, Emory University, 101 Woodruff Circle, #5105-WMB, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Biomarker discovery in transplantation—proteomic adventure or mission impossible? Clin Biochem 2013; 46:497-505. [DOI: 10.1016/j.clinbiochem.2012.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 01/10/2023]
|